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A detailed classification is made of all orthogonal coordinate systems for which the Klein-Gordon 
equation in space-time, 1jJ" - a31jJ = AljJ, admits a separation of variables. We show that the 
Klein-Gordon equation is separable in 261 orthogonal coordinate systems. In each case the coordinate 
systems presented are characterized in terms of three symmetric second order commuting operators in the 
enveloping algebra of the Poincare group. This paper also consitutes an important step in the study of 
separation of variables for the wave equation in space-time 1jJ" - a31jJ = 0, and its relation to the 
underlying conformal symmetry group 0(4,2) of this equation. 

INTRODUCTION 

In this paper we continuel - 3 an investigation of the 
connection between separation of variables for the wave 
equation in space-time 

(0.1) 

and the 0(4,2) symmetry group of this equation. Here 
we study all the orthogonal coordinate systems for 
which the Klein-Gordon equation 

(0.2) 

admits a separation of variables. [By simply setting 
A = 0 in our results we will obtain orthogonal separable 
systems for (0. 1). ] The method used to compute all 
such coordinate systems is an adaptation of that used 
by Eisenhart4 in the case of the Helmholtz equation in 
three-dimensional Euclidean space. The work of 
Eisenhart enables us to classify all distinct ortho
gonal differential forms 

4 

ds2 = 6 H~ dx~ , 
;'1 

(0.3) 

and hence coordinate systems for which (0. 2) admits 
a separation of variables. In (0.3) the H~ are real func
tions of the new variables Xi such that sign H~ = + for 
i = 1, 2, 3, and sign H~ = -. The coordinates Xi are 
related to the standard space-time coordinates x, y, z, t 
by the real functions Gi (Xl> X2, X3, X4), where t = Gl> 
X = G2, Y = G3, and Z = G4• In terms of the standard co
ordinates, the differential form (0.3) becomes 

(0.4) 

With each such differential form we give the asso
ciated space-time coordinate functions Gi and the 
expression fQr the Klein-Gordon equation in these 
coordinates. We also write out the separation equa
tions, identifying their solutions as much as possible, 
and we compute the three commuting operators L j 

(i = 1, 2, 3) whose eigenvalues are the separation con
stants. Each of these three operators is written as a 
symmetric second order operator in the enveloping 
algebra of the Poincare symmetry group E(3, 1) of the 

Klein-Gordon equation (0.2). 

When A = - m2
, m> 0, Eq. (0.2) becomes 

(O+m2)1/J(X)=0, X=(t,x,y,z); 

the relativistic equation describing a free neutral 

(0.5) 

scalar particle with mass m. In the standard field
theoretic treatments of (0.5),5 one expresses a positive
energy solution I/J in terms of its Fourier transform 

1 
W0=(21i)3T2' 

X Iff exp[ - i(tko -1t -yk2 - zk3)] t(k)dm(k), 

where the integration surface is the hyperboloid 

(0.6) 

k~ - k~ - k~ - k~ = m 2, ko> O. The Lebesgue measurable 
functions f(k), such that 

l: f: f: If(k) 12 dm(k) < 00, 

d m (k) = dkl dk2 dk3/ ko, 
(0.7) 

form a Hilbert space Hm with inner product 
~ 

<it,j2>=f[J ft(k)f2(k)dm(k), ft,j2EHm. (0.8) 

The mapping (0.6) then induces a Hilbert space struc
ture on the solution space of (0.5) given by 

(I/Jl> 1/J2) = f: f: f: [>¥t (x) at 1P2(X) 

- (at>¥t(x»~2(x)]dxdydz (0.9) 

(independent of t), where I/J j is related to fj E Hm by 
(0.6). The natural action of the connected Poincare 
group E(3, 1) on the functions I/J induces an action on 
the transform space Hm which is well known to be uni
tary and irreducible. 5 

In studies of this physical system it is obviously of 
interest to construct various orthonormal bases for 
H m , particularly bases which correspond to separable 
solutions of (0.5). However, with few exceptions, only 
the plane wave basis (corresponding to separation in 
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Cartesian coordinates) is employed in the published 
literature, Here we show explicitly that every ortho
gonal separable coordinate system for (0.5) has the 
property that the associated separated solutions are 
characterized as simultaneous eigenfunctions of a com
muting triplet of second-order symmetry operators 
from the enveloping algebra of E(3, 1). The correspond
ing operators acting on the domain of Coo functions with 
compact support in Hm are obviously symmetric. These 
operators can then be extended to a commuting triplet 
of self-adjoint operators on Hm. (However, in some 
cases the deficiency indices are equal but nonzero, so 
that the extension is not unique. Furthermore, in a few 
cases the deficiency indices of some operators are 
unequal. This difficulty can be removed by extending 
the Hilbert space to include the negative energy solu
tions, ) The spectral theorem for commuting sets of 
self-adjoint operators thus implies the existence of a 
basis for Hm which is a (generalized) eigenbasis of the 
commuting operators, Mapping the eigenbasis to the 
solution space of (0. 5) via (0. 6), we see that the basis 
eigenfunctions are separable solutions of (0.5). The 
spectral resolutions of the defining self-adjoint opera
tors as computed in H m can then be used to derive ex
pansion theorems and special function identities for 
solutions of (0.5). Our characterization of orthogonal 
separable systems in terms of commuting second-order 
operators in the enveloping algebra which act within 
a unitary irreducible representation of E(3, 1) is an 
essential part of this program. 

The paper is arranged as follows. In Sec. 1 we 
present the necessary details concerning the generators 
of the Poincare group. In addition we give a preliminary 
discussion concerning the arrangement and computation 
of the coordinate systems. In Sec. 2 we extend the 
work of Eisenhart to consider orthogonal differential 
forms in four variables and then compute all the in
equivalent classes of differential forms. In Sec. 3 we 
give the coordinate systems, separation equations, 
and operators defining the separation constants. 

I. SOME PROPERTIES OF THE POINCARE GROUP 
E(3,1) 

Here we briefly present those properties of the 
Poincare group E(3, 1) that are relevant to this article. 
For more details concerning this group the reader is 
referred to paper 3 of this series and Refs. 6, 7, and 
8. The Poincare group consists of all proper real lin
ear transformations which preserve the differential 
form (0.4). The group is the semidirect product of 
the group of translations T4 in the space and time co
ordinate and the group of proper real Lorentz trans
formations SO(3, 1), i. e. 

E(3, 1)=T4 x SO(3, 1). 

The Lie algebra is ten-dimensional with basis 
elements: 

1. Translations 

PO=d t ; P 1=d x, Pz=d y , P 3=d z ; 

2. Pure Lorentz transformations 
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3. Rotations 

lVI1=yd.-Zd y , ;VIz =xG z -Z(1x, lVI3=xG y -yd x • 

These generators satisfy the commutation relations 

[Ali ,;1[j] = EUk ;11k, [MiNj] = Eijk Nk, [N;, Nj ] = - Eijk ;\Jk' 

[Pi,Njl=oijPo, [Pi,;llj]=EijkPk, 

where i,j,k=1,2,3; 

[po, Nj ] = Pj, [po, Alj ] = 0, 

for j=I,2,3, and 

[Pi,Pj]=O, 

for all i, j. 

On the Hilbert space H m (Eqs, (0.7) and (0.8)] the Lie 
algebra generators are 

P o=-i1?o, Pj=i1~j, Nj=ko(lk. [=1,2,3, 
J> 

Ji1 = !?2d k3 - k 30k2 , ,1/2 = "12k3 - 1~3?kl' 

:1l3=!?1 0k -!c2aR • 
2 1 

In addition to the real Poincare group E(3, 1) we will 
also consider its complexification E(4, <r:). This is the 
group of proper complex transformations which pre
serve the differential form 

ds2 = dZl + dz~ + dz~ + dz~ , 
where Zi E <r:, i = 1, 2, 3,4, The group E(4, <r:) is the 
semidirect product of the translation group T4 and 
SO(4, <r:), i. e. , 

E(4, <r:) = T4 x SO(4, <r:). 

The Lie algebra is ten-dimensional with basis 
elements: 

1. Translations Pi=ozi' i=1,2,3,4, 

2. Rotations Ii; =ZiCZj - Z;r!Zi' 

with i,j=1,2,3,4 and i*.i. 
These basis elements satisfy 

[Ikl>Istl=olsIkt - 0ksIlt- 0ltlks + {iktils> 

[Pi,Pjl=o, 

[Pi,Ik1l=oik P /- {i;IPk • 

II. ORTHOGONAL SEPARABLE DIFFERENTIAL 
FORMS FOR THE KLEIN-GORDON EQUATION 
AND ITS COMPLEXIFICATION 

In this section we classify the possible orthogonal 
differential forms which enable (0.2) or its 
complexification 

4 

:0 az.z.J)=A~1 (2.1) 
l =1 •• 

to be solved by separation of variables. By this we 
mean a classification of all choices of new variables 
Xl, Xz, X3, X4, such that 1= C\, X = (h, y = (;3, and 
z=G4 • 

In the case of the Klein-Gordon equation, the real 
functions Gi (i = 1, 2, 3, 4) are real differentiable func
tions of the real variables Xi (i = 1, 2, 3, 4). In order 
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that the new coordinates Xi be orthogonal we have the 
additional requirement that 

4 

ds2 =dX2 + di + dz2 - dt2 = 6 H~ dx~, (2.2) 
i=l 

where sign H~ = + for i = 1, 2, 3 and sign H~ = - . 
In the case of the complexified Klein-Gordon equa

tion, the functions Gi (i = 1, 2, 3,4) are analytic func
tions of the complex variables Xi' The requirement of 
orthogonality is the same as in the real case but with 
no restrictions on the signs of the metric coefficients. 
The coordinate systems fall into five broad classes, 
whose general features we now summarize. Details 
of the derivations are given in Ref. 9. 

A. Coordinate systems of class I 

These correspond to coordinate systems giving the 
differential form 

E=± , 

(2.3) 

where x, y can be replaced by one of the four possible 
coordinate systems in the Euclidean plane (in the case 
of the real Klein-Gordon equation). In the case of the 
complexified equation, X and y can be replaced by one 
of the various possible coordinate systems for all the 
complex Euclidean plane. 10 The separable solutions 
of (0.2) for coordinate systems of this type assume the 
typical form 

w=e~(a+b) Dev(a+tx,~ 

(2.4) 

where ea=v'X;, eb=.fX;, tanhx=(A+ll)/(A-ll)' Here 
X3 and X4 correspond to the appropriate choice of co
ordinates in the Euclidean plane and cp(x,y) =E3(X3) E4(X4) 
is a solution of 

where E 3(X3) E4 (X4) = cp is a solution of 

(Nt + N~ - }\1~) cp = j(j + 1) cp (2.8) 

and the coordinates X3, x4 are one of the nine possible 
types for which this equation admits a separation of 
variables. Here M", " is a Whittaker function. 12 , 

C. Coordinate systems of class III 

These correspond to systems giving the differential 
form 

ds2 = (Xl - X2) [ dxi dx~ J 2 - )- ( +X1X2dw , 
4 Xl (Xl - 1 X2 X2 - 1) 

(2.9) 

with dw2 as in Class II. The separable solutions of 
(0.2) for systems of this type assume the typical form 

w = (X1X2)11 4pS~+1/2 (VI - xi> A) Ps~+11 2 (vI - X2, A) 

x E3(X3) E4 (X4), 

where E 3(X3) E4 (X4) is as in Class II and Ps~ is a 
spheroidal function. 11 

D. Coordinate systems of class IV 

(2.10) 

These correspond to systems giving a differential 
form 

dS3_(Xl-X2)[ dxl _ dx~ 1 
- 4 Xl (Xl - 1) X2(X2 - l)J 

+ X1X2 dx~ + (Xl - 1)(x2 -l)dx1. (2.11) 

The separation equations are 

4 -- x·(x· - 1)-' d ( dE.) 
dXi " dXi 

( 
II l2 ) - - +-- + Axi+ l3 
Xi Xi- 1 

Ei=O (i=1,2) (2.12) 

E. Coordinate systems of class V 

(2.5) These correspond to systems with a differential form 

and X=X(x3,X4), Y=Y(X3,X4)' Furthermore, D=S,C 
and Sev, Cev are Mathieu functions. 11 

B. Coordinate systems of class II 

These correspond to systems giving the differential 
form 

d 2 (xl- X2) E~ dx~J + d 2 
S = 4 - - xlX 2 w, 

Xl X2 
(2.6) 

where dw2 is one of the differential forms associated 
with the two-dimensional sphere or the two-dimensional 
single or double sheeted hyperboloids. The separable 
solutions of (0.2) for systems of this type appear as 

w = (xlX2)-11 4 M.H 1.13) 1 I 2 I 2, 11 2(j+l1 2) (± ix /2 ~) 

x M .i<A1
3

) 1 I 2 12,112 (j+l / 2) (± iX2/2~) E3 (X3) E4 (X4), 
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ds2 = (X2 - I1)(X3 -11)(X4 - 11) dxi 

~ (x·-x.)(x·-x.) 2 + L1 ' 1 , 1 dx. 
i=l 4f(Xi) , , 

(2.13) 

where i,j,k=2,3,4 are distinct, /(x) is a polynomial 
such that 1'" deg/(x) '" 3, and X = 11 is a root of /(x). The 
separation equations are 

4 ( f(x i) ) 1 I 2 ~ ( dE ) 
(Xi -11) dXi V(Xi -11)/(Xi) dXii + [- A(xi _11)3 

+ll(Xi _11)2 +l2(Xi -11) +l3]Ei =0, 

(2.14) 

where i=2,3,4 and 

where 11 J and 11 II are the other roots of f(x) with multi
plicity included and deg/(x) = 3. Simila~ separation 
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equations exist in the variable xI when degt(x) =2 
and 1. 

F. Coordinate systems of class VI 

These correspond to systems giving differential 
forms 

4 d 2 
ds

2 = ~ (Xi - Xj)(Xi - Xk)(xj - XI) 4jX( i ) , 
.=1 Xi 

(2.15) 

where i,j, k, 1= 1, 2, 3, 4 are distinct andj(x) is a poly
nomial of degree less than or equal to 4. The separa
tion equations are 

d 
4vr(xJ d-

Xi 

i= 1,2,3,4. 

The remaining coordinate systems correspond to 
group reductions of the type E(3, 1):=1 T j @ E(2, 1) 
:=1 T j @ 0(2,1), E(3, 1):=1 T 1 @ E(3P T j @ 0(3), and 
E(3, 1) ~ 0(3,1) in the Case of the Klein-Gordon equa
tion and E(4, <r) ~ T 10 E(3, <r) ~ T 10 0(3, <r), E(4, <r) 
~ 0(4, 0:) in the case of its complexification. These 
systems have been derived elsewhere13 and we make no 
further evaluation of themo 

III. ORTHOGONAL SEPARABLE COORDINATE 
SYSTEMS FOR THE KLEIN-GORDON EQUATION 
AND ITS COMPLEXIFICATION 

In this section we supplement Sec. 2 by giving the 
coordinates in space-time corresponding to the differ
ential forms presented there. In addition we give the 
three operators, L1> L 2, and L3 whose eigenvalues are 
the three separation constants II, l2' and l3. These 
operators are expressed as symmetric second order 
operators in the enveloping algebra of the Poincare 
group or its complexification. Due to the large number 
of possible systems we group the coordinate systems 
corresponding to the differential forms of Sec. 2 into 
classes of systems with similar properties and make 
an explicit count of the number of distinct coordinate 
systems inequivalent under the Poincare group. We 
also list the systems which separate for the complexi
fied equation only (denoted by the symbol <C), bearing 
in mind that distinct real systems may be equivalent 
in the complex case. 

A. Coordinate systems of class I 

A suitable choice of coordinates (2.3) with E = - and 
sign (XtX2) = + is 

(1) (t - x)2 =XjX2, 

(t2 - x2) =Xj + X2 + xlx2 (x~ + xD, 
y=VXjX2X3, Z= YX1XZ X4' 

(3. 1) 

In terms of these coordinates the Klein-Gordon equa
tion assumes the form 

(3.2) 
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The separation equations for the solution 'It 
= E j (Xj) E2(X2) E 3(X3) E4 (X4) are 

d2E d2E 
J:T"d 3=(71- 12)£3, -:;-rd 4=l2 E4, 

X3 X4 

4 - X~ = + -1 - AXi + l3 d ( dE.) (l ) 
dXi dXi Xi 

Ei=O, 
(3.3) 

where i = 1, 2. The three operators whose eigenvalues 
are the separation constants are 

L j = (Nz + M3)2 + (!V3 - M2)2, L z = (N3 - lVI2)2, 

L3= (Po +PI)2 + Mi +M~ + M~ -NI - Ni -~. 
(3.4) 

A typical solution for the Klein-Gordon equation (0. 2) 
is 

(3.5) 

where D = C, S and the variables are defined as in 
(2.4). 

If E = +, then the corresponding coordinates are ob
tained from (3.1) via the transformations S; 

(t, x, yz) - (X, t, iy, iz) and x3 - iX3' x4 - iX40 

(2) If sign (xlX2) = - and E = +, the appropriate choice 
of space-time coordinates is obtained from (3.1) via 
the transformation T: (t, x, y, z) - (it, ix, iy, iz). This 
transformation also gives the operators describing this 
second type of system when applied to formulas (3.4). 
If E = -, then the corresponding coordinates can be ob
tained from those for which E = + by the transforma
tions Sand x3 - iX3, X4 - iX4' 

The remaining coordinate systems in this class are 
obtained by regarding xs,X4 [as given in (301) for co
ordinate systems (1)- (2)] as Cartesian coordinates in 
a Euclidean plane. This is the plane whose correspond
ing E(2) Lie algebra has generators PI =N2 + M 3• 

P2 =N3 + M 2, and M =M j with commutation relations 

[Pb M]=P2, [pz,Ji:i]=Ph [Pj,P2 ] =0. (306) 

The new coordinates are then obtained by choosing 
polar, parabolic, and elliptic coordinates in the x3, X4 
plane. The three possible types of coordinates result
ing from each of these three choices are obtained by 
the same substitutions as used to find all the systems 
(1)-(2), 1. eo, we have two inequivalent pairs of co
ordinate systems in each caseo In aU cases the opera
tor L3 is given by its counterpart in systems (1)-(2), 
and the separation equations in the variables xi> Xz are 
as in (3.3). For each Case we need only give the trans
formation X3 - j(X3, X4), X4 - J5(X3, X4) specifying the 
change in coordinates together with the operators Lj, L 2• 

The transformation to plane polar coordinates is 
given by the following. 

(3.7) 

The xs, X4 dependent part of the separable solution is 
typically 

E3 (xs) E4 (X4) == C (-13) 1/2 (Y -llX3) exp[± (Z2X4) 1/2], 
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where Cv(z) is a solution of Bessel's equation. The 
basis defining operators are 

L j = (N2 + M3)2 + (N3 - NI2)2, L2 == M~ • (3. 8) 

(5)- (6) The transformation to parabolic coordinates 
in the plane is given by 

X3-~(X3+X4)' X4-J-X3X4, X4<0<X3' (3.9) 

The X3, x4 part of the separable solution is typically 

E 3(X3) E4 (%4) = D[ 12-(/j) 1 / 2)/ OJ)t /2 [± ,L ZtX3(1 + i)J 

X D[-/2-(/l) 1/2)1 (/1) j/2(± ~ (1 + i)], (3. 10) 

where Dv (z) is a parabolic cylinder function. I, The 
basis defining operators are 

L j = (N2 + ;Vl3)' + (N3 - j\,[2)2, 

L2 = (N3 - M,) ]vIt + 1111 (N3 - M2). 
(3.11) 

(7)- (8) The transformation to elliptic coordinates in 
the plane is given by 

X3 - e -/X3%4, x4 - e V(~~D(i--=-;;;-) (3.12) 

with ° < %3 < 1 < X4' 

The x3, %4 part of the separable solution is typically 

j Cev(~' h2
) ee)r}, h2

), 

E 3(x3) E4(X4) = l Sev(~, h2) sev('Ij, hZ), (3.13) 

where %4 = cosh2~, X3 = cos2
'T), h2 = -lte2 /4, and l2 

=_/\,,(h2), v=0,1,2,·'·. The functions eev(z,hZ
), 

sev (z,h 2) are periodic Mathieu functions. 11 The basis 
defining operators are 

L t = (N2 + ,'\113)2 + (N3 - M 2)2, 

L2 =M~ + te2(N2 + Ma)' - (N3 - M2)2]. 
(3.14) 

For the remaining systems of Class I we have to 
consider the complexified Klein-Gordon equation. 

(9) [<r] A suitable choice of coordinates is 

(Zj - iz 2)2 =%IX" 

(zl + zD =%t + X2 + 2XjX2 (X3 + X4) (x3 - X4)2, 

Za + iZ4 =2iv'X;X~(X3 + X4), 

Z3 - iZ4 = i'; xIx, (x; - X4)2 • 

(3. 15) 

The complexified Klein-Gordon equation has the same 
form as (3.2) with ~,<P = (033 + (44) <P replaced by 
[1/4 (x3 - X4) ](033 - (44) <P. The separation equations in 
the variables X3, x4 are 

dZE. 
([T' + (- 4l1X; + l2) Ei = 0, 

Xi 
(3. 16) 

where i = 3,4. A typical solution of this equation is 

E; = (Xi + 2~) C1/S [4~ (Xi + 2:~lJ S/'J ' 
(3.17) 

where Cv(z) is a solution of Bessel's equation. The 
separation equations in the variables x1> X2 are as in 
(3.3) with 11 +1, replaced by ll' The basis defining 
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operators are 

L1 = (132 + iI3tl2 + (142 + iId', 
L z = {I43 , 132 + 142 + i(IS1 + I41H 

+ (I32 - In + l(I31 - 141 ) y, 
Ls = (p j - iP2)' + 1t2 + l~s + II4 + l~s + I~4 + 1~4' 

(10) [<1'] A suitable choice of coordinates is 

(ZI - izZ)2 =xlx2, 

(zi + z~) =Xj + %2 + 2%IX Z (xs + X4), 

(z3+iz4)=iJX1X, [(~:) 1/2 + G~) j!2], 
(ZS - iz4) = - i rx;x, XSx4 • 

(3. 18) 

(3.19) 

The complexified Klein-Gordon equation has the same 
form as (3.2) with ~zljJ == (033 + 044) IjJ replaced by 

4 [a (OJ') a ( aljJ)] 
(xs - X4) X3 OX3 X3 ilxs - x4 ilX4 X4 0;4 • 

The separation equations in the variables X3, X4 are 

(3.20) 

where i = 3, 4. A typical solution of this equation is 

Ei=Cv(2~)C"(2';-llX4)' (3.21) 

The separation equations in the variables x b X2 are as 
in coordinate system (9). The operators Ll and Ls also 
are the same as in system (9). The remaining operator 
is 

(3.22) 

B. Coordinate systems of class I I 

(11)-(13) In analogy to our treatment of Class I we 
treat one of the coordinate systems in detail and give 
the transformations from which the remaining coordi
nate systems can be obtained. A suitable choice of 
coordinates of type (2.6) with sign (XtXz) == + and x3 < 0 
is 

(11) 

t = J XjX, (1- xs), x = J - XjXZXS cosx4, 

y =r-XtXZX3 siOX4, z = HXj + xz). 

The Klein-Gordon equation assumes the form 

The .separation equations are 

-.. - -- d 
4v'1-x3 -

dX3 

dZE4 
~d =l2E 4, 

x4 

E.G. Kalnins and W. Miller, Jr. 
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4~ d~i (~~)+ -(~: +~Xi-l3)Ei==O, 

where i == 1,2. The three defining operators are 

L j ==Ni + N~ - M~, L2 ==ML 

L3 ==PON3 + N3P O - 2M2P 2 + 2MtP 1• 

A typical solution of the Klein-Gordon equation is 

'It == (xtX2)-lf 4 M±nAI3) 1/2 12,1/2 (j+t/Z)(± iXl/2-1X) 

x M±HAI 3l 1/2/ 2,l/2{J+l/2) (± iX2/2~) 

(3. 25) 

(3.26) 

(3.27) 

where p~(z) is a Legendre function. There is a further 
coordinate system of type (11) obtained by allowing the 
parameters xi to vary in the ranges sign(xjxz) == - , 
X3> 1. 

(12) Coordinate systems of this type correspond to 
the ranges, sign (x tx2) == +, ° "" x3 < 1, and can be ob
tained from systems of type (11) via the transformation 
(t,x, y, z) ~ (z, ix, iy, t). 

(13) If sign (XjXz) == +, X3> 1 or sign (xjX2) == -, X3 < 0, 
and if we make the two transformations X4 - iX4 and 
(t, x, y, z) ~ (iy, it, ix, z) in (3,19) and (3.22) we get the 
appropriate coordinates and basis operators, If sign 
(xjXz) == - and 0 < X3 < 1, then making the substitutions 
X4 ~ iX4 and (t, x, y, z) ~ (iy, ix, t, z) we get another set 
of coordinates. 

We can extract the essential features of the remain
ing distinct coordinates of Class II from the three 
systems already described. There are two kinds of 
coordinates: 

til t==,fXtX27t. x =,fXjXZ7Z, 

y == {X1XZ 7 3, Z = t(Xj + X2)' 
(3.28) 

If sign (XjXz) == +, then the vector T= (7il 7Z, 7 3) is 
parametrized by one of the nine orthogonal separable 
coordinate systems on the double sheeted hyperboloid 
[7, T] = ri - ~ - 7~ == L If sign (XjX2) = -, then the vector 
(71) 72) 7 3) is parametrized by one of the nine classes 
of orthogonal separable coordinate systems on the single 
sheeted hyperboloid [T, T] == - 1. 

[ii] t=t(xl +xz), X=,fxlXZ7j, 

y=,(X1X";7z, Z=,fxlx273 
(3.29) 

parametrized by one of the two orthogonal separable 
coordinate systems on the sphere ri + ~ + 7~ == 1. 

For the remaining coordinate systems of Class II we 
need only give the 3-vector (71) 7z, 7 3) in terms of the 
coordinates X3, x4> appearing in the corresponding dif
ferential form of Sec. 2. In addition we give the 
operator L2 specifying each of the separable bases 
together with a typical solution for E3(X3) E4(X4)' We 
note here that coordinate systems already given corre
spond to the follOWing l' vectors. 

(11) 1'= (cosha, sinha cosrp, sinha sinrp), [T, 1'] = 1, 

- 00 < a < 0() , 0"" rp < 21T (x3 == - sinh2a), 
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1'= (sinha, cosha cosrp, cosha sinrp), [1',1'] == - 1, 

_oO<a<oO, O~rp<21T (x3=cosh2a). 

(3.30) 

(12) l' = (cose, sine cosrp, sine sinrp), 7t + ~ + ~ = 1, 

o~e<1T, 0~¢<21T (x3=sinZe). 

(3.31) 

(13) 1'= (coshacoshb,coshasinhb, sinha), [1',1'1=1, 

- 00 < a, b < 00 (X3 = cosh2a), 

1'= (sinha coshb, sinha sinhb, cosha), fT, T] = - 1, 

(X3 = - sinh2a), 

T= (sine sinhb, sine coshb, cos e), [T, T] = - 1, 

(X3 = sin2e). 

(3.32) 

We now proceed to the remaining coordinate systems 
of Class II. 

(14) The corresponding chOices of the vector Tare 

(a) 7 j + 72 ==.fXs, 71 - 72 = (1/1X; xl, 

73=X4v'X;', [1',T]=1, X4,X3>0. 
(3.33) 

(b) The coordinates corresponding to the single sheeted 
hyperboloid [1', T1 = - 1 are obtained from (3.29) via the 
substitution 7 - iT with X3 < 0, The operator L2 for this 
coordinate system is 

(3.34) 

and a typical solution for the X3, X4 dependent part of 
the solution of (0.2) is 

E3(X3) E4 (X4) =X31/ 4 Kj+tl2 (~/ Xs) exp[(l2)1I'2X4 ], 

(3.35) 

where Kv(z) is a Macdonald function. 

(15)- (17) The corresponding choice of the vector Tis 

(15a) 71 =xsx/a, ~ ==(X3 - 1)(x4 - 1)/(a - 1), 

~=(x3-a)(a-x4)/a(a-1), [1',1"1=1, (3,36) 

1 < Xs < a < X4' 

(15b) The coordinates on the single sheeted hyper
boloid (1',1"1 = - 1 are obtained from (3.32), via the 
substitution T - iT with X3 < 0 < 1 <: x 4 < a. The operator 
L2 for this coordinate system is 

(3.37) 

and a typical solution for the xs, X4 dependent part of 

the solution of (0.2) is 

(3.38) 

where Lj/(z) is a solution of Lame's equation 

d2 L 1 (1 1 1) dL iJ ~+- --+--+-
dz 2 z - a z - 1 z dz 

+ (z2-j(j+1)z)Ljl -0 (3.39) 
4(z-a)(z-1)z -. 

(16a) This coordinate system is obtained from (15a) 
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via the transformation (Tt. T2, T3) - (iT2> iTt. T3) and 
x3<0<I<a<x4' 

(16b) This coordinate system is related to (15b) in the 
same way as (16a) and 1 < X3X4 < a, or X3X4> a. 

(17) Finally, the one system on the sphere is obtained 
from (15a) via the substitution (TIT2T3) - (T11 iT2, iT3) 

and 0 < x3 < 1 < X4 < a. 

(18) A suitable choice of coordinates on the double 
sheeted hyperboloid is: 

(18a) (TI + iT2)2 = 2(X3 - a)(x4 - a)/a(a - b), 

(3.40) 

and X3 <.0 <: X4' 

(18b) The coordinates on the single sheeted hyper
boloid are obtained from those of (3.36) by the substi
tution T - iT. The operator L2 is 

(3.41) 

and a typical solution for the X3, X4 dependent part of 
the solution of (0. 2) is 

I j 12 (x3) I j 12 (x4), 

where I jI2 (Z) is a solution of 

d
2i n 1 (1 1 1) dLJl2 ~+- --+--+-
dz 2 z - a z - b z dz 

+ [12-j{j+1)z]iJl2 -0 
4(z-a)(z-b)z -. 

(3.42) 

(3.43) 

(19)- (20) A suitable choice of coordinates on the double 
sheeted hyperboloid is: 

(19a) TI+T2=V-X3X4, 

TI - T2 = V-X;7x~ + V - X4! X3 - .,j - x3x4, 

TS=f(1-XS)(x4 - 1), [T, 1"1= 1 (3.44) 

and x3 < 0 < 1 < x4' 

(19b) The corresponding coordinates on the single 
sheeted hyperboloid are obtained via the substitution 
1"-iTwithx3,x4<0, 0<x3,x4<1, x3,x4>1. The opera
tor for this system is 

L2 =Nj - (N2 + ,H3)2 (3.45) 

and a typical solution for the x3, X4 dependent part is 

E 3(X3)E4(X4) =p;12)!/\V1- X3)pjI2)1/2U1-X4), (3.46) 

where P:(z) is a Legendre function. 

(20a) This system is obtained from (19a) via the trans
formation (TI T2 T3) - (iT2, iTj, T3) and x3 < 0 < 1 < X4' 

(20b) The coordinates on the single sheeted hyperboloid 
are obtained from (20a) via the substitution T- iT with 
X3 < 0 < x4 < 1. 

(21) A suitable choice of coordinates on the double 
sheeted hyperboloid is: 

(21a) TI + T2 = JX3X4 , TI - T2 = (x3 -X4)2/4(-X3X4)312, 

T3=- __ 3 ___ 4 1 L(- X) I 12 (- X) 1/2] 
2 X4 X3 ' 

[T,1"]=1, 

(3.47) 
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and X4 < 0 < x3. 

(21b) The coordinates on the single sheeted hyperboloid 
are obtained via the substitution 1" - i1" with X3, x4 < 0 
or X3, X4 > O. The operator for this system is 

(3.48) 

and a typical Xs, X4 dependent part of the solution is 

C. Coordinate systems of class III 

These systems are similar to systems of Class II 
in that the various different types are specified by the 
various choices of separable coordinate systems on the 
manifolds [T,TJ=±l and ~+~+~=1, where T 
= (Tj, T2 , T3). We examine in detail one system, then 
discuss the general form of the coordinates in this 
class. 

(22)- (25) 

(22a) A suitable choice of coordinates with X3 < 0, 
xj,x2 > 1; 0< Xj,X2 < 1; or xI,x2 < 0 is 

t=JXlx2 (1-X3), x=~x-; cosx4, 

y =..,j - xIX2X3 sinx4, x =.,j (1- xI)(l - X2)' 

The Klein-Gordon equation becomes 

4 ~(x 1) 1/2 a ( a<jJ) O¢='-(X--) ~ -~- xIJxI(XI-1)-~-
1- X2 XI uXI UXI 

_ (X2 -1) 1/2 _0_ (X2 JX2 (X2 _ 1) ~)~ 
X2 OX2 aX2 J 

(3.49) 

1 r4v1-xs-G- (xsVI-Xs~) 
xIX2 [ i3x3 \" aX3 

1 02¢] 
X3 ~ 

(3.50) 

The separation equations in the variables X3, X4 are as 
in (3.25). The corresponding equations for the variables 
X11 X2 are 

4 (Xi~ 1) 1/2 d~i (Xi JXi(Xi -1) ~:ii) 

+ (~ - AXi + ls) Ei = 0, (3.51) 

where i = 1, 2. The three defining operators are 

LI =.N1 +N~ - ML L2 =.ML 

L3 =. pij - P~ - P~ + M~ + }\Ill - N5 • (3.52) 

A typical solution of the Klein-Gordon equation is 

<J! = (XIX2)11 4 Pst11 2(,ft - XI, - A) PS~+II 2 (VI - x2, - A) 
1/2 

xpr1z) (v1- X3) exp[±(l2)1/2x4 ]. 

(3.53) 

There is a further system obtai,L;d by allowing the Xi 
to vary in the ranges XI < 0 < 1 < X2> 1 > Xs > O. 

(22b) Systems of this type correspond to the ranges 
XI < 0 < 1 < X2, Xs < 0; and 0 < XI < 1 < X2, X3> 1. These 
systems are related to (22a) via the transformation 
T: (t,x,y,z)-(it,ix,iy,iz). 

(23a) Systems of this type correspond to the ranges 
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Xj, X2< 0; 0 <Xl,X2 < 1; xl,x2> 1; 0<X3< 1. These sys
tems are related to (22a) via the transformation 
(I,x,)" z) ~ (z, ix, iy, I). 

(23b) In this case we have the ranges xl < 0 < 1 < X2 and 
0< x3 < 1. This is related to (23a) via T. 

As for Class II, systems of Class III are of six dif
ferent kinds: 

li1 I ={,\~X;Tb X =VX1X2T2, y =VX~T3' 

z={(1=-Xl)(1-X2), l1",1"J=1, 

[iii 1 

r-----
y=v- X 1X 2 T3, 

z=v'll~xl)(;;--=1)~ [1',1']=1, 

andxl<O< 1<X2' 
r--'--- ~ ,--- __ 

1=','-X1X2Tj, x=v-xlX2T2, y=','-xlX2T3, 

z=v'li"=--xlf(1~x2)' [1",1"1=-1, 

and Xl < 0< X2 < 1. 

[ivJ 1=~Tj, X=~T2' y=V~T3' 

Z=v'Ti~Xl)(X2-1), [1",1"1=-1, 

and 0 < Xl < 1 <, X2-

[vJ t=f(i''::''xj)lT'':'x2), x=vXjX2Tj, 

y=v'X1X2T2, Z=rx;x;T2, T1+T~+~=1, 

andxjx2<0; 0<x1> x2<1; X1>X2> 1. 

[vi] I =v'(f"=--Xl)(X2 - 1), x =f'=-X1X2Tj, 

v=f-X1X2T2, Z=';=-XjX2T3, Tt+T~+T~=l, 

and Xl < 0 < 1 < X2-

The remaining coordinate systems of Class III can 
be obtained from these kinds by replacing 1" with the 
possible separable coordinate systems on the manifolds 
[T, 1"1 =± 1 and ri + T~ + ~ = 1, exactly as for Class II. 
Systems (26)-(60) are of this type. 9 

D. Coordinate systems of class IV 

(61) If xl:> 1~· x2:> 0, xLx~> 0, a suitable choice of 
coordinates is 

1 = v'(it ~1 )(1=-;;) Sinhx4, x = i[,\~ .::.. iTIi - X2) coshx4, 

.\' =fx~;:; cosX3, z =fXr'(2 sinx3' 

The Klein-Gordon equation assumes the form 

The separation equations are (2. 12). The three 
defining operators are 
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(3.54) 

Ll=Nli, L2=Ni, 

L3 := M1 + M~ + NI5 - N~ - N~ - N5 
+ Hp1- Pt - P~ - p~]. 

Coordinates of this type are generalizations of 
spheroidal coordinates in three dimensions. 

(3.56) 

(62) (t,x,y, z) - (iy,z,x, it), xl> 1> x2:> 0, xLxa < O. 

(63) (1, x,)', z) - (ix, it,)', z), 

Xj,X2>1, 1>X1>X2>0, 0>X1>X2, xtx~>O. 

(64) (t,x,y,z)-(x,t,iy,iz), xl>1>0>x2> xLxi>o. 

E. Coordinate systems of class V 

(65)- (73) 

(65) This first type corresponds tof(x)=4(x-a)(x-1)x, 
Il =0, and 

/2 _ (X2 - a)(x3 - a)(x4 - a) x2 = X2X3X4 cos2x 
- a(l- a) a 11 

y2 = X2 x3x 4 sin2xi> Z2 _ (X2 - 1)(X3 - 1)(X4 - 1) 
a - (1- a) 

In terms of these coordinates the Klein-Gordon 
equation becomes 

where 

The three defining operators are 

Ll = - P5 + (a + 1)(Pt + P~) + aP~ + M1 + ,\1~ + .'\[~ 

-Nt-N~-NL 

L2 =a(P~ +P~ +Ml +M~) -Nt -N~ + (a + 1):1JL 

L 3 =- aM~. 

(3.58) 

(3.59) 

The coordinates X2, X3, and X4 can vary in the ranges 
x2,x3> a> 1>X4> 0; a>x2,X3> 1>X4> 0; 1>X2> 0>X3,X4; 
and 1> X21 x3, x4 > 0 with xt> 0 in aU cases. For the re
maining systems we give the appropriate transforma~ 
tion of the space-time coordinates which relates the 
system in question to (65). 

(66) (t, x, y, z) - (it, ix, i y , iz) 

(67) (t, x, y, z) - (z, ix, iy, t) 

(68) (t,x,y,z)-(iz,x,y,it) 

(69) (t,x,y,z}-(iy,x,it,z) 

(70) (t,x,y,z)-(iy,it,x,z) 
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(71) (t,x,y,z)-(y,ix,t,iz) 

(72) (t,x,y,z)-(y,t,ix,iz) 

(73) (t, x, y, z) - (iy, t, ix, iz) 

(74)- (81) 

(74) This type corresponds to the choice /l = 1 and 

t2 _ (x2 - a)(x3 - a)(x4 - 1) 
- a(l- a) , 

2 (X2 - 1)(x3 - 1)(x4 - 1) 2 
x = (1- a) cos Xj, 

2 (x2 -1)(x3 -1)(x4 -1) . 2 
Y = (l-a) SlllXt. 

2 X2X3X4 
Z = . 

The three operators are 

L j =P~ + (a - 2)(P~ + P~) + (a - 1) P~, 

+ Ml + M~ + M~ - Nt - N~ - N~, 

a 

(3.60) 

L2 = (a - l)(P! + P~ - Mt- Mn - N~ - N~ + (a - 2) ML 

L3 = (1 - a) M~. 

The coordinates can vary in the ranges 

X2, X3 > a> X4 > 1; X2, X3 > a> 1> X4 > 0; 

a> X2, X3 > 1> X4 > 0; 1> X2 > 0> X3, X4; 

(3.61) 

1> X2> X3, X4 > 0 where x~ > 0 in all cases. The remaining 
systems are specified by the transformation of space
time coordinates which relates them to (74). The 
various possibilities are: 

(75) (t, x, y, z) - (iz, x, y, it) 

(76) (t,x, y,z) - (z, ix, iy, t) 

(77) (t, x, y, z) - (it, ix, iy, iz) 

(78) (t, x, y, z) - (iy, x, it, z) 

(79) (t, x, y, z) - (y, ix, t, iz) 

(80) (t, x, y, z) - (y, t, ix, iz) 

(81) (t, x, y, x) - (iy, it, x, z) 

(82)-(86) 

(82) This type corresponds to j(x) = (x - a) (x - b)x, 
a=b*=O'+i{3, O',{3EIR, /l=0: 

( + 't)2 _ 2 (x2 - a)(x3 - a)(x4 - a) 
z 1 - a(a _ b) , 

The three basis defining operators are 

L j = 20' (P~ + P~) + a (P~ - P~) - 2{3PoP 3 

+ Ml + M~ + M~ - N1 - N~ - N~, 

(3.62) 

L2 = 0'(N1 + N~ - M1- Mn - (0'2 + {32)(p~ + P~) 

+ {3({N2, M j } - {Nt. M2}), L3 =abM~, 

where {A, B} =AB + BA. 

(3. 63) 
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The coordinates Xj (j = 2,3,4) can vary in the ranges 
x2> X3, X4 > 0; X2> 0> X3, X4; with xt> O. 

(83) The systems of this type are obtained from (82) 
via the transformation T. The coordinates vary in the 
ranges 

X2, X3 > 0> x4; 0> X2, X3, x4; with x1 > O. 

(84)- (87) 

(84) This type corresponds to j(x) = (x - 1)x2, /l = 0, and 

(t - x)2 =X2X3X4, 

«2 _ x2) = - (x4X2 + x4X3 + X2X3) + X4x 2x 3(1 + xD, 

y2 =XjX2X3X4, z2 = (x2 - 1)(x3 - 1)(x4 - 1). (3.64) 

In terms of these coordinates the Klein-Gordon 
equation becomes (3.58) with a = 1 and a/allj 

=2xj ";x j (Xj -l)(a/axj ). The three operators are 

L j =2Po(Po +Pj) +P~ + Mt + M~ + M~ - N~ - N~ - NL 

L2 = (Po + P j)2 - N~ - 2N~ + (N3 + M2)2 - N2M3 - M3N2' 

L3 = (N2 - M3)2. 

(3. 65) 

The coordinates X2, X3, and x4 can vary in the ranges 
x2>X3,X4> 1; X2> 1> X3,X4 > 0; with xi> o. 
(85) (t,x,y,z)-(it,ix,iy,iz) 

(86) (t,x,y,z)-(x,t,iy,iz) 

(87) (t,x,y,z)-(ix,it,y,z) 

(88)- (90) 

(88) This type corresponds tof(x)=(x-1)x2, /l=1, 
and 

(t - Z)2 =x2x 3x4, 

(t2 - z2) = - (xjX2 + XjX3 + X2X3) + XjX2X3, 

x 2 = (x2 - 1)(X3 - 1)(x4 - 1) COS
2
Xj 

y2 = (X2 - 1)(x3 - 1)(x4 - 1) sin2xj. 

(3.66) 

In terms of these coordinates the Klein-Gordon equa
tion becomes (3.58) with 1- a replaced by 1 and a/a Ilj 
=2(xj -1) ";Xj(xj -l)(a/axj). 

The basis defining operators are 

L j =- 2(Pt +pn + 2Po(Po + P 3) + M~ + M~ + M~ 

-N~ -N~ -N~, 

L2 =- (P~ +P~) +2(M~ -N~ - N~) + {N2, M j }- {Nj, M2}, 

L3=M~. 

The coordinates X2, X3, X4 vary in the ranges 
X2,X3,X4> 1; x2> 1> X3,X4 > 0; x2> 1> 0> x3,x4; 
x2> 1> X3 > 0> X4; with xi> o. 
(89) (t,x,y,z)-(it,ix,iy,iz) 

(90) (t, x, y, z) - (z, ix, iy, t) 

(91)-(92) 

E.G. Kalnins and W. Miller, Jr. 

(3.67) 

1241 



                                                                                                                                    

(91) This system corresponds to /(X) =Xa, J.l = 0, and 

(t - X)2 =X2Xax4, 2y(t - x) =x2xa + X2X4 + xax4' 
(3.68) 

In terms of these coordinates the Klein-Gordon equa
tion assumes the form (3.58) with a=l and a/cv j 

=2x;(a/ox j )0 

The three defining operators are 

L t = - 2P2 (P 0 + P t) + Mi + M~ + M~ - Ni - N~ - NL 

L2 = - (po + p t )2 + {;Vla - N2, N t}- {:H2 + N a, M t }, 

La = (Na + iV!2)2. 

The coordinates Xj U = 2,3,4) vary in the ranges 
x2, Xa > 0> x4; and X2> 0> xa, x4; with xi> 00 

(92) (1, x, y, z) - (it, ix, iy, iz) 

(93)-(96) 

(93) This system corresponds to /(x) =x(x - I), J.l = 0, 
and 

t = UX2 + xa + X4), X2 =x2xax4 COS2Xb 

1'2 =X2XaX4 sin2xt, Z2 =_ (X2 _ l)(xa _ 1)(x4 _ 1). (3.69) 

In terms of these coordinates the Klein-Gordon equa
tion becomes (3058) with a = 1 and c/rilJj 

=2xj YX j -1(a/ax}). 

The three operators are 

L t = {Pa, N a} - {PI> N t}- {P2, N2} + P~ + pL 

L2 ={Nj,Pt}+{N2,P2}+pi +P~ - Mi - ;1I~ - :11§, (3.70) 

La = - JI~. 

The coordinates x2, xa, and x4 vary in the ranges 
x2,xa>1>x4>0; 1>x2,x3,x4>0; 1>x2>0>Xa,x4;with 
XI> O. 

(94) (t,x,y,z)-(y,t,ix,iz) 

(95) (t,x,:v,z)-(z,ix,iy,t) 

(96) (t,x,y',z)-(y,ix,t,iz) 

(97)-(98) 

(97) This system corresponds to /(x) =X2, J.l = 0, and 

(t - x)2 =x2XaX4, 

t2 - x2 =x2xa + X2x4 + xaX4 + X2 XaX4XL 
/=X2xaX4XL Z=±(X2+X3+ X4)' 

(3.71) 

The Klein-Gordon equation assumes the form (3. 58) 
with a=O and (i/avj=2x;f2(iJ/ax)0 

The three operators are 

Ll = - {po + Pi> Na - M2}- {P2' :1I1}+ (po + P 1)2, 

L2 = {po +Pt, Na + M 2}+ Ni + N~ - M~, 

La = (N2 - Ma)2. 

(98) (t,x,y,z)-(ix,il,1',z) 

(99)-(100) 

(99) This system corresponds to /(x) =x, J.l = 0, and 
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2(t - z) =x2x3 + x2X4 + xax4 - ±(x~ + x~ + xn, 

2(z - t) =X2 +X3 + x4, 

x 2 = - x2xax4 COS2Xt, 1'2 = - x2x3x4 sin2xto 

In terms of these coordinates the Klein-Gordon 
equation becomes (3.58) with a = 1 and o/av} 
=2/;:;12/ax j ). 

The three operators are 

L t ={Na, Po +Pa~- {Pj,Nt - M 2}- {P2, N2 +M2} 

- i(po - Pa)2, 

L2 = Hpb Nt + J\I2} + Hp2, N2 - M t } 

+ (Nt + :112)2 + (N2 - Mt)2, 

La=ML 

(3.73) 

(3.74) 

and the variables are such that sign ex2X3X4) = - 1 and 
xi> O. 

(100) (t,x,y,z)-(z,ix,iy,t)o 

F. Coordinate systems of class VII 

These systems correspond to the various kinds of 
purely elliptical coordinates for which the Klein
Gordon equation is separableo The differential form 
is (2. 15) where /(x) is at most a fourth order poly
nomial in xo 

(101)- (108) 

(101) This type corresponds to /ex) = ex - a)(x - b) (x -l)x, 
a;> b:c· 1, and 

t2 = _ XtX2X3X4 ~_2 = _ (Xt - 1)(x2 - 1)(x3 - l)ex4 - 1) 
ab ,~ (a - l)(b - 1) 

,2 _ (Xl - b)(X2 - b)(xa - b)ex4 - b) 
.\ - (a - b)(b - 1) b ' 

z2=_ (Xt- a )ex2-a)ex3-a)(x4- a ) 
(a - b)(a - 1) a 

The Klein-Gordon equation becomes 

,1 1 a21/J 
-=J=L, ( )( )( ) ~ =A~', 

i=l Xi-Xj Xi-Xk Xi-Xl OVi 

where i,.i, 1::, 1 are not equal and 

The three operators are 

a 
aXi • 

Ll = - Ni - N~ - N5 +;1[1 +:1I~ +:1l~ + (b + 1) P5 

+ (a + 1) P~ + (a + b) PI -(a + b + 1) P~, 

L2 = (a + b) NI + (a + 1) N~ + (b + 1) N~ 

- b;H~ - aM~ - MI - bP~ 

- aP~ - abPi + (a + b + ab) P~, 

La = abN; + aN~ + bN~ + abP~ • 

(3.75) 

(3.76) 

(3077) 

For coordinates of this type the variables Xi can lie 
in the ranges Xt> a>X2> b>xa> 1> 0>X4' 

(102) (t,x,y,z)-(ix,it,y,z) 
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(103) (t,x,y,z)-(iz,x,y,it) 

(104) (t,x,1,',z)-(iy,x,it,z) 

(105) (t, x, y, z) - (it, ix, i1,', iz) 

(106) (t,x,y,z)-(z,ix,iy,t) 

(107) (t,x,y,z)-(x,t,iy,iz) 

(108) (I, x, y, z) - (y, ix, t, iz) 

(109)-(110) 

(109) This type corresponds to f(x) = (x - a)(x - b) (x - l)x, 
a=b* =a +i{3, and 

( , .t)2 _ 2(xj - b)(X2 - b)(X3 - b)(X4 - b) 
.x + 1 - - (b _ a)(b _ 1) b ' 

2 (xj - 1)(xz - 1)(x3 - 1)(x4 - 1) 
y = - (a - l)(b - 1) 

zZ = xlx Zx 3x 4 
ab 

(3.78) 

The Klein-Gordon equation becomes (3,76). The 
three operators are 

L 1 = Ni + N~ + N~ - Mi - ;\!l~ - M~ 

+ (a + I)(P1- P~) + 2{3Po P j + 2aP~ - (2a + 1) P~, 

L2 = - 2a:lIj + (a + 1)(N~ - JI~) - p{JI2, N 3} 

+ a (N§ - JI~) + P{M3' N2} + Ni 
+ (1I(P~ - P1)- 2{3PoP j _ «(112 + p2) P~ 

- (2(11 + (112 + 132) P§, 

L3 = - «(\'2 + il2) :111 + a(N~ - M~) - P{:1l2 , N3}. (3.79) 

The variables Xi lie in the ranges Xj > 1> Xz > 0> X3, X4; 
Xj> 1> Xh X3, X4 > O. 

(110) (t,x,y,z)-(il,ix,iy,iz) 

(111)-(114) 

(111) This type corresponds to{(x) = (x - a)(x - 1)x2, 
a> 1, and 

(t + X)2 =XjXZX3x4/a, 

(tZ - X2) = - (XjX2X3 + XjXZX4 + XjX3X4 + X4 + X2X3X4) 

+ (a+ I)Xjxzx3x4/a2, 

2 (Xj - l)(xz - l)(x3 - 1)(x4 -1) 
y = (a - 1) , 

2 (Xj - a)(X2 - a)(X3 - a)(X4 - a) 
z = - a2(a _ 1) (3.80) 

The Klein-Gordon equation becomes (3.76) with 

a c 
-0 = 2Xi V(Xi - a)(xi -1) -0-' 

Vi Xi 

The three operators are 

1243 

L j = - Ni - N§ - N~ + AI; + AI~ + j\!l~ 

+ 2a(P~ - pi) + (po - Pj)Z + aP~, 

L2 = - 2,'\!l~ + {N3, M2} - (N2 + M3)2 
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+ a(N~ - MD + (a + 1) N~ + (a + l)(Po - P 1)Z, 

L3 = - a(Nz + 11(13)Z + aN~ - (N3 - MZ)2 + (po - P 1)z. 

(3.81) 

The variables Xi lie in the ranges 

X j > a> Xz > 1> X3, X4 > 0; 

Xl> a> X2 > 1> 0> X3, x4; 

xl>a>xZ,x3,X4>1; Xbx2,X3>a>X4> 1. 

(112) (t,x,y,z)-(ix,it,1,',z) 

(113) (t,x,y,z)-(x,t,iy,iz) 

(114) (t,x,y,z)-(it,ix,iy,iz) 

(115) [a] 

This type corresponds to fl?:) = I?: - 1 )2x2 and 

(iz j - zZ)2 =XjXZX3X4, 

d + z~ = (XjX2X3 + XjXZX4 + XjX3X4 + XZX3X4) - 2XjX2X3X4, 

(£Z3 + Z4)2 = - (Xj - 1)(x2 - 1)(x3 - 1)(x4 - 1), 

z~ + z~ = 2XjXZX3X4 + (Xj + Xz + X3 + X4) 

(3.82) 

The Klein-Gordon equation becomes (3.76) with 
olav, = 2x j (x j - l)(a/ax j ). 

The operators are 

L j = 112 + 113 + 114 + 1~3 + 1~4 + 1~4 

+ (iP j + P 2)Z - HP3 - iPZ)2, 

L2 = - (il13 + lzslz - (iI14 + 124)Z 

+ (ilj4 - Ij3)2 - (I34 - ildz 

- /14 - li3 - 1~3 - 1~4 - 2112 

+2(iP j +PZ)2, 

L3 = - (IZ4 + ilZ3 + 13j + il14 )Z + (iIj4 + lz4)2 

+ (I31 + il23)2 - /12 + (iP j + P Z)2 • (3.83) 

(116)- (117) 

(116) This type corresponds tofl?:) = 1?:_1)x3 and 

(x - 1)z =xlxZx3x4, 

y(x - t) = - (X2X3X4 + xlxZx3 + xlX3X4 + XjX2X4) 

+ xlx 2x 3x4, 

i + x2 - tZ = - (xlXZ + xlx3 + XjXZ + X jX4 + x2x3 + xZx4 + X3X4) 

(3.84) 

The Klein-Gordon equation becomes (3.76). The 
operators are 

Ll = - Ni - N~ - N~ + Mi + M~ + M~ + 2P2(PO + Pj), 

L z =N~ +N~ - Ali - {Mb N3 +Mz}+ (Po +Pj)Z, 

La = - (po + P 1)Z + {Nb Nz - M1}- (N3 + Mz)z. (3.85) 

E.G. Kalnins and W. Miller. Jr. 1243 



                                                                                                                                    

The coordinates Xi vary in the ranges Xl> 1> Xz > 0 
> X3,X4; Xl> 1> XZ,X3,X4 > 0, and Xl>XZ,X3> 1> X4> O. 

(117) (t, x, y, z) - (it, ix, iy, iz) 

(118) [al 

This type corresponds to f(x) =x4 and 

(z 1 + izz)Z = - X1XZx 3x4, 

2(Zl + iZ Z)(Z3 + iz4) =X1XZX3 + X1XZx4 + xlx3x4 + XZx3x4, 

(Zl + iZZ)(Z3 - iz4) + (Z3 + iz4)2 = - xlx Z - X1X3 - xlX4 

- xZx 3 - XZx4 - X3X4, 

z~+z~+z~+zl=xl+x2+x3+x4' (3.86) 

The Klein-Gordon equation assumes the from (3.76) 
with a/avj =2x;(a/Oxj)' 

The three operators are 

Ll = - (Pa + iP4)z + (PI + iPZ)(P3 - iP4) 

+ liz + li3 + li4 + 1~3 + 1~4 + 1~4 

L z = HI32 + 114 + i(I13 + IZ4), (143 + 112)} 

+ (I4Z + iIZ3 )Z - (I13 + iI14)z + 2(Pa + iP4)(PI + ipz), 

L3 = {13z + 141 + i(I13 + 14z), IZl} - (PI + iPz)z, 

(3.87) 

(119)-(122) 

(119) This type corresponds to f(x) = (x - a) <x - 1) X and 
=(x-a)(x-l)x]: 

t = ±Vl + Xz + xa + X4), 

XZ = (Xl - a)(xz - a)(x3 - a)h - a)/ a(a - 1), 

yZ = h - 1)(xz - 1)(x3 - l)(x4 - 1)/(1- a), 

z2 =X1XZX3X4/ a. 

(3.88) 

The Klein-Gordon equation becomes (3.76) with 

The operators are 

L t = - {P3, N 3}- {Pz, Nz} - {Plo Nt} 

+ (a+ l)pa +aP~ +pL 

L z = (a + 1){P3, N3} + {Pi> Nt} 

+ a{Pz, Nt} - aP~ + Ali + M~ 

+M~ - (a + I)(P~ +P~) - P~, 

L3 = - a{P3, N 3}- aZp~ + M~ + a2M~. 

The coordinates Xi vary in the ranges 

Xl> X2 > a> X3 > 1> X4 > 0; 

a>xt> l>xz,x3,x4> 0; 

a>xl> l>x2> 0>X3> X4' 

(120) (t,x,y,z)-(z,ix,ix,iy,t) 

(121) (t, x, y, z) - ( y, ix, t, iz) 

(122) (t, x, y, z) - (x, t, iy, iz) 
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(3.89) 

(123) This type corresponds to f(x) = (x - a) (x - b)x and 

Y =±(Xl + Xz +X3 +X4), 

(t + ix)2 = 2 (Xl - a)(xz - a)(x3 - a)(x4 - a)/ a(a - b), 

zZ = _ X1XZX3X4/ ab, a == b* == I» + if3, a, f3E. IR. (3.90) 

The Klein-Gordon equation becomes (3.76) with 

iJ ~ 0 
- =2 v (x j -a)(xJ- b)xj -~-. 
a~ u~ 

The three operators are 

L t == {Pa, M1} + {Pi> M3} - {po, Nz} 

+ 2aP~ + a (P% - pn + 2f3Po Pi> 

L2 == - 2a {P3, M t } + a [{po, Nz}- {Pi> M 3}] 

- 2f3{Pt. N 3} + M~ - Nt - N~ - (a Z + {3Z) P~ 

+ P~ + 2a(Pt - P~), 

L3 == (a 2 + {3Z){P3' M1} + (I»z + {3z)z P~ 

+ (aZ _ {3Z)(M~ - N~) + a {3{1Hz , Ns}. (3.91) 

The coordinates vary in the ranges Xt, Xz, X3 > 0> X4; 

Xl> 0> Xz, X3, X4' 

(124)- (125) 

(124) This type corresponds to f<X)::= <x -1)x2 and 

(t - x)Z == - xlxZX3X4, Z = HXt + Xz + X3 + X4), 

(tZ - x2) =xlX2x3 + xlxZX4 + Xl x 3X4 

yZ = _ (Xl - l)(x2 - l)(x3 - 1) (x4 - 1). 

The Klein-Gordon equation becomes (3.76) with 
a/avj==2xj.Jxj-l(a/ox). 

The three operators are 

Ll = - {po, N3} + {p i> M z} 

+ {Pz, M1}+ P~ - P~ + (Po + P 1)Z, 

L z = - 2P1N3 - 2PoM2 - 2{P1, M z} 

+ M~ - Ni - N~ +P~ - 2(Po +Pj)Po, 

L3 ={po + PI, N3 + Mz}- N~. 

The coordinates Xi can vary in the ranges 

xl> 1> X2,X3 > 0> X4; Xl> 1> 0> XZ,X3,X4; 

Xl> X2, X3 > 1> X4 > o. 
(125) (t,x,y,z)-(ix,it,y,z) 

(126) This type corresponds to f<X) =x3 and 

(x - t)Z = - XjXZX3X4, Z =±(Xl + Xz + X3 + X4), 

2y(x - t) =xlx2x3 + xlXZx4 + xlX3x4 + x2X3x4, 

tZ _ xZ - yZ =Xlx Z + X1X3 + X1X4 + XZ X3 + xZX4 + x3x4' 

(3.92) 

(3.93) 

(3.94) 

The Klein-Gordon equation assumes the form (3.76) 
with olavj =2x~fZ(a/aXj)' 

The three operators are 
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L j ={Ph M2}- {po, N3}- {Ph M j }, 

L2 ={P2,N3 + M 2}+ {M2, Po + Pj} 

+ M~ - N~ - N~ - 2POP j - P5, 

L3 = {PO + Ph N3 + M2}- (N2 - M3)2. 

(3.95) 

The coordinates Xi vary in the ranges Xj > 0> Xz, X3, X4 

(127)- (128) 

(127) This type corresponds to f{x) =X (x - 1) and 

2 (t - x) = i(x~ + x~ + x~ + xl) 

- (xjX2 + XjX3 + XjX4 + X2x3 + x2x4 + X3X4) 

+ (xj +x2 +X3 +X4), 

2(t+x)=Xj +X2 +x3 +x4, 

i = (xj - 1)(x2 - 1)(x3 - 1)(x4 - 1), 

(3.96) 

In terms of these coordinates the Klein-Gordon equa
tion assumes the form (3.76) with a/avj 
=2..Jxj (xj - l)(a/axj)' 

The three operators are 

4L j = {N3 + M2, P 3} - {N2 - M3, P2} 

+ i{Nh Po + P j}- HPo - P j)2 

+ P~ + ipo(po + Pj), 

4L2 = (N3 + M2)2 + {Mz, P 3} - HNj, Po + P j} 

+ (N2 - M3)2 + HN2 + M3, P 2}, 

4L3 == - P~ - M~ - (N3 + M2)2 + {N3, P 3}. (3.97) 

The coordinates Xi vary in the ranges 

Xt.X2> 1> X3 > 0> x4; 1> Xj > 0> xhX3,x4; 

and 1>Xt.X2,X3> 0>X4' 

(128) (t,x,y,z)-(x,t,iy,iz) 

(129) [a1 
This type corresponds to f(x) =X2 and 

2(iz j - Z2) =Xj + X2 + X3 + X4, 

2(izj +Z2) =i(x~ +x~ +x~ +xn 

- (XjX2 + XjX3 + XjX4 + x2x3 + X2X4 + X3X4), 

(Z3 - iZ4)2 ==XjX2X3X4' 

(z~ + zn == - (xjX2X3 + XjX2X4 + XjX3X4 + X2X3X4)' (3.98) 

The Klein-Gordon equation assumes the form (3.76) 
with a/aVj =2xj(a/aXj)' 

The three operators are 

4L j = {/a2 + ilja , Pal, + {/42 + il14 , P4} 

+ i{/12 , P j + iP2}, + (P3 - iP4)2 - ± (p2 + iP j)2, 

4L2 =={/23 + ilia, Pal, + {/24 + il14 , P 4} 

+ (124 + i/32)2 - (113 + il14 )2, 

1245 J. Math Phys., Vol. 19, No.6, June 1978 

4L3 ==/~4 - [I3j + 142 + i(I32 + I j4 ) j2 

+ i{Ij3 + 142 + i(I32 + 14j ), P4 + iP3}. (3.99 ) 

(130) This type corresponds to f(x) =x and 

2 (x - t) = 1 - Xj - X2 - X3 - X4, 

2y + (x - t)2 =X2X3 + X2X4 + X2Xj 

+ X3Xj + X3X4 + X4Xj - (Xj + X2 + X3 + X4) + 1, 

2(x + t) + 2y(x - t) = - (XjX2X3 + XjX2X4 + XjX3X4 + X2X3X4) 

+ (XjX2 +XjX3 +XjX4 +X2X3 +X2X4 +X3X4) 

- (Xj + X2 + X3 + X4) + 1, 

(3.100) 

The Klein-Gordon equation assumes the form (3.76) 
with a/avj =2 vX;(a/axj ). 

We have not yet determined the three operators which 
describe this system. The coordinates vary in the 
ranges Xt. x2, X3 > 0> X4 and Xi> 0> Xz, X3, X4' 

(131) [aJ 

This type corresponds to f(x) = 1 and 

2(Zj + iz2) = - (xj + X2 + X3 + X4), 

2(Z3 + iz4) + (Zj + iz2)2 

= - XjX2X3 - XjX2X4 - XjX3X4 - X2 X3X4, 

(Zj - iz2) + (Zj + iZ 2)(Z3 - iz4) + (Z3 + iz4)2 =XjX2X3X4' 

(3.101) 

The Klein-Gordon equation assumes the form (3.76) 
with a/avj=a/aXj• 

We have not yet determined the operators which 
describe this system. 

This comples the list of orthogonal coordinates for 
which the Klein-Gordon equation separates. As was 
mentioned earlier we have only given those systems 
which are genuinely new in that they have not been de
rived elsewhere before. For the wave equation (A = 0) 
we have found 125 such coordinate systems. In addition 
there are 34 radial coordinate systems corresponding 
to the group reduction E(3, 1) ::JSO(3, 1)::J {Lt. L 2} where 
[L j L 2J = 0 and Lt. L2 are second order elements in the 
enveloping algebra of SO(3, 1). Similarly there are 55 
coordinate systems belonging to reductions of the type 
E(3, 1)::J E(2, 1)::J {Lt. L 2}, 11 coordinate systems belong
ing to reductions of the type E(3, 1)::J E(3)::J {L j L 2}, j4 and 
36 coordinate systems belonging to reductions of the 
type E(3, 1)::J E(2)0 E(l, 1)::J L j 0 L 2, where in this last 
case L j and L2 are second order elements in the en
veloping algebras of E(2) and E(l, 1), respectively. We 
have a total of 261 coordinate systems in which the 
Klein-Gordon equation admits separation of variables. 
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A detailed classification is made of all orthogonal coordinate systems for which the wave equation 
ljJ" -1l3ljJ = 0 admits an R -separable solution. Only those coordinate systems are given which are not 
conform ally equivalent to coordinate systems that have already been found in previous articles. We find 
106 coordinates to given a total of 368 conformally inequivalent orthogonal coordinates for which the wave 
equation admits an R separation of variables. 

INTRODUCTION 
In this article we continue our investigation of the 

orthogonal R -separable coordinate systems for which 
the wave equation in space-time, 

admits an R-separation of variables. 1-4 In a previous 
article4 we have studied coordinate systems for which 
the Klein-Gordon equation 

admits a separation of variables. Such coordinate 
systems also admit a separation of variables for the 
wave equation (*). In paper 4 of this series we found 262 
conformally inequivalent coordinate systems of this 
type. It is the purpose of this article to give those 
coordinate systems for which (*) admits a strictly 
R-separable solution. By this we mean those coordinate 
systems for which (*) admits an R -separable solution 
and for which there is no conformally equivalent coor
dinate system such that (*) is simply separable. As 
with the treatment of the wave equation in two space 
dimensions5 we classify all different types of 
orthogonal coordinate systems whose coordinate 
curves are cyclides or their degenerate forms. 

The content of the paper is arranged as follows. 
In Sec. I we discuss the relevant details concerning 
coordinate systems whose coordinate curves are 
cyclides of most general type. This is a development 
of the methods in the fundamental book by B6cher. G 

Also in this section we give the various differential 
forms corresponding to the coordinate systems of 
interest. In Sec. II we present the variou s coordinate 
systems together with the corresponding separation 
equations and triplet of mutually commuting operators 
{L" L2 , L,r which describe each such system. 

I. R-SEPARABLE DIFFERENTIAL FORMS FOR THE 
WAVE EQUATION 

In this section we classify all the orthogonal 
differential forms for which the wave equation (*) 
admits a strictly "R-separable" separation of variables. 
We recall that if ~. is a solution of (*) which is R-separ
able in terms of some new coordinates xi' (i = 1, 2, 
3, 4), then ~ can be written in the form 

(1. 1) 

where the wave equation for the function cP is such that 
cP admits a separation of variables. The factor expQ 
is called the modulation function and has a definite form 
for each R -separable coordinate system. In addition no 
part of the function Q should contain the sum of func
tions of only one of the variables Xi' For a strict 
R-separable system the modulation function Q should 
not be zero. In a previous paper5 where we treated 
the wave equation in two space variables it was shown 
that only coordinate systems whose coordinate curves 
were degenerate forms of confocal cyclides of the 
most general type were strictly R -separable. All 
remaining R-separable coordinate systems could be 
transformed into coordinate systems for which the 
Klein-Gordon equation (Ott - A2 )<j!=A<j! also admits a 
separation of variables. This was done by a suitable 
transformation of the 0(3,2) conformal symmetry 
group of (2 tt - A2)~ = 0. The same situation is true 
in the case of three spatial dimensions and it is 
accordingly the purpose of this section to discuss 
confocal families of cyclides of general type and their 
degenerate forms. We now briefly outline the properties 
of cyclides of this type and refer the reader for details 
to our previous paper5 and the book by Bacher. 6 

Families of confocal cyclides have their natural setting 
in pentaspherical space. This is a six-dimensional 
space of six homogeneous coordinates Y 1 : Y2 : Y3 : Y4 : 
Y5 : .\'6 which are not all simultaneously zero and which 
are connected by the relation 

yi + y~ + y~ + y~ + Y; + y~ = 0. (1. 2) 

The space-time coordinates are related to the homo
genous coordinates via the relations 

Yl =i(p2 _q2 _ y2 _ S2 +w2), 

Y2 = p2 _ q2 _ y2 _ S2 _ w 2, (1. 3) 

Y3=2pw, Y4=2ipw, Y5=2iyw, YG=2isw, 

where t=p/w, x=q/w, y=r!w, z=s/w. A cyclide is 
then defined as the locus of points lying on the quadric 
surface 

6 

cI>= 6a .. y.y.=o, 
if=! 'I) J J 

with aij=aji and det(aij)*O. The classification of 
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cyclides under the group of orthogonal transformations 
which preserves the form 

tv2 

i:: 1 ~ r 

is then the problem of classifying the intersections of 
two quadratic forms in six-dimensional projective 
space. This is performed by the method of elementary 
divisors applied to the two quadratic forms. 

(For the details of this classification see Ref. 5 and 
6. ) The equation describing the most general family of 
confocal cyclides in six-dimensional pentaspherical 
space is 

(1. 4) 

Here ,\ is one of the new curvilinear coordinates and 
e i * c}' if i*j (i, j = 1, ... ,6). If we choose an ortho
gonal coordinate system in space-time whose coor
dinate curves have equations of the type (1.4), then 
the line element in terms of these new coordinates 
becomes 

where 
r, ~ 

Ad=O (x.-e.) and -lfa=LJe.y:. 
t r= I 1 J i= 1 l t 

The pentaspherical coordinates y i are related to 
the curvilinear coordinates xi via the equations 

(1. 5) 

dJ(ei) . 1 (1 ) 
Yi=j;(eJ' z= , ... ,6, .6 

where ¢(),) = 0;=1 (;>.. - x). If we write the solution ljJ of 
the wave equation as 

4' = (a1/ 211,2)cI>, (1.7) 

then cI> satisfies the differential equation 

(1. 8) 

where 2dv j = dx /...; j(x j)' This equation admits separable 
solutions for the function cI>, i. e. , 

4 

cI> = 0 Ej(x j ). 
1=1 

Each of the functions E j satisfies the differential 
equation 

~~J + [3X~ - 2(~ei)x; +Ax~ + EXj + C]Ej = O. (1. 9) 

We now proceed to classify coordinate systems of this 
type by considering the expression inside the square 
braCkets in (1. 5) and finding out what ranges of the 
coordinates xi permit this differential form to have 
overall negative signature. We must also consider 
degenerate forms of these general coordinate systems 
which result when some of the e, become equal. In 
addition we should mention that two confocal families 
of cyclides of type (1.4) are equivalent under the action 
of real linear transformations of the pentaspherical 
coordinates Y i which preserve the quantity ~~=1 Y~ if 
their parameters en e; and coordinates xi' x; are 
related by the equations 
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aei + f3 e.=---, 
• ye; + Ii 

ax! + f3 x.=--- , 
• yx; + Ii 

(1.10) 

where ~, f3, Y, 0 E lR and ao - f3y* O. We now give the 
classification of the strictly R -separable coordinate 
systems, in particular the differential forms. 

[1] The first type of differential form corresponds to 
R-separable coordinate systems of the type (1. 6) for 
which all the e i are real. In addition the relations 
(1.10) can be used to standardize these quantities so 
that el=oo, e 2 =a, e 3=b, e 4 =c, e s=l, e=O with 
a> b> c > 1. The differential form then becomes 

dS2=(-y~)[t (Xi -X,)(Xj -Xk)(Xi -xd dx 21 , (1.11) 
4w i'l h(xi ) iJ 

where h(x)=(x-a)(x-b)(x-c)(x-l)x. The ranges of 
variation of the variables x i are 

Xl, X2, X3> a > X4 > b, 

Xl' X 2 > a > b > X3 > C > X 4 > 1; 

Xl> a> X2, X3> b> c > x 4 > 1; 

Xl' x 2>a>x3> b>x4 >c, 

(1.12) 

[2] The differential forms of this type are as in (1. 11) 
but with 

b = a* = Q! - if3, a, f3 E JR. 

The ranges of variation of the variables Xi are 

Xl> X2, X3 > c> X4 > 1 > 0, 

Xl' X2 > C > X3 > 1> x4 > O. 
(1. 13) 

[3] In this case the quantities e i can be taken to be 

el=oo, e~=e3=Y+io, e!=e s=a+i{3, 

e 6 =0, O!,{3,Y,OElR. 

The differential form is given as in (1. 11) with 

h(x)= [(x - y)2 + o21[(x _ a)2 + {32]X. 

The range of variation of the variables Xi are then 

Xl' X 2 , X3> 0> x 4 ; Xl> 0> X 2 , X 3 , X 4 • (1. 14) 

The simplest type of degenerate differential forms 
corresponding to cyclides of general type (1. 4) are 
obtained by allowing pairs of the quantities e j to 
become equal. This is achieved by the prescription 
given by B6cher, 6 e. g. , if e1 and e2 become equal, 
then they do so according to the prescription 

(1. 15) 

where € is a first order quantity. With this substitution 
and the subsequent use of the relations (1. 10) to 
take e l =00 the differential form becomes 

ds2= (y~+y~))[ dX,2 _t(x'-XJ)(x'-X~)dX2J' 
'\ 4w2 x{(x; -1) '"2 h(x,) , 

(1. 16) 

where h(x)= (x -a)(x - b)(x -c)(x -d). If we make the 
same substitution in (1. 6) relating the pentaspherical 
space coordinates Y~, we obtain 
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Yi= 1 -xf, y~=x~, 

(x 2 - e 3)(x3 - e 3)(x4 - e3) 
(e 3 - e4)(e3 - e S)(e3 - e s) 

(x 2 - e4)(x3 - e4 )(x4 - e4) , 
(e4 - e3)(e4 - e S)(e4 - e s ) 

2 _ (x 2 - e S)(x3 - e 5 )(x4 - es) 
Ys - (es - e 3)(eS - e4)(eS - e s ) 

Y~ (x2 - e S)(x3 - e 6 )(x4 - e 6 ) • 

(e s - e 3)(eS - e 4)(eS - e s) 

(1. 17) 

In addition we note that the coordinate curve for the 
coordinate x{ has the equation 

2 2 

2L-+tl-O xf -1 x~ - . 
(1. 18) 

From the form of the pentaspherical coordinates in 
(1.6) we see that the real linear transformations 
which preserve the quantity ~~'IY~ form a group 
isomorphic to 0(4,2). In fact the representation of a 
point in space-time by the six pentaspherical coor
dinates is such that the generators Lij =YiiJ~i - Y/i Yi 
are directly related to the canonical generators of the 
conformal symmetry group of the wave equation. 3 More 
specifically we have the relations 

i i 
L I2 =t(Ko -Po), L I3 ='2(KI -PI), LI4 ='2(K2 -P2), 

L 2s =iN3, L2S=~(PO +Ko), L34 =M3, L 3S =M2, 

L 3S =-t(PI +KJ, L4S=Mu L 4S =-t(P2+K2), 

LS6 = - t(P3 + K 3 ). 

Here we have used the notation of Ref. 3 for the 
generators of the conformal symmetry group. 

(1. 19) 

Taking note of these relations we see that coordinate 
systems of the type given by (1.17) corresponds to the 
diagonalization of the generator LI2=YIiJ~ -Y2iJ~ • 
This generator may correspond to a rotarion or Ia 
hyperbolic rotation in pentaspherical space. If it 
corresponds to a hyperbolic rotation we may always 
use an 0(4,2) group motion to ensure that LI2=D. 
The resulting coordinate system in space-time is then 
equivalent to one of the radial coordinate systems 
discussed in Ref. 5. Accordingly in classifying 
differential forms of type (1. 16) we need only consider 
those for which 0 < xf < 1. 

[4] Ifwechoosea=b;c=I, d=O, then we have the 
possibilities 

a> x 2 > b > X3 > 1 > x4 > O. 

x 2>a>x3, x 4>b;x2>a, I>x3 , X4>0; 

x 2 > a > X3 > b > 1> x 4 > 0; b > x 2 > 1 > X3, x 4 > O. 

X2,x3,x4 >a; b>x2,x3,x4>I, 0>X2,X3,X4, 

X 2 , X3 > a; b > x4 > 1, 0> x 4 
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b > X 2X 3 > 1> 0> xi> b > x 2 > 1> 0> x 3 , x4 , 

a> x 2, X3> b; b > X4 > 1, 0> x 4. 

[5] Ifa=b*=a+i.6, 0',.8Effiandc=I, d=O, then 
we have the possibilities 

x 2,x3 ,x4>I; x 2 ,x3>I>O>x4, 

x2>I>0>x3,x4,0>x2,x3,x4, 

x 2>I>x3 ,x4 >O and l>x2,x3>0>x4. 

(1. 21) 

[6] If we have a=b* as above and c=d*=y+ilj, 
y, lj E ffi, then the variables x 2 , x 3 , x4 can be any real 
numbers. If in addition we allow e3 and e4 to become 
equal according to the prescription of B6cher, 4 

(1.22) 

The differential form is then 

d 2=(-(Yi+Y~»)[ dxf2 + (e4 -x3)(e4 -x4) 
s 4w2 xf(xf - 1) (e 4 - e S)(e4 - e 6 ) 

(1. 23) 

where P(x)=(x-e4)(x-eS)(x-e6 ). For all such 
differential forms 0 < x~ < 1. Differential forms of this 
type fall into classes in which the quantities e4 , e s, 
e6 can be chosen to be 0, 1, or a. 

[7] e4 =0, es =l, e6 =a; a> 1. The variables x3 , x4 

vary in the ranges 

0<x3<I<x4<a, 1<x3<a<x4' x 3<0<I<x4<a. 
(1.24) 

[8] e4 =I, es=O, e 6 =a; a>l; 

l<x3<a<x4, X3<0<X4< 1, 

x 3 <O<I<x4<a,O<x3 <1<a<x4• 

(1. 25) 

If we now allow e s and e 6 to become equal by the 
usual prescription, the differential form becomes, 
taking es =1 and es=O, 

(1. 26) 

There is only one differential form of this type. 

[9] For this case all the variables x~ (i=I, 2, 3), x4 

lie in the interval [0, 1]. 

A further class of differential forms can be obtained 
by taking 

(1.27) 

If we also put es=oo in the resulting differential form 
we obtain 

(1. 28) 
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where P(x) = (x - e, )(x - ez)(x - e3 ) and Q(x) = (x - a) 
x (x - l)x. This differential form corresponds to the 
reductions 0(4, 2):::J0(3)00(2, 1) and 0(4,2):::J0(2, 1) 
00(2, 1) when expressed in elliptic coordinates in the 
case of the two reductions 

0(3):::JL and 0(2, 1):::JL'. (1.29) 

With the exception of the reduction 0(2, 1):::J0(1, 1) 
which can be conformally transformed into a radial 
system we can in prinCiple write down all the differential 
forms corresponding to the reductions of the type 
0(4,2):::J0(3)00(2, 1) and 0(4, 2):::J0(2, 1)00(2, 1) by 
considering degenerate forms of the differential form 
(1.29), but we do not do this here. 

The remaining distinct type of differential form of 
interest in this section is obtained by taking x2 =e6 

+ E' x~ and e3 = e 6 + e' subsequent to the substitutions 
(1. 27) and then allowing e6 - "". We then obtain the 
differential form 

0.30) 

[10J In each class we have that 0< x, < 1, 0< x~< 1. 
The remaining variables vary in the ranges 

X~ < 0 < 1 < a < x~, x~ < 0 < x~ < 1. 

A further differential form can be obtained from 
(1. 29) by taking a = 1 + E", xi = 1 + E" x~. This gives 
one new differential form, 

where all the variables lie between 0 and 1. 

ll1 J This gives one additional different form. 

(1. 31) 

We have thus shown in this section how to get all 
the orthogonal coordinate systems we expect by 
various limiting procedures applied to coordinate 
systems of most general cyclidic type. We have as yet 
not fully understood in what sense these procedures are 
complete. 

II. R·SEPARABLE COORDINATES FOR THE WAVE 
EQUATION 

In this section we give the coordinate systems 
corresponding to the differential forms in Sec. I 
together with the separation equations. We also present 
the triplet L 1, L 2 , L3 of mutually commuting second 
order symmetric operators in the enveloping algebra of 
0(4,2) whose eigenvalues are the separation constants 
for each coordinate system presented. We now tabulate 
the coordinate systems of interest starting with the 
most general real cyclidic type of coordinates. 
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A. Coordinate systems of class I 

(1)-(5) 

(a) A suitable choice of coordinates is 

t-~ [_(x , -a)(X2 -a)(x3 -a)(X4 -a)Jl/2, 
- R (a - b )(a - c)(a - 1)a 

x=!.. [(Xl-b)(X2-h)(X3-b)(X4-b)JI/2, 
- R (b-a)(b-e)(b-l)b 

_1. [(Xl - c)(x2 - e)(x3 - c)(x4 - en 1/2, 

Y- R (e-a)(c-b)(e-l)c J 
z-l [(X 1 -1)(X2 -1)(x3 -1)(X4 _1)]' /

2 

-R (l-a)(l-b)(l-e) , 

where 

R = (1 + [¥1:~t4] 1/) 
The solution of the wave equation then assumes the 
form <j!=R<I? where <I? =n~=lEi(xi) typically. The 
separation eql1ations for the functions Ei are 

d
2
Ej +!..(_l_ +_1_ +_1_ +_1_ +.!_) dEJ 

dx~ 2 xj-a Xj-I) xJ-e xJ-l XJ dx} 

(2.1) 

(- 2xJ + [IX] + lZ'Xj + l3) E - 0 (2.2) 
+4(x

j
-a)(x

J
-h)(x,-c)(x,-1)xj ,- 0 

The operators whose eigenvalues are the separation 
Constants are 

Ll = t(a + IJ + e )(P3 + K3)2 + t{a + IJ + 1 )(P2 + K2)2 

+ t(a +e + l)(P I +K, )2 - t(h +e + l)(Po +Ko)2 

+ (a + lJ)il1i + (a + e);H~ - (II + c)1\!; 

- (e + 1 lNi - (h + 1 )N~ + (a + 1 )Al~, 

L2 = t(ae + be + a/)(P, + K3)2 

+ t(ah + a + b)(P2 +K2)2 + t(ae + a + e)(P , + Kl)2 

- t(he + II + c)(Po +Ko)2 +abA1i 

+ aCj'v1~ - beN; - ci'y~ - bN; 

+aM~, (2.3) 

L3 = - tabc(P3 + K3)2 - tah(P 2 + K2)2 

- tac(P, + KI)2 + tllc(Po + KY. 
The coordinates Xi vary in the ranges 

There are four more coordinate systems of this type. 
We list below the complex transformation of the space 
time coordinates which relates the coordinates of type 
(a) to the new system together with the new ranges of 
variation of the coordinates Xi' The separation equations 
for the Ej(x j ) are the same in each case and the basis 
defining operators can be obtained by the substitution 
given. We now list the possibilities. 

(b) (L,x,y,z)-(iz,x,y,it) 

(c) (t, x, y, z)- (x, t, iy, iz) 

x, > a:> X 2 , x, > b> c:> x 4 > 1, 

x" X 2' X 3> a:> b> e :> X 4 :> 1. 
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(d) (t,x,z)-(it,ix,iy,iz) 

Xu x 2> 0> b> X3 > C > "4 > 1. 

(e) (t,x,y,z)-(t,ix,y,iz) 

(6)-(7) 

(a) A suitable choice of coordinates is 

. 1[2(Xl -0)(x2 -0)(x3 -0)(x4 -o)J 1/2 
t + lX = Ii (0 _ b)(o - c)(o - 1)0 ' 

_.!. r<x1 -C)(X 2 -c)(x3 -c)(x4 _c)]1/2, (2.4) 
y - R l (c - o)(c - b )(c - 1)c 

z _.!. [(X 1 - 1)(x 2 - 1)(x 3 - 1)(X4 - 1)] [/2. 
'-R (1-0)(1-b)(1-c) 

where 

R =( 1 + [~1:2:tlr/2) 
and a = b* = Q! + i{3; 01, B ElR. 

The solution of the wave equation has the form 
I/!=R<l> where each of the E j satisfy Eq. (2.2). The 
operators whose eigenvalues are the separation 
constants are 

L = t(201 + c)(P3 + K3)2 + t(2a + 1)(P2 + K2)2 

+2aMi+t(a+c+l)[(PI +Kl)2 

- (Po + KO)2]- ~ [(Po + KO)(P I + K,) 

+ (PI + Kl)(P
O 

+Ko)] + (a + c)(M; -N;) 

+ (3(NzM • .3 + M3N2) - (c + l)N~ 

L 2= - t(2ac + rt 2 + (32)(P3 +K3)2 

- t(2a + a 2 + .B2 )(P2 +K2 )2 

- (a 2 + (32)M~ + t(ac + a + c)[ (Po + KO)2 

- (PI + K[)2] + tj3(c + 1)[ (PI + KI)(Po + Ko) 

+ (Po +Ko)(PI + Kill + ac(Ni -M~) 

- C{3(M.fl3 + N3M2) + cN~ 

+ a(N~ -M~) - (3(AI3N2 +N2M3), 

L3 = t(0'2 + ,82)[C(P 3 + K3)2 + (P2 + K2)2] 

+ ~c [(Po+KO)2 - (PI +KI)2] 

- C:[(P, +Kl)(Po+Ko) + (Po+Ko)(PI +KI)]. 

The coordinates Xi can vary in the ranges 

XI ,X2>C>x3>1>x4 >O. 

(b) (t, x, y, z) - (it, ix, iy, iz) 

(8) 

A suitable choice of coordinates is 
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(2.5) 

. [2(X l - c)(x2 -c)(x3 - c)(x4 -c) 1/2]R 
t+ty= (c-a)(c-b)(c-d)c , 

[
2 (Xl - a)(x2 - a)(x3 - a)(x4 - a)J 1/2 

X = Im (a _ b )(a _ c )(a _ d)a R, 

z = [- X lX2X3X i abcd]1/2/R, 

where 

R - {1 + Re L 2(x I - a)(x2)( a)(xt( - a~~4 - a)] 1/2} 
- [ (a - b a - c a - a 

anda=b*=CJI+iJ3, c=d*=y+io, a,{3,y,oElR. 

The solution of the wave equation has the form 
I/!=R<l> where each of the E j satisfies the equation 

d
2
Ej +.!.(_1_ +_1_ +_1_ +_1_ +.!.)dEj 

dX: 2 Xj - a Xj - b Xi - C Xi - d Xi dx) 

(2.6) 

+ (-2xJ+lA+IgXj+l3) E =0. (2.7) 
4(xj -a)(xj - b)(xj -c)(xj -d)xj J 

The operators whose eigenvalues are the separation 
constants are 

Ll = (20' + y)(Mi - N~) + o(M 1N 3 + N3M l ) 

+ (21' + a)[M; - t(P3 -KJ2] 

+ ij3[M2(P3 -K3) + (P3 -K3)M2] 

+ iy(Po _KO)2 - 2Cl'.L\~ 

+ (0' + p)[t(Po _KO)2 - t(P2 -KY +M~ -Nn 

+ ij3[NI (Po -Ko) + (Po -Ko)NI] 

+ to(Po -KO)(P2 -K2) + (P2 -K2)(Po -Ko)] 

(3 
- 6(NI M 3 +lv13N l ) -:z[M3 (P 2 -K2 ) 

+ (P2 -K2 )M3 ], 

L2 = (a 2 + 132 + 20'y)(N~ - M~) - 2 aO(M
I
N 3 

+ N3M I ) + (1'2 + 62 + 2ay)[t(P3 -K3)2 

-M;]-y{3[M2(P3 -K3)+ (P3 -K3)M2] 

+ (a 2 + (32)N~ + t(y2 + 02)(Pl -Kl)2 

+ ay[t(P2 -K2)2 - f(Po -Kof +Nf -M~] 

- Y:[(Po -Ko)Nl +Nl(PO -Ko)] 

- ~O[(Po -KO)(P2 -K2) + (P2 -K2 )(PO -Ko)} 

130 ] -2[M3(PO -Ko) + (Po -Ko)M3 

136 
-"2[N1(P2 -K2 ) + (P2 -K2)NI} 

+ a6(NI M 3 +M3N I ) 

+ 1': [(P2 - K 2 )M3 + M 3 (P 2 - K 2 )}, 

L3 = (a 2 + (32)[y(N~ - M~) - 6(N3M 1 + M,N3)] 

+ (1'2 + o2){a(t(P3 - K3)2 - M;) 

- ~ [(P3 - K3)M2 + M2(P3 - K3)]}' 
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The variables Xi can vary in the ranges Xl> 0> X2, 

X3 , x 4 and Xl' X2, X3 > 0> X4. 

B. Coordinate systems of class II 

Coordinate systems this type consist of all the 
coordinate systems in which the operator ~(P 0 - Ko) 

is diagonal. 

As has been discussed in Ref. 7 the R-separable 
solutions of (*) then have the form </! = (Yo - coslj!) 
Xexp(i(2F+l)w)<1>(Yo, Y 1, Y 2, Y 3 ) where Y~+Yi+ Y~ 
+ Y~ = 1 and the space-time coordinates are given by 

sinlj! 
1= , 

Yo - cos</! 
Y1 x= , 

Yo - cosw 

Y3 

(2.9) 
Y 

V= 2 
- Yo - cosiJ, 

z Yo - COSIj!' 

i(2F + 1) is the eigenvalue of the operatorHPo - Ko) and 
F is a positive integer or half integer. The function 
q, satisfies the equation 

(ri2 + ri3 + ri4 + r;3 + r;4 + r~4)<1>= - 4F(F + 1}<1>, 

(2.10) 

where r'2=-~(P,+K,), r'3=-~(P2+K2)' r'4=-~(P3 
+K3 ), r 23 =M3, M 24 =-1'v12 , and r 34 =Ml" Here we are 
u sing the notation of Ref. 5. The problem of separation 
of variables for coordinate systems in which 
~(Po -Ko) is diagonal reduces to the problem of 
separation of variables on the three-dimensional sphere 
S3 in four space. Acting on the functions <1> the operators 
given above have the form 

r '2 = Y o'\ - Y,i1 a, r '3 = Y OC2 - Y2 i1 0 , 

r 14 = Y OC3 - Y3rO, r 23 = Y'C 2 - Y2(1" 

r 24 =Y,(l3- Y 30" r34=Y203-Y302" 

(2.11) 

This problem has been solved by Olevski"·8 and the six 
coordinate systems on S3 for which (2. 10) admits 
separation of variables have recently been investi
gated. 7 In the interests of a complete presentation we 
give here the six coordinate systems mentioned, the 
separation equations, the operators describing the 
separation, and some comment on the actual solutions 
is also made where possible. 

(9) Ellipsoidal coordinates 

A suitable choice of coordinates is 

y2 __ (x,-a)(X2-a)(.X3- a ) , 
0- (b-a)(l-a)a 

r. __ (x I - b)(x 2 - b)(x 3 - b) , 
, - (a - 1!)(1 - I!)b 

y2 __ (x, - l)(x 2 - 1 )(x3 - 1) , 
2- (a-l)(b-l) 

y2 _x ,X2X 3 , 

3- all 

where 0<X3< 1<x2 <' b<x,<a. 

(2.12) 

The separation equations for <1> =E,(XI)E2(X2)E3(X3) 

have the form 
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dE i 1 [1 1 1 1 JdE i -+- --+--+-- +- -
dX i 2 xi-a Xi-I! x i -l Xi dX i 

[4F(F+l)xr+l 1xi+ l 2] E-O 
+4(x.-a)(x.-b)(x.-l)x. j-' 

(2.13) 
i ~ t t 

The operators whose eigenvalues are the separation 
constants II and l2 are 

L, = + t (PI +KY +~(P2 +K2)2 + t(b + 1)(P3 +K3)2 

+ aM~ + (a + l)M~ - (a + b)Mi, (2.14) 

L2 = tb(P3 + Ky - aM~ - abMi, 

(10) Elliptic cylindrical coordinates of type I 

A suitable choice of coordinates is 

(
XX)1/2 (xx)'/2 y = -.-l2 cos¢ Y = -.-l2 sin¢ 

o a 'I a ' (2.15) 

y =(X1 -a)(x2 - a»), _ (Xl -1)(X2 - 1») 112, 
2 a(a-l) Y3 - (I-a) 

where 0<x1<1<x2<a. 

The separation equations have the form for 
<I> =E,(x l )E2(x2)A(¢), 

(2.16) 

where i = 1, 2, 

The operators whose eigenvalues are the separation 
constants l, and l2 are 

L1 = +M; + t(P2 +K2)2 +a[M~ + t(P3 +KJ2] 

+ t(a + 1)(P1 +K1)2, 

L 2 = -~(P1 +KY. 

An alternative choice of coordinates is obtained by 
taking x, = sn2 (p" k) and x 2 = (1/k 2

) dn2(p2' k') where 
a = 1/ k 2

• We then have that 

Yo = snp, dnp2 cos¢, Yl"" snPl dnP2 sin¢, 

Y2=dnp1snp2' Y3=cnP1 cnp2' 
(2.18) 

where O~ PI < 2K and -K'< P2 <K'. [Note~ sn(z,k} is a 
Jacobi elliptic function. ] In terms of these coordinates 
the solution for <1> has the form 

(2.19) 

Here K~~(z) is an associated Lame polynomial as defined 
in Ref. 7. 

(11) Elliptic cylindrical coordinates of type II 

A suitable choice of coordinates is 
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(
(Xl -1)(X2 - 1))'/2 

Yo= (1 _ a) coscp, 

Y 
_((Xl -1)(X2 - 1))1/2 . ,+. 

1- (I-a) sm,/-" (2.20) 

(

I: )( )1/2 v_:...1:...2 , 
'2- a 

where 0 < Xl < 1 < X 2 < a. The separation equations have 
the form for <l> =E1(x1)E2(x 2)A(cp), 

d2Ei +~ [ __ 1_ +_2_ +~] dEi 
dx~ 2 Xi - a Xi - 1 Xi dx i 

[4F(F+1)XI+l1Xi + l 2]E -0 
+ 4(x.-a)(x.-1)2x. i-' , , , 

where i= 1,2, 

d 2A 
(a-l)dcp2 +l0=0. 

(2.21) 

The operators whose eigenvalues are the separation 
constants II and l2 are 

L1 =lHi + (0 ~ 1) (P1 +Ky + a[M~ + t(P2 +K2)2], 

(2.22) 

These coordinates can also be written in terms of 
Jacobian elliptic functions by the same s11bstitution as 
used for system (10). We then obtain 

YO =cnP1 cnp2 coscp, Y 1 =cnp, cnp2 sincp, 

Y, = snP 1 dnp2' Y 4 = dnp1 snp20 
(2.23) 

In terms of these coordinates the solution for q, has the 
form 

( )mKPs( ik' )KPS( ) [cosm CP, q, = cnP1 cnP2 Fn - k cnP2 Fn cnp1 sinm cp. (2.24) 

(12) Spheroelliptic coordinates 

A suitable choice of coordinates is 

. ((x ,-a)(X2 -a)) 1/2 
Y2=sma a(a-l) 'Y,=COS'l', (2.25) 

The coordinate system can also be written in terms 
of elliptic functions as with coordinate systems (10) 
and (11). This gives the parametrization, 

Yo = sin a snP 1 dnp", Y 1 = sina cnP1 cnP2, 

Y 2=sinadnpl snpz, Y 3 =cosa. 
(2.26) 

A typical solution for <P is of the form A(a)E1 (Pl)E2(P2) 
where 

El (p,)E 2(P2) = Ff~( - iP1 + iK + K', P2) 

a product of Lam~ polynomials and 

A(a) = (sina)IC~;~1 (cosa). 

[Here C~ (z) is a Gegebauer polynomial. ] The two 
operators characterizing this system are 
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(2.27) 

L 2=t(P1 +KY +~(P2 +K2)2, 

with eigenvalues -l (l + 1) and A~· respectively. 

(13) Spherical coordinates 

A suitable choice of coordinates is 

Yo= sina sin3cosdJ, Y
1 
= sina sin/3 sincp, 

Y 2 = sina cos a , Y 3 = cosa, 

where O·os a, (3'" 1T, 0", cp < 21T • 

(2.28) 

(2.29) 

A typical solution for <P of the form A(a)B({3)C(cp) is 

The two operators characterizing this system are 

L1 = t(P1 +K,j2 + t(P2 +K2)2 + M; 
and 

L 2=t(P2+KY, 

with eigenvalues -l(l + 1) and - m 2 respectively. 

(14) Cylindrical coordinates 

A suitable choice of coordinates is 

Yo = sina! cosj3, Y 2= sina sinj3, 

Y 3 =cosacoscp, Y 3 =cosasincp, 

where 0 < a < 1T and 0 < j3, cp < 21T • 

A typical solution for q, =A(a)B(j3) C(cp) is 

q, = exp[imcp + ip/3](sina)a+b(cosa)2F-a-b 

x 2F 1 (b - F, 0 - F, a + b + 1: - tan 2 a) , 

where m = a + b, P = a-b. The two operators 
characterizing this system are 

L, = t(P1 + Kl)2 and L2 = At; 
with eigenvalues - p2 and - m 2 respectively. 

C. Coordinate systems of class III 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

These are the analogs of the elliptical coordinates 
of type (9). The difference in this case is that 
coordinate systems of this type correspond to the 
diagonalization of AI; rather than t(Po-KG?' We now 
list the possible types of coordinates. 

(15a) A suitable choice of coordinates is 

t _..!. ((X2 - a)(x3 - a)(x4 - 0))1/2 
- R (b - o)(a - l)a ' 

1 1 . 
x ='Rcos cp , Y ='R smcp, (2.35) 

where 

R =~((X2 -1)(x3 -1)(x4 - 1))1/2 + (X2X3X4) 1/2]. 
L (a-l)(b-l) ab 

The typical solution of the wave equation is </J =Rq, 
where (J = E2(x2)E3 (x3 )E(x4 )A(cp). The separation equa-
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tions are the same as for system (9) with 
A(</l)=exp(i(2F+ 1)</l). The variables x 2 , x

3
, x

4 
vary 

in the ranges X 2 , X3 '> a > Ii> x4 > 1, 

lI>x2 :·1>x"x4 >0, /):'·X 2'X3'X.1 > 1, 

Ii> x 2 > 1 > 0> x 3 , x4, 0" x 2 , X3 > Ii '> x 4 > 1. 

The operators whose eigenvalues are the separation 
constants are 

L1 = (a + lJ)D2 - t{a + l)(P, - K3)2 + t(b + 1)(Po _Ko)2 

+~(P3 +K3)2 -~b(Po + Ko)2 -1'1;, 

L2 = alJDz + ! alP, - K3)2 + tb(Po - Ko)2, 

and of course L3=M;. 

(2.36) 

There are five further coordinate systems of this 
type. In each case we choose the x and y coordinates 
to be of the form 

x=~cos</l, y=~ sin</l, and the operator L3=Al;. 

The separation equations are the same as in system 
(9). For each of these five further coordinate systems 
we give the choice of R and the coordinates t and z 
together with the form of the operators L 1 and L 2 • 

(16b) The modulation function R is 

R _ [('2 -1)(x3 -1)(X4 -1)) 1/2 + (x 2 - 1»(X 3 -lJ)(x4 - bW/ 2 

- (a-1)(I>-l) (0-/»(1>-1)1> IJ 
(2.37) 

and the coordinates t and z are given by 

1_~(X2-l3X4)]/2 z_~(X2-a)(x3-a)(x4-a»)1/2. (2.38) 
-R all , '-R (a-l>)(a-1)a 

The operators L] and L2 are 

Ll == t(a + b)(Po + Ko)2 - t(a + l)(Pn -Kof 

+ (I) + 1)N; + aD2 - tb(P3 + K3)2 + t(P, - K3)2, 

L2 == - to I> (Po + Kn)2 + taU>,) - Ko? -IJN;. 

(2.39) 

The ranges of variation of the coordinates X 2 , x 3, and X 4 

are 

x 2 >a,'x"x4 >b, x 2 >0>/»x"x 4 >1; 

x 2 ,x"x4 >a, lJ>x 2 ,-'3,x1 >1, a>x 2 ,x,>I»x4 >1, 

and 

(17c) This coordinate system is related to (16b) via the 
transformation (t, x, y, z) - (it, ix, iy, iz) of the space
time coordinates. The variables x 2 , x 3 , -'4 vary in the 
ranges 

-'2>a>-'3>/J>1>x4 >0 and x2>a>b>1>-'3X4>0. 

(18d) This coordinate system is related to (16b) via the 
transformation (t, x, )', z) - (z, it, i.v, t) of the space
time coordinates. The variables x 2 , x 3 , and X4 vary in 
the ranges x2 'x3 > (/ > /J> 1 >0> x4 ,b > x2 'x3 > 1 > 0> x4 

and a> x2> X3> Ii '> 1 > 0> x4• 

(1ge) This coordinate system is related the (15a) via the 
transformation (t, x, )', z) - (z, ix, iy, t) of the space-
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time coordinates. The variables x 2 , x" and x 4 vary in 
the range s x 2 > a > Ii > X 3' X 4 > 1. 

(200 This coordinate system is related to (16b) via the 
transformation (t, x, y, z) - liz, x, y, it) of the space
time coordinates. The variables x2> -''' and x 4 vary in 
the ranges a'> x 2 > b> 1> X3 > 0> x 4• 

In addition to the six types of coordinate systems we 
have discussed in class III we will also inc lude coor
dinate systems corresponding to the differential form 
of type (1.16). 

(21) A suitable choice of coordinates is 

( .) l r2(x2 -a)(x3 -a)(x4 -a)]1/2 
z + zt = Ii l (a - b)(o - 1)0 ' 

1 1 . ~ 
x=-cos</l, y=-Sln'l', R R 

where 

(2.40) 

R _ [(x 2 -1)(x3 - I)(X4 _1))1/2 + (X2-'3X4) 1/2J (2.41) 
- (a-l)(1i-1) al>' 

The separation equations are given by (2.13). The 
operators whose eigenvalues are II and l2 are 

Ll = 2aD2 + t(a + 1)[ (P3 -K3)2 - (Po - Ko)2] 

- ~ (POP 3 + Kr!<3) + ta[(P3 + K3)2 - (Po + Ko)21- NL 

L2 = (a 2 + (32)D2 + ta[ (P3 - K3)2 - (Po - Ko)2] 

(2.42) 

The variables x 2 , x 3 , and x 4 vary in the ranges 

(22) Coordinate systems of this type can be obtained 
from those of type (21) via the transformation (t, x, 
y,z)-(it,ix,iy,iz). The variables x 2 , x 3 , andx4 lie 
intherangesx2 ,x3 >1>0>x4 , 0>X2>X 3 ,X4 , and 
1 < x 2 , X3 > 0> x 4 • 

(23) A suitable choice of coordinates is 

( 
.) 1[2(X2 -a)(x3 -a)(x4 -a)J]/2 

z + zt = Ii (a _ b )(a - e)(a - £fJ ' 

1 1 . ~ 
x =Rcos<jJ, y ==R Sln,+" 

(2.43) 

here R = Rew - Imw 

and 

W _[2(X2 - e)(x3 - e )(x4 - e )Jl /2 
- (e -a)(e - b)(e -d) 

The separation equations in the variables x 2 , Xc and 
x 4 are 

d2E i 1 [1 1 1 1 J dEi --+- --+--+--+---
dx ~ 2 x. - 0 x. - b x - ex. - d dx,' , t t , , 

+ [4F(F+1)x~+llXi+lzl E.=O. 
4(xi - a)(x i - b)(x i - c)(x i - d) , 

The operators whose eigenvalues are II and l2 are 
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LI = - 2aD2 
- 2y~ + t(a + y)[P:l(3 +/(sP3 

- P aKo - /(opol + to[p; - P; + K; - K;] 

- tfJ[PaK3 +/(3P O +P:l(o +/(aP3] , 

L2 = (a 2 + fP)D2 + (y2 + (2)~ + taY[Pfi3 + K3P3 

- P aKo - KaP 0] + tw5[P~ - P~ + /(; -/(~] + {36(POP 3 

- /(aK3) - t{3y[P:l(o + KOP 3 + P aK3 + /(3Pol; 

the variables X 2 , X 3 , and x4 can assume any real values. 

(24) A suitable choice of coordinates is 

t 
2 [(x 1 - a)(x 2 - a)(x 3 - a)] 1 I 2 

+ Z = Ii 1m (a _ b)2 ' 

t_z-.!.rm[_I- _.!.{_1_ +_1_ +_1_}], 
- R (a - b) 2 Xl - a x 2 - a x 3 - a 

1 1 . ,/-, 
X=li cosrp, Y =R sm,/" 

where 

The separation equations in the variables X2 , X3 
and x4 are 

--+ --+-- -d
2
Ei [1 1] dE; 

dX i xi-a xi-b dX i 

+ [4F(F+ l)xr +llXi +Z2] E _ 
4(xi -a)2(x

i
-b)2 i-O. (2.47) 

The operators whose eigenvalues are II and 12 are 

L 1 = a[ i(P3 - Po - K3 -/(0)2 - (D + NI)2] + 1,8[(P3 - Po 

-/(3 -Ko)(D +N1 ) + (D + N I )(P3 - Po -K3 - Ko)] 

+ a(i(Po + P 3 + K3 - KO)2 

- i(Po - P 3 +Ko + K3)2 

- (NI _D)2 + i(po +P3 +Ko -K3)2] 

- H(Po + K 3)(P3 + Po +Ko -K3) 

+ (P3 + Po + Ko - K3)(PO + K3)}, 

L
2

= - t(Po +/(y +t(a 2 + (82)[t(PO +P3 +K3 -/(0)2 
(2.48) 

- t(Po - P3 +Ko +K3)2 - (N1 _D)2 - HPo +P3 +Ko _K)2] 

+ t(a 2 
- (32)[t{P3 - Po - Ko - K3)2 - (D + NI)2] 

af3 
-4[(P3 - Po -/(3 -/(o)(D +NI ) 

+ (D +NJ(P3 -Po -K3 -Ko)] 

+ t{Po +K3)~(D -NI) - % (Po + P 3 +Ko -K3)J 

+t~(D-NI)-%(PO+P3+Ko-K3)] (PO+K3). 

(25) This coordinate system is of similar type to 
coordinate systems (10) and (11) appearing in Class 
II. A suitable choice of coordinates is 

t _ 1. (X, - a)(x 2 - a »)1 12 _.!. (x 1 - 1) (x 2 - 1 ») , /2 
- R a(a - 1) , x - R cos1/l (a - 1) , 

1· 1 
Y=Iicosrp, z=R'sincp, 
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where 

R _(x,-I)(x2-11)1/2 . ",+(XIX2)1/2 
- (a - 1) sm,!, a ' 

The solution I/! of the wave equation has the form 
1/I=R4.>. The separation equations for 4.> =EI(xJE 2(X2) 
x A(cp)B(1/I) are 

d2Ei + 1 [1 2 1 dEi] 
--.--:2 - --+-- +- -
dXi 2 xi-a xi -l Xi dX i 

x[4F(F+ 1)(x; -1)2+ ZI(x
2
i -1) +l21 E.=O 

4(xi -a)(xi -1) xi ., 
(2.50) 

where i= 1,2, 

~~ = - (2F + 1)2A, (a -1) ~~ = 12B. 

The operators whose eigenvalues are the separation 
constants are 

LI = (a - 1)[D2 + t(P 1 - Kl)2]_ (Ni + i(Po + Ko)2] 

+ (a - 2) (P + K )2 
4 1 I' 

(2.51a) 

(26) A suitable choice of coordinates is 

t =.!. (X 1 - a)(x 2 - a »)1 12 
R (a -1) 

1 (x x ) l/2 
x =R cos~ - a1 

2 , 

1 1 (2.51b) 
Y=Rcos CP , z=Rsin<P, 

where 

and XI < 0< 1 < x 2 < a. 

The solution i)i of the wave equation has the farm 
Ij)=R4.>. The separation equations for 4.>=E1(xJE2(X 2) 
XA(cp)B(1/I) are 

(2.52) 

where i = 1, 2, 

d 2A 
d<p2=-(2F+1)2A , 

The operators whose eigenvalues are the separation 
constants are 

LI = - a(D2 + i(P I -Kl)21-1VI~1 + HP2 + J(2)2 

+ (a + 1) (P + K )2 
4 1 I, (2.53) 

This completes the list of coordinate systems of 
Class III. 

E.G. Kalnins and W. Miller, Jr. 1255 



                                                                                                                                    

D. Coordinate systems of class IV 

Coordinate systems of this type correspond to the two 
direct product reductions 80(4, 2)~ 80(2, 1)080(2, 1) 
and 80(4, 2)~80(3)080(1, 2). In each of these cases 
coordinates can be chosen from the nine separable 
classes of orthogonal coordinates on the two sheeted 
and one sheeted two-dimensional hyperboloids and the 
two separable classes of orthogonal coordinate systems 
on the two-dimensional sphere. The coordinate systems 
on these manifolds are given in the Appendix. In 
classifying coordinates of this type we give the general 
form of the space-time coordinates in terms of the 
above mentioned two-dimensional manifolds. 

(1) Coordinate systems corresponding to the reduction 

80(4, 2)~80(3)080(1, 2) 

A suitable choice of space-time coordinates is 

t=~, 
~, +~, 

1:2 Y=--- , 
~, + ~3 

I: 
x = ~, +'~3 ' 

1:3 z=--- , 
~, + ~3 

where ~i - ~~ - ~; = - 1 and I:i + I:~ + 1:; = 1. 

(2.54) 

With the exception of coordinate systems of type (8) 
(which can always be chosen such that D is diagonal) 
there are 16 coordinate systems of this type on the 
single and double sheeted hyperboloids. In each case 
the solution of the wave equation has the form 

w= (~, + ~3)¢(1:1> 1: 2, 1:3)e(~l> ~2' ~3) 

where the functions ¢ and e satisfy the equations 

(iVli + }\II~ + M~)¢ = -l(l + 1)¢, 

[{po, Ko}+D2]e =l(l + 1)11, 
(2.55) 

where l is a positive integer. The operators cor
responding to each of the 16 possible coordinate 
systems can then be read off from the Appendix, if we 
make the identifications N,=~(Po+Ko), N 2 =D, and 
1\1.3 = ~(Pa -Ko) in the case of the 80(1, 2) coordinates. 

(2) Coordinate systems corresponding to the reduction 

80(4, 2)~80(2, 1)080(2, 1). 

A suitable choice of space-time coordinates is 

l =_~_l_" ~2 
~, + ~3 X = ~, + ~3 ' 

where 

__ 1:_3_ , 
Z-~'+~3 

!:i-I:;-I:;=E, ~i-~~-~;=-E, E=±1. 

(2.56) 

Again with the exception of coordinate systems of type 
(8) there are 64 coordinate systems of this type. In 
each case the solution of the wave equation has the 
form ~I = (~, + ~3)¢(~1> ~2' ~3)e(l:l> 1: 2, 63)' where the func
tions ¢ and e satisfy the equations 

(N~ +N~ -Ali)e = j(j + l)e, (2.57) 
[- {P" K,} + D2]¢ = j(j + 1)¢, 
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where 

j=-i+iq,O<q<oo. 

The operator corresponding to the 80(2,1) associated 
with the vector (~u ~2' ~3) can be read off from the 
Appendix with the identifications N 2 = Hp 1 - K 1)' N 2 = D, 
and Al,=i(p, +K, ). 

We have looked at four classes of coordinate systems 
for which the wave equation (*) is strictly R -separable 
and found 106 distinct such coordinate systems. This 
gives a total of 368 inequivalent R-separable coordinate 
systems for the wave equation (*). 

APPENDIX 

In this appendix we list the orthogonal separable 
coordinate systems for the two -dimensional sphere, 
single sheeted, and double sheeted hyperboloids. In 
each case we list the symmetric second order operator 
in the enveloping algebra of the symmetry groups of 
these manifolds which describes each coordinate 
system. The coordinates (with the exception of the 
single sheet hyperboloid) can be found in the article 
by Olevski8 and the operator characterization is due to 
Winternitz ct al. 9 

A. Coordinate systems separable on the two-dimensional 
sphere n + ~? + ~~ = 1 

If we write the generators 1\1., = 1:2a~, - !:3r~z' 

:vI2=l: lo'3-1:3(i(" andM,=I:,il~z-1:2?~1' the coordinate 
systems and operators are: 

(1) ( (l))2_X,X2 (1l))2_(x1 -1)(1-x2) 
I: 1 - a ' 1:2 - (a _ 1) 

( ~3(1))2 (x , -a)(x2 -a)0<· <1<' < 
s a(a-1) x, x 2 a. 

The operator is L = aM; + AI;. 

(2) b"(2) = (cOSX l> siI1J: , cosx2 , sinx l sinx2). 

The operator is L = }\Il~ . 

B. Coordinate systems on the one and two sheeted two
dimensional hyperboloids ~r -~i -~j = ± 1 

We adopt the notation Nl = Sl01 2 + ~zi1ll> N2 = ~l re" 
+ ~3(l11' and M" = ~2(1 h - s,n/ z' 

(1) (~(1))2_.\1.\2 (';(1))2= (X, -1)(x2 -1) 
1 - a ' 2 (a - 1) 

( (1))2_('\I-a)(a-X2) 1<' < < s, - a(a-l) , Xl a .\2' 

; (l) • ; (1) = (.; i'))2 _ (.; ~ 1) l" _ (.; ~ I)? = 1. 

The coordinates on ~ . ~ = - 1 are obtained by the 
substitution ~(1) - i~(l) and Xl < 0< 1 < x 2 < a. 

The operator is L = Ni + aN~. 

(2) «2))2_('\1-1)(1-'\2), 
';1 - (a -1) 

(
t(2))Z _ (Xl - a)(a - .\2) , 

~3 - a(a -1) 

x , <0<1<a<x
2

, ~(2).~(2)=1. 
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The coordinates on the single sheeted hyperboloid 
; = - 1 are obtained via the substitution ~ - i~ and 
1 < Xl' X 2 < a; Xl, X 2 > a. 

The operator is L = Ni - aM~. 

(3) (~i3)+i~J3»2=2(xl-a)(x2-a)/a(a-b), 

a=b*=a+i{3, (~~3»Z=-x,xiab, 

X
l
<Q<X 2, e3 )·e3 )=1. 

The transformation; - i; and Xl' x2 > O. 

The operator is L = a(M~ -~) + ${M3> N2 } 

(4) ~i4)+~~4)=J-XlX2' 

~i4) - ~~4)=f~ + V-X/Xl + J- X )X2 

~~4)=-/(1-xl)(x2 -1), Xl < 0< 1 <x2 , 

~(4). ~(4) = 1. 

The coordinates on the single sheeted hyperboloid 
are obtained via the substitution ; - i; with Xl' X 2 > 1, 
0<x"x2<1, X 1,X2<0. 

The operator is L = Ni - (N2 + M 3)2. 

(5) i;i5)+~~5)=v'XIX2' 

1;1 5 ) - ~~5) = _ (~ + -/xzlx1 + V X IX 2 ) , 

1;~5)=-/(Xl-1)(X2-1), Q<xl <l<x2, 

;(5) • e5 ) = 1. 

The coordinates on the single sheet hyperboloid are 
obtained via the substitution ~ - i; with Xl < 0 < x 2 < 1. 

The operator is L=N~+(N2+M3)2. 

(6) ~i6) + ~~6) = v' - X l X 2 , 

;;6) _ ~~6)= (Xl -x
2
)/[4(-Xh)3/2], 

~ (6) _ 1 rf_ X 2) 1/2 _ (_ Xl \f / 2 

3 - 2l\ Xl' x 2JJ 
;(6). ;(6) = 1. 

The coordinates on the single sheet hyperboloid are 
obtained via the substitution; -i; with Xu x 2 > O. 

The operator is L ={N 1 , N2 -M3}' 

(7) t(7)+t(7)_£ t(7)_t(7) __ 1_+fX.x2 
<'1 <'2 - 1, <'1 <;2 - r- 1 2, 
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~~7)=X2rx;, X l ,X2 >0, 

;(7) • ;(7) -d. 

V Xl 
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The coordinates on the single sheet hyperboloid 
are obtained via the substitution; - i~ with Xl < 0< x2• 

The operator is L = (N2 + M3)2. 

(8) eS
) = (COShxl' coshx2 , coshxl sinhx2 , sinhx1), 

~(S) o~(S)=l, 

4(8) = (sinhx l coslu:2 , sinhxl sinhx2 , coshxl ) 

tiS) (. . hx ) <; = SlllXlSlll 2, sinxlcoshx2 , COSX1 , 

~(ll"> • e8"> = -1. 

The operator is L =Ni. 

(9) ;(9) = (coshx 1 , sinhx) cosxz, sinhxl sinx2 ) , 

1;(9) 'E(9)=1, 

~(9) = (sinhx), cos!u:l cosx2 , coslLy, sinx2 ), 

~(9) ~(9) = -1. 

The operator is L = M~. 
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A maximal variational principle is used to construct an infinite medium Green's function for treating the 
boundary value problems of the linear transport theory (neutron and radiative). For the neutrons we 
consider the one-speed case and correspondingly for the radiative transfer the monochromatic case. The 
scattering properties of the medium are presumed to be dependent on the relaxation length. Thus. for the 
neutrons the secondary production function depends on the neutron's relaxation length and for the 
radiative transfer the albedo for single scattering is dependent on the optical depth. These two functions 
are kept arbitrary so that a large class of problems can be covered. The basic principle involves a 
functional which is an absolute maximum when the trial function is an exact solution of an integral 
equation of the Fredholm type. The kernel of the integral equation is required to satisfy certain symmetry 
and boundedness properties. We also exhibit an interesting relation between the absolute maximal and 
Schwinger's stationary variational principles. which in general is neither a maximum nor a minimum. 

1. INTRODUCTION 

A variational principle for the solution of integral 
equations with probability kernels was used by 
Demarcus l to solve the problem of Knudsen flow. It 
involves a functional which is an absolute maxim'lm 
when the trial function is an exact solution of the 
transport equation. This variational principle is a 
special case of one discussed, for example in Ref. 2, 
for which a functional is an absolute maximum when the 
trial function is an exact solution of an integral equa
tion of the Fredholm type, such that the kernel is re
quired to satisfy certain symmetry and boundedness 
properties. The more general variational principle has 
already been used for the Gel'fand-Levitan equa-
tion. 3d In the present paper we use the variational 
principle to provide insights into solutions of unsolved 
problems of transport theory such as radiative or neu
tron transfer in inhomogeneous media. 

The abstract principle is discussed for example in 
Mikhlin's book2 which we follow. It has been utilized by 
Demarcus l and much later by Stokes and Demarcus. 5 

Our work differs from that of the others in the funda
mental sense that we use the principle to construct the 
approximate Green's function and to estimate the spec
tral function of the transport operator for the trial func
tion chosen. Greater flexibility is thus achieved with 
respect to boundary conditions. 

2. THE VARIATIONAL PRINCIPLE 

The basic principle underlying the variational ap
proach (see Ref. 2) is, that given the Fredholm integral 
equation 

j(x) = cp(x)+ t dyK(x,y)j(y), (1) 

the functional 

F[n] = t dx n(x)[2cp(x) + t dy K(x ,y )n(y) - n(x)] (2) 
a a 

is an absolute maximum when n(x) = j(x), for the kernel 

a)Research supported by the Office of Naval Research. 

K(x ,y) which satisfies the following conditions of sym·
metry and boundedness: 

(a) the kernel K(x, y) is symmetric in x, y , 

(b) K(x,y)?-O for a~x~ b and a~y ~ b, 
b 

(c) r dxK(x,y) < 1 for a ~ x ~ b. 
'a 

For most transport problems it turns out that the in
tegral equation that one needs to consider (for example 
for an infinite medium Green's function) is not Eq. (1) 
but 

(3) 

where Xo is an additional parameter. A further, rather 
pleasant, property that is encountered is when the in
homogeneous term cp(x,xo) is the same as K(x,xo)' Then 
Eq. (3) is in a symmetric form. That is, when 

rjJ(x, xo) = K(x, xo), 

Eq. (3) becomes 

j(x, xo) = K(x, xo) + [b dx' K(x' ,x)j(x' ,xo), 
C a 

and the general functional to be considered is 

F[n] = (b dxn(x,xo)[2K(x,xo) 
'a 

which is an absolute maximum when nCI:, xo) = j(x, xo) 
(c. f. Refs. 2 and 3). The resulting value of the func
tional is then 

F[r] = r dx j(x, xo)K(x, x o)' 
a 

(4) 

(5) 

(6) 

Using Eq. (4) in Eq. (6) to eliminate the integral we get 

F[r] = lim [r(x, xo) - K(x, xo)]· (7) 
X"XQ 

Thus, for an exact solution of the integral equation (4), 
the absolute maximum value of the functional is the dif
ference of boundary values of j(x, xo) and the kernel 
K(x, xo) as x approaches Xo from either side of xo' Two 
further points are worth noting. First, in most tran-
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sport problems of interest the density function (t(x, xo» 
and the scattering kernel (K(x, xo» are singular at 
x==xo' However, the difference of the two functions at 
x==xo is bounded from above. Furthermore, as we 
shall see later, the value of that difference is related 
to the spectral density of the transport operator cor
responding to the choice of the trial function [for ex
ample see Eq. (57) in Sec. 3]. It is precisely for such 
a relation and the maximal property of the functional 
that it is possible to obtain the best estimates of the 
complete spectrum of the transport operator and hence 
the Green's function. 

Now we consider an application of this formulation 
to the problems of radiative transfer in a vertically 
inhomogeneous atmosphere where the albedo for single 
scattering is an arbitrary function of the optical depth. 
The same application is valid, aside from changing 
of names, for the neutron transport in inhomogeneous 
media if the corresponding albedo for single scattering 
(or secondary production) of neutrons does not exceed 
unity anywhere in the given medium, L e. , for the 
subcritical problem. 

3. APPLICATION TO PROBLEMS OF RADIATIVE 
TRANSFER AND ONE-SPEED NEUTRON TRANSPORT 

We shall consider the problems of radiative trans
fer. Hence we use the corresponding appropriate term
inology. The equation of radiative transfer for a plane 
parallel vertically inhomogeneous isotropic ally scat
tering atmosphere is 

31 w(x) f 1 d ' I( ') Q( ) J.l ax (X, J.l) +I(x,J.l)= -2- J.l x,J.l + X,J.l, 
-1 (8) 

where J.l is the cosine of the angle between the vertical 
axis and the direction of propagation of radiation, x is 
the optical depth, w(x) is the albedo for single scat
tering, and I(x, J.l) is the specific intensity. We have 
added a source term Q(x, J.l) in case one is dealing with 
neutron transport. For problems of radiative transfer 
Q will be zero in general. Let the atmosphere be finite 
and optically bounded between x=xa and x=xb. In order 
to set up the boundary value problem, we follow the 
standard procedure discussed in Refs. 6 and 7. Thus, 
consider a time reversed adj oint equation 

a 
-Il ax G(x,-J.l-Xo, -llo)+G(X, -Il-xo, -J.lo) 

W(X)j' d ' G(' ) =-2- Il x, - Il -xo' -J.lo 
-1 

(9) 

Note that, here, the delta functions are weighted by 
v'W\x}/2. Multiplying Eq. (8) by G and Eq. (9) by I, 
subtracting and integrating the difference with respect 
to J.l from - 1 to + 1, and x from xa to xb' we get the 
result 
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_2 _fXb dx'fl dJ.l' Q(x', J.l') 
+ ~ -1 x. 
X G (X', - J.l' - X, - J.l). (10) 

In particular, if 

(WW ) Q(x, Il)= -2- o(x-xi o(J.l- J.l) (10') 

and the medium is infinite, then I(x, J.l) = G(x, J.l- Xl' J.l I ) 

is a Green's function for the plane source at x = Xl and 
J.l == J.l, satisfying Eq. (8). With suitable boundary condi
tions that both G and G vanish at x == ± 00, we get from 
Eq. (10) the following reciprocity relation, 

vW'[X'j G(x, - J.l- xl' - J.l , ) == v'W\XJ<'i'(Xl' III - x, J.l). 

(10") 

One may use this reciprocity relation to replace G by 
C. However, we prefer to use G instead. For the finite 
medium and any given incident conditions for I(x, J.l) 
at the boundaries (Le., atx=xa, J.l>0, x==xb' J.l<0), 
the reflected and transmitted radiations are determined 
from the limits of the integral identity (10). In other 
words, the unknown quantities I(xa, J.l) for Il < 0 (the 
reflected intensity) and I(xb, J.l) for Il > 0 (the transmitted 
intensity) may be determined from the integral 
equations 

2 fXb (1 
+ v'Wrx]"" dX'J, dJ.l'Q(X',Il')G(X',-/J.'-xa,-/J.), 

W Xa Xa -1 

J.l>0 (11) 

and 

2 fXb fl + -- dx' dJ.l' Q(x' J.l') VwrxJ ' b xa .. 1 

XG(x', -J.l'-Xb, -J.l), J.l<0, (12) 

where +(-) on G represents its boundary value as x 
approaches the boundary of the atmosphere from the 
right (left). Solution of the integral equations (11) and 
(12) is possible provided we can construct the Green'S 
function from the adj oint Eq. (9). In fact the proof of 
the existence of solutions of integral equations of this 
type for the grey problem is guaranteed by construc
tion of the unknown coefficients (see Ref. 6 for further 
discussion). We focus our attention on procedure for 
the construction of G for the simple (and obvious) rea
son that it is the central quantity required for any 
boundary value problems of this kind. We shall dem
onstrate here the use of the variational technique to 
obtain an approximate solution to that problem of de-
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termining G. To do that, we first obtain an integral 
equations for G. A convenient way is to take the 
Fourier transform of Eq. (9) with respect to x. The 
result is 

= ~f~ dk eXP(ikx)j'" dx' exp(- ikX')W(x'){,ll dll' 
47T 1 - ik Il 

.00 .00 

x ~f~ dk x exp[ik(x -xo)] 
41T _"' 1 - ik Il . 

(13) 

For convenience in writing, denote the angular integral 
of the Green's function on the right-hand side of Eq. 
(13) by 

1 

H(x;Xo,l1o)=J dll G(x, - Il ~ xo' - JJ. o). 
-1 

Then we have 

Xexp(- ikx')H(x';xo, 110 ) 

~r-:r:::\ ( ) 1 j'" dkexp[ik(x-xo)] + v W ,Xol (j Il - JJ.o 411 __ 1 _ - ikll 

(14) 

(15) 

Clearly, if we can determine H(x;xo, JJ.o), then for any 
given w(x), G is completely determined. 

A. Integral equations for H(x;xo,J.1o) and p(x,xo ) 

By integrating Eq. (15) with respect to Il from -1 to 
+ 1 we obtain 

1 f'" + v'w(x) dx' K(x' ,x)v'WTX'JH(x';xo, Ilo), 

-'" (16) 

where 

(17) 

and 

=1 v'w (x' lw (X) - exp(- Ix - x' 1/11) i 1 dll 

o Il 

(18) 
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where E1 (I x - x' I) is the exponential integral. Note that 
'li and K are related by 

(19) 

To complete the set of integral equations that we need, 
we define the density p(x, xo) by 

(20) 

and from (16) we find that p(x, xo) satisfies the following 
integral equation, 

v'WTxJ p(x, xo) = K(x, xo) + L: dx' K(x' ,x) 

X v'w(x')p(x' ,xo), (21) 

where we have used the integral relation (19) between 
wand K. If we let 

(22) 

and 

Ps (x, xo) = v'W"CX) p(x, xo), (23) 

then the integral equations (16) and (21) assume sym
metric looking forms: 

and 

B. Functionals for Hs (x;xo,J.1o) and Ps (x,xo) 

Consider the functionals 

F 1 [N] = ~: dx N(x;xo, llo)[2w(x;xo, 110 ) - N(x;xo, Ilo) 

+ ~: dx' K(x' ,x)N(x';xo, Ilo)] 

and 

F [n]= .( dxn(x, xo)[2K(x ,xo) - n(x, xo) 

+ 1.: dx' K(x' ,x)n(x' ,xo)]. 

(24) 

(25) 

(26) 

(27) 

Since the kernel K(x' , x) in both integral equations (24) 
and (25) satisfies the three properties listed below Eq. 
(2), we conclude that functionals FJNJ9 and F[nJ are 
absolute maxima for exact solutions of those integral 
equations (see Refs.3 and 4 for the proof). Thus, for 

N(x;xo, llo)=Hs(x;xo, Ilo) 

and 

n(x ,xo) = Ps (x,xo), 

the values of the corresponding functionals are 

FJHs 1 = f: dx lJF(x;xo, llo)Hs (x;xo' Ilo) 

and 
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Further use of Eq. (25) in Eq. (29) yields 

F[ps] == lim [Ps (x, xo) - K(x, xo)] . 
%"1:'0 

(30) 

Equation (30) is a rather surprising result for the rea
son that the value of the functional for the density bears 
such a simple relation to the density Ps (X, xo) and the 
scattering kernel K(x,xo>' This is, in the strict sense, 
a relation between the direct and the inverse problem. 
For the Gel'fand-Levitan equation (c.L Ref. 3) we dis
covered a relation identical to Eq. (30) where it turned 
out that the result can be translated into a theorem 
about the area under a curve to a given point x when 
considered as a functional of n(x, xo)' This curve was 
given by the scattering potential to the given point when 
the functional took on its maximum value. In that case 
the functional may thus be considered as a method of ob
taining the scattering potential from the spectral data 
through the variational technique. However, for the 
transport problems we are considering such a simple 
interpretation, is not possible. For one reason, we note 
that both Ps (x, xo) and K(x, xo) are singular at x == xo' 

However, in the limit when x-xo the difference of the 
boundary values of Ps (X, xo) and K(x, xo) is bounded. It 
would be of value to determine that limit. 

C. Value of the functional F[ps] 

Clearly, it is of crucial importance to know the value 
of the functional F[Ps] for the exact solution of the in
tegral equation (27). The reason is simply that for any 
sequence of trial functions, the values of the corre
sponding functionals must approach the absolute maxi
mum value obtained for the exact solution. One can then 
estimate the absolute error introduced for any particular 
choice ·of a trial function. Of course, in order to find 
F[Ps], as given by Eq. (30), we must know the exact 
form of the density Ps (x, xo) (which in fact is the un
known). However, since the functional is the boundary 
value of the difference between Ps (x, xo) and K(x, xo) 
when x approaches xo, we may take advantage of that 
to construct a pseudo Green's function, such that if 
p,(x ,xo) is the corresponding pseudo density, the dif
ference Ps (x, xo) - P,(x, xo) in the limit x - Xo is small. 
In other words we require that p,(x,xo) be singular in 
the same manner as Ps (x, xo) at x == Xo plus a (possible) 
small correction term which is nonsingular at x == Xo 
for all values of xo' We proceed as follows: Consider 
Eq. (9) for the Green's function 

a 
!l ax G(x, J.l- XOI J.lo) + G(x, J.l- xo, J.lo) 

W(x)fl d ' G(' I ) = -2- !l x, J.l - Xo, J.lo 
- 1 

(31) 

+ v'wf) 1i(x-xo)Ii(J.l- !lo), 

where for convenience we have changed the signs of J.l 
and J.lo' Now consider a pseudo Green's function which 
satisfies 

w(xo)f
1 

d 'G (x I ) == -2- !l" J.l - xo' iJ.o 
-1 

(32) 
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Note that w associated with the first term on the right
hand side in Eq. (32) is a function of Xo (the source 
point). If we let 

L(x, /1- - xo' iJ) == G(x, /1- - xo' /1-0 ) - Gc(x, /1- - xo' /1-0)' (33) 

then subtracting Eq. (32) from Eq. (31) we find that the 
difference L(x, /1- - xo' /1-0) satisfies the following 
equation, 

a 
/1- - L(x, /1- - xo' /1-0) + L(x, /1- - xo' /1-0) ax 

w(x)f
1 

d ' L(' ) ::= -2- M x, iJ. - xo, /1-0 
- 1 

W(x)-W(XO)jl I (, ) + 2 dl1 G1 X, 11 - xo' flo • 
-1 

(34) 

In what follows, we assume that w (x) is either a con
tinuous function or can be approximated by a suitable 
continuous function. If w were independent of x, then 
L(x, /1- - xo, Mo) would be the infinite medium Green's 
function without sources. In consequence, with ap
propriate boundary conditions at x = ± 00, the only solu
tion of Eq. (34) would be the trivial one, i. e., L = 0, 
as one would expect. In that case G would coincide with 
Gc and the value of the functional [as given by Eq. (30)J 
may be readily shown to be proportional to the spec
tral density. For an arbitrary w(x), the last term in 
Eq. (34) provides the "source" for L(x, J.l- xo' /1- 0 ) and, 
therefore, that equation may have a nontrivial solu tion. 
However, we are only interested in the behavior of L 
near and at x=xo' The first simple conclusion is that 
L is continuous everywhere on the real axis. This fol
lows from the jump condition. Thus, if we integrate 
Eq. (34) from left to right of x==xo' we get 

/1-[L +(xo, iJ. - x o' Mo) - L - (xo, /1- xo' Mo) J == 0, (35) 

where we have assumed that w(x) is continuous and 

L' == lim L(x, iJ. - xo' 110 ), 

x- "0 (Right of "0) 

(Left of xo) 

Continuity of L also implies that its derivative is also 
continuous at x = xo' This follows from simply taking the 
difference of boundary values of Eq. (34) as x - Xo from 
both sides of xo' If we solve Eq. (35) for 11, then the 
most general solution is 

L+(xo, /1- - x o' /1-0) - L -(.'!Co, /1- - xo' Mo) = "06(/1-). (36) 

But, from Eq 0 (34) for /1- == 0, we get 

L(x,O- xo' /10) = wr) t d/1-' L(x, /1-' - xo, /1-
0

) 

L 
+ w(x) -2 W(XO)!l d/1' Gg(x, /1' - xo, /lo)· 

-1 

(37) 

Thus, 

L+(xo,O - xo, /1-0) - L -(xo, 0 - xo' /1-0) == 0, 

so that "0=0 in Eq. (36). We have, therefore, shown 
that L(x, /1-- xo, /lo) is continuous everywhere and so is 
its derivative. 
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We now proceed as before as we did with Eq. (9) and 
obtain the integral equation for PL (x, xo) defined by 

The integral equation satisfied by PL (x, xo) is 

PL(x,XO)=-j r dx' E,(lx' -xl)w(x')PL(x',xO) 
'-~ 

where 
, , 1 

Pg(x, xo) = J d/1 L d/1o Gg(x, /1- xo, /10 ) 
-1 

(38) 

(39) 

(40) 

is the pseudo density and E, (I x' - xl) is the exponential 
integral, 

Since PL(X,XO) is continuous at x=xo, we get 

PL (xo,xo) = ~ r dx' E, (I x' - Xo I )W(X')PL (x' ,~\) . -~ 

=~ (dX' E, (Ix' -xo I )[w(x')- w(.to)]Pg(x' ,xo)· 

(41) 

(42) 

Now we make the approximation for the first integral 
on the right-hand side of Eq. (42). The largest con
tribution that the exponential integral E1 (I x' - Xo I) makes 
is near x' =xo' In fact E, is weakly singular (logarith
mically) there and decays rather rapidly away from xo' 
In analogy with the method of stationary phases, we 
assume that PL(x' ,xo) varies slowly near x' =xo and, 
therefore, may be taken out of the integral. Equation 
(42) then gives us 

PL (xo, xo) = HC dx' E1 (I x' - Xo I )[w(x') - weto)] 

XPg(x',xo)V[l-~ r dx' E1(lx'-xol)w(x')]. 
, -~ (43) 

But, by definition [see Eqs, (33), (38), and (40)] 

= lim [v' w (x)p(x, xo) -,!w (xo) Pg(x, xo)] 
X"'XQ 

therefore, 

v'WTt-;;T P L (xo' xo) 

= lim [vw(x) p(x ,xo) - K(x, xo) 
X"Xo 

- vw (xo)Pg(x ,xo) + K(x, xo)], 

where K(x,xo) is, by definition (18), given by 

K(x ,xo) = -j ';w (x)w (xo) E, (I x - Xo I)· 
Since, previously we defined Ps (x, xo) = v'W(X)p(x, xo) 
[see definition (23)] and now we define 
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(44) 

(45) 

(46) 

we have from Eqs. (30) and (44) the value of the 
functional 

approximately equal to 

F[Ps ] ~ lim [PIS (x, xo) - K(x ,xo)] 
x"xo 

+ v'w (xo) PL (xo, xo), 

where PL(XO ' xo) is given by Eq. (43J. 

Here we have assumed that one can construct the 
Green's function Gg(x, /1- xo, /10 ) by solving Eq. (32) 

(47) 

and that the limit in Eq. (47) exists and is bounded. We 
answer that question by merely noting that the method 
of obtaining solution of Eq. (32) is in exact parallel to 
the case where the medium is homogeneous. In fact, 
following Case and Zweifel [see Eq. (11), p. 97, in Ref. 
6], we find that 

Gg(x, /1- xO ' 11 D) 

_ v w (xo) (¢o±(/1)¢o±(/1o)exp (- I x - Xo i / vol 
-± 2 " 

HO± 

+/1 N~IJ) ¢.v(/1)cP±v(/1o) exp(- I x - Xo I i v) ), 
o 

(48) 

where +(-) is for x>xo (x <xo), and ¢o.(ll), cPv(/1) are 
discrete and continuum Case eigenfunctions given by 

(49) 

(50) 

A(v)=1-vw(xo)tanh- 1 v, (51) 

(52) 

N(v) = v[ (1 - w eto) v tanh- ' v)2 + w2 (XO)7i2
V

2 4], (53) 

and Vo is the zero of the dispersion function, i. e. , 

1_ w (xo)vo In(Vo+1)=0. 
2 vo-1 

(54) 

We remark here that Cases's discrete spectrum ob
tained from the solution of Eq. (54) is in fact now a 
"Regge" type traj ectory determined by the functional 
form of lL'(XD). Further, the functional F[ps I will also 
follow a traj ectory, which we will call "maximal tra
j ectory." It is now a simple matter to find that maxi
mal traj ectory. This we do by noting that (Po. (/1) and 
cP v (ll) are normalized to unity, i. e. , 

(55) 

so that 

( .. ) _ w(xo) (exp(- I x - xol /vo) 
PgS .\, Xo -- 2 " 

lVO+ 

(56) 
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Hence 

[ ] w (xo) [ 1 . 11 ( . ) ( 1 1)J F Ps 3'. -2- No+ +;~~ dvexp -lxi/v N(v) --;; 
o 

+';w (xo) P L (xo' xo), (57) 

where, as a reminder, PL(Xa,Xo) is given by Eq. (43). 
From Eq. (57) we see that the functional is bounded. In 
the lowest approximation the continuum part, involving 
the integral, may be neglected; because, for small x 
the largest contribution from the integral involving 
N(v) comes from near v=O, where N(v)-v. Hence 

(58) 

where we have subscripted the functional with zero to 
indicate the zeroth approximation. We close this sec
tion with one more remark. Here we have demonstrated 
the use of a maximal variational principle to construct 
an appropriate Green's function for inhomogeneous 
media in dealing with problems of radiative and neutron 
transport. We have made no attempt to solve any actual 
problem for a real medium. We hope to make that a 
topic for the next paper. However, we present a simple 
example in Sec. 14, where we consider a trial function 
involving Ggo 

We also wish to point out that the same variational 
principle seems to be applicable to wider variety of 
problems in theoretical physics, viz., kinetic theory 
of gases, plasma physics (such as the Vlasov equation), 
and electron transport in the upper atmosphere. 

4. EXAMPLE 

For the trial Green's function we take the Simplest 
form which corresponds to the s eaZil1g of G g' i. e., we 
let 

(59) 

where D is a parameter to be determined from maxi
mization of the functional (27). Now it follows that the 
trial density function is 

( ) w (xo) ( ) 
Pr x,xo =0' -(-) Pg x,xo . wx 

(60) 

It is seen, by replacing wet} by w(xo) everywhere in Eq. 
(25), that PgS = vw era) Pg satisfies the following integral 
equation 

where the kernel Kg is 

( ) we,o) (/ /) Kg x,xo = -2- El x-xo . (62) 

Now in the expression (27) for the density functional we 
set n = Prs =,IW{X) Pr(x, xo) and compute the value of the 
functionaL One may readily show via use of integral 
equation (61) that the value of the functional is 

F[Prs ] = 0' (2 - 0' )F[Pgs] - 0'2 W(Xa) , 

where by definition 
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(63) 

(64) 

and 

W(Xo) = J: dX(~~;» -1~2gs (x,xo>' 

Setting 

of 
oO'[Prs]=O 

we get 

(65) 

(66) 

Note that F[pgs 1 is the exact maximum value of the func
tional for the pseudo grey medium. The value of the 
functional F[Prs 1 is given by 

p2 [pgS 1 

To test the accuracy of the trial function chosen, we 
compute 

E(.-X:
o
) = F[Prs J- p[pgsl 

F[prsl 
(68) 

and see how far dxo) is away from zero. Thus, for the 
present example considered dxo) represents the local 
deviation from the grey approximation. 

5. A RELATION BETWEEN THE MAXIMAL 
AND SCHWINGER'S VARIATIONAL PRINCIPLES 

In the previous sections we have illustrated the basic 
ideas underlying the maximal variational principle as 
applied to transport theory. Because the functional used 
is an absolute maximum for the exact solution of the 
appropriate transport equation, it has the advantage 
that, in principle at least, one can obtain the estimate 
of absolute errors for any set of trial functions used. 
We have already provided an approximate uniform bound 
to the value of the functional which for most situations 
should be useful. By contrast other variational princi
ples, such as Schwinger's or Rayleigh Ritz principles, 
which require stationarity only, the estimate of errors 
for a set of trial functions for the entire medium (i. e. , 
the uniform error) is usually not feasible. In this sense 
those variational principles are rather limited and often 
very cumbersome when applied to real problems. How
ever, it would be of pedagogical value to show a relation 
between the maximal principle which we have used and 
Schwinger's stationary principle. 

Schwinger's variational principleB states that, given 
the Fredholm integral equation 

yCr, ro)=K(r,ro) + I~ dr' K(r' ,r)y(r'), 
o 

where the kernel K(r' ,r) is symmetric, then the 
functional 

S[n] ={( drn(r,ro)[n(r,ro) - r dr' K(r' ,r)n(r' ,ro)J}1 

~ 

U drn(r, ro)K(r, ro)]2 
o 
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(70) 
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is stationary when n(r,ro)=y(r,ro)' The value of the 
functional is then 

1 
S(y J = r d K( ) ( ) . o r r,roy r,ro 

Let 

(71) 

(72) 

By comparing Schwinger's functional (70) and the maxi
mal functional F[n] (5), we conclude that the two func
tionals bear the following relationship with each other, 

F(nJ = 2N (ro) - S(n]lv"'(ro). (73) 

For the exact solution of Eq. (69), we have already 
from Eq. (70) that S[y]= l/N(ro). Therefore, 

F[yjS[yJ=1. (74) 

In other words, for the exact solution, the product of 
maximal functional and Schwinger's stationary functional 
is unity. 
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A new formula for the spinor norm 
M. Perroud 
Department of Mathematics. Ecole Poly technique de Montreal, Montreal, Quebec H3C 3A 7, Canada 
(Received 22 November 1977) 

A formula is established, valid for all real pseudo-orthogonal groups, permitting an easy computation of 
the spinor norm of any pseudo-orthogonal matrix. It is a generalization of the well-known criterion used 
for 0(3,1) according to which the spinor norm is determined by the sign of the last element of a Lorentz 
matrix. 

The following notations are used: O(p, q) denotes the 
pseudo-orthogonal group 

O(p, q) = {M" [MEB"X"; MTGM =G}, 

where 

G=(p 0 ); 

o -I 
I p and I. denote the identity matrices of degree p and q, 
n = p + q, pq * O. 

When considering B" as the direct sum BP EB B·, each 
vector X can be written uniquely as X = Xl + Xz with 
XlEBP and xzER·, The group O(P, q) acts linearly on 
R" and leaves invariant the bilinear form 

(X, Y)=(XH Xl )I-(X2,X2)2' where (X/,Xi)i=X[X i , 

With respect to this direct sum decomposition, each 
matrix MEO(P, q) can be written in the block form 

MO(:). (l) 

The conditions MTGM = G and MGMT = G (the latter 
following from M- l = GMTG) impose for the blocks the 
conditions 

ATA=Ip +CTC, 

ATB=CTD, (2) 

DTD=I. +BTB, 

AA T = 1. + BBT , 

ACT =BDT, (3) 

DDT =1. + CCT. 

All the above is equally valid if JR is replaced by 
another field IF . 

Lipschitz discovered in the nineteenth centuryl that 
the real pseudo-orthogonal groups contain normal sub
groups of index 2 other than the special orthogonal 
group. Just as the existence of the latter may be es
tablished by means of a homomorphism of O(p,q) onto 
a group of two elements (the determinant homomor
phism)' so the existence of these other subgroups may 
be established by means of a similar homomorphism, 
the so-called spinor norm. It is nowadays well known 
that this property also holds for pseudo-orthogonal 
groups defined over a broad class of fields IF. The 

spinor norm homomorphism is usually introduced 
through the Clifford groups, 2 but a direct definition 
exists which rests on the property, already known by 
Lipschitz for the real cases, that each pseudo-ortho
gonal transformation on IF" can be decomposed as a 
product of reflections 

iV/eX): yt-- Y - [2(X, Y)/(X,X)]x (4) 

with (X,X)* o. It can be shown3
,4 that the spinor norm 

Spin: 0 (p ,q) - IF */IF~Z) is given by 
s 

Spin(M)", I1 (X. ,Xi) (modIFi2») (5) 
i=1 l 

for each pseudo-orthogonal matrix M over IF which has 
been decomposed as a product of reflections iV/ 
=M(X1 ) ••• M(Xs )' Here IF* denotes the multiplicative 
group of IF, and IF~2) denotes its subgroup of square 
elements. For the real field JR, each positive number 
is a sqllare and therefore sign. JR* - Zz is a homo
morphism with B~2) as kernel. An equivalent definition 
of the spinor norm is thus given by 

s 
spin(iVl) = I1 sign((XpX i )). (6) 

i =1 

Such a formula does not provide a simple method for 
calculating the spinor norm since it requires the de
composition of iH into reflections. Some time ago, 
Zassenhaus3 proved that the spinor norm is equal to 
det(in + M) (modIF~2») [i. e., sign(det(In + }VI) in the real 
case 1 if detUn + 1'v1) * O. If, however, this determinant 
equals zero, further computations are needed. 

It is well known in the physical literature that, for 
0(3,1), the spinor norm is simply given by the sign of 
D (p = 3, q = 1) in the block form (1) of M. It is the aim 
of this note to show that this very simple method can 
be generalized to all other real pseudo-orthogonal 
groups. More precisely we prove the following theorem. 

Theorem: The spinor norm spin: 0(P,q)-fL,2 is 
given by 

spin(M) = sign(deW) = sign(detA) x detM 

[where A and D are defined by (1)]. 

(7) 

Part 1: [detAi?l, ideWi?1 (8) 

P roof: By virtue of Eqs. (2), (3) we have 

det(ATA) = (detA)Z = det(Ip + CTC), 

det(DTD) = (deW)Z = det(I. + BT B); 

but CTC and BTB are two symmetric nonnegative de
finite matrices, thus det(ip + CTC)? 1 and det(I. + BT B) 
?l. 
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Since the mappings MI- detA and MI- deW are poly
nomial and therefore continuous, it follows from the 
inequalities (8) that the sign of detA and of deW are 
constant for all matrices belonging to a connected 
component of O(p,q). We have furthermore: 

Part 2: The mappings O(p, q) - Z2 defined by 

'1\: Ml-sign(detA), C{J2: Ml-sign(deW) 

are group homomorphisms. 

Proof: We give the proof only for the mapping C{J2' 
the one for C{Jl being exactly the same. Since In t-lEZ2 
is evident, it remains to prove that C{J2(M l )C{J2(M2) 
= C{J2(M 1M2 ). Considering the block forms (1) for Ml and 
M2 and using the matrix multiplication for blocks, we 
obtain 

C{J2(M1M2) = sign(det(D1D2 + C 1B 2»· 
Since by virtue of (8) the matrices Dl and D2 are in
vertible, we have 

det(D 1D2 + C 1B 2 ) = deWldeW2det(i. + DilC1B~;1), 

and it remains to show that det(i. + DilC1B2D;lb 0 [and 
therefore> 0 by virtue of (8)]. This inequality is true 
if the matrix H =DilC lB~;l is bounded with bound 
IIHII ,:; 1. Indeed, if H is such a matrix, its spectrum is 
entirely contained in the unit disk and if the spectrum 
contains real eigenvalues, these are contained in the 
interval [ - 1,1]. Therefore, XH (- 1) = det(i. + H) ? 0 
(here X H (t) = det( - tI. + H) denotes the characteristic 
polynomial of H). Actually the stronger property 

(x, HY)2':; [(x ,X)2(Y ,Y )2]1/\ x, yElR< (9) 

holds, from which follows the boundedness of H. In
deed, by using the Cauchy-Schwarz inequality, we have 

(x ,HY)2 = (X,D-;lC 1B2D;lY)2 = (CfD[-lX ,B~;lY)1 

,:; [(ef D[-lX, C[ D[-lX >t (B~;ly, B2D;ly )1]1 /2. 

Then, from Eqs. (2), (3), we obtain respectively 

0,:; (C[Dr-1x, efD[-1X)1 

= (X,D~1C 1efDf-1x)2 = (X,D;-1(D1Df - I.)D[-lX)2 

= (X,X)2 - (D[-lX,Df- lx)2':; (X,X)2' 

0,:; (B 2D;ly,B2D;1Y)J 

= (y ,Df-1Bf B~;lY)2 = (y ,Df-1(Df D2 - I.)D;lY)2 

= (y,y)2 - (D;ly,D;lY)2':; (y,y\, 

which proves the property (9) and consequently the 
homomorphism property of the mapping C{J2' 

Part 3: spin(M) = C{J2(A1) = C{Jl(M)detM. 

Proof: Since C{Jl and C{J2 are group homomorphisms, 
the only thing to show, by virtue of (6), is that 

spin(M(X» = C{J2(M(X» = C{Jl(M(X»detM(X), 

where M(X) is any reflection. That is, in block form 
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~
' - 2x lxf I(X ,X) 

M(X) = 
-2x 2xf!(X,X) 

Now, on the one hand 

sign (detV. + ~~:i») 
= sign (1 + 2(x2, X2)2) = sign (X u X 1)1 + (1:"2' X2)2) 

(X,X) (X,X) 

= sign«X ,X»= spin(M(X), 

which proves the first eqllality. On the other hand, 

. t.d II 2x lX[ ) 
Sign, et,p - (X,X) 

_. (1 2(X U X1\) _. (XUX1)1 + (X2,X2)2) 
-sign - (X,X) -sign - (X,X) 

= - sign«X,X» = - spin(M(X»). 

However, since det: 0(P,q)-Z2 is a group homo
morphism and detM(X) = - 1, the second equality is 
proved. 

REMARKS 

1. The main result (7) and the inequalities (8) can 
be trivially extended to the pseudo-orthogonal groups 
O(G, lR) associated with the symmetric matrices of the 
form 

(

G10) 

G= 0 -G
z 

' 

where Gl and Gz are two symmetric positive definite 
matrices of degree p and q respectively (pq'* 0) 0 

2. These results can also be extended to all pseudo
orthogonal groups O(G, IF) over a field IF for which 
the definition (5) of the spinor norm can be replaced 
by the definition (6). This is possible for all complete 
ordered fields. This, for example, is not the case for 
the field of rational numbers since not every positive 
rational number is a square. 
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Boundary condition solutions of the generalized Feller 
equation 

Siegfried H. Lehnigk 

MIRADCOM. Redstone Arsenal. Alabama 35809 
and Department of Mathematics. University of Alabama ill Huntsville. Huntsville. Alabama 35807 

Solutions of the generalized one-dimensional autonomous parabolic Feller equation for given boundary 
conditions are established. Since a basic solution is known, the Green-Riemann technique is used. It 
leads to two Green-Riemann limit functions relative to subsets of the space of two parameters connected 
with the equation. Properties of these limit functions are discussed. These functions are then used to 
establish boundary condition solutions in the form of unilateral convolutions involving as boundary 
conditions those functions which are summable over every nonnegative compact interval. Finally. it is 
shown that, relative to two subsets of the space of two equation parameters, there exist initial and 
boundary condition solutions. 

1. INTRODUCTION 

Initial condition solutions of the generalized Feller 
equation (of Fokker-Planck type) 

l(z) =A(x)z xx + B(x)z x + C(x)z - Zt = 0, Z = z(x, I), 

on the domain x c 0, I' 0, with coefficients 

A(x) = 0'.>?-+1, 0" 0, A <. 1, 

B(x) =I\x' + P2X, (31.2 E. JR, 

C(x) = p.>?--1 + 1'3 2, P = A[pl - 0'(1 + A) J, 

(1. la) 

(1. Ib) 

have been established in Ref. 10 They are singular in
tegrals of the form 

under the assumption that j(y) c L (Yo ~ .1' ~ '\'1) for every 
.v 0' .1'1' ° ~ .\'0 <" .1'1 <. 00 (Lebesgue integrable over every 
compact nonnegative interval), and /'*(x o, lo;.\')j(.\') EL 
(0 <S.\' < DC )for some x 0' 0, 10' 0. The kernel 1'* in (1. 2) 
is given by 

l'*(X, 1;.1') = (1- A)x-l<'oJl-')(1-v/2)7)~(P)/2';:" v(ro) 

x exp(- <,o~-'. - 7)~-'.), 

for x:> 0, :v:> 0, t > 0, where 

lJ = (1- A)-1(0'-1131 - 1- 2A), Yo = 2(<,007)0) (1-'. )/2, 

<'oo=~oexp32/, ~o=xbii\ 7)o=yb(/, 

bo = bo(l) 

(1. 3) 

(1. 4) 

j [0'132'1(1- A)(- 1 + exp[(I- A)(32 t ])](1-'.)-\ 

{[0'(1- A)2/](I-A)-\ (32 = 00 

13 2 * 0, 

where 1/10 is the modified Bessel function of the first 
kind of order fl. 

(1. 5) 

(1.6) 

The kernel l'*(x, I; y) of (1. 2) has been obtained from 
the basic solution 

X::v(r) exp(- <,01-A _ 7)1-A), 

ofl(z)=O, X' 0, .1"0, /"s"O, in which 

1'=2(<'o7))(P)/2, <,O=~expp2(1-S), 

~=xb-\ 7)=.\'b-1, b=b(t,s)=bo(t-s). 

The assertion that dx, I; y, s) is a basic solution of 

(1. 7) 

liz) c= ° means that, as a function of x and I, dx, I; .1', s) 

is a solution of liz) = ° and, as a function of .1' and s, it 
is a solution of the adj oint equation. 

The functions 1'* and /' are related by 

I'*(X, I; .\') = (1- Ah'-PC(x, 1;.\',0). 

For lJ < 1 [in which case Z v =1.., according to (1. 6)], 
l'*(X, I;,,) has the property that 

l'*(r I· O+)=z (r 1)_ 1- A c 1,n(!-')(1-V)exp( m 1-A) 
., , '0" -r(1-lJ)' "'I) -"'0 • 

(L 8) 

Certain aspects and consequences of (1. 2) and (1. 8) 
have been discussed in Refs. 2 and 3. 

The objective of this paper is to present solutions of 
the generalized Feller equation (1. 1) with prescribed 
behavior (boundary condition) along the positive I axis. 
The results together with those of ReL 1 will lead to 
Cauchy solutions of (1. 1), i. e., solutions of (1. 1) for 
given initial and boundary conditions, in subsets of the 
space of the parameters A·'. 1" lJ E JR. 

The boundary condition solutions will be given as 
unilateral convolutions 

t 
zp(x, I) =J)(x, t) * g(t), x' 0, I' 0, A < 0, lJ = - ><(1- A)-I, 

o 
t 

Zq(x,l)=q(x,t)*g(t), x"O, t'o, A=O, lJ ". 0, 
o 

for functions g(t) of a suitable function class. 

2. GREEN-RIEMANN LIMITS 

By a boundary condition solution of liz) = ° we mean 
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a function w(x, t) defined on x> 0, t> 0, such that l(w) '" ° and w(o +, t) =g(t) a. e., t> 0, for given g(t) of a 
suitable function space. 

Since a basic solution v(x, I; y, s) [(1. 7>1 of l(z) :::= 0 is 
known, the existence problem of boundary condition 
solutions is most easily treated by means of the Green
Riemann method. To use that method, it is advantage
ous to conSider, instead of l(z), the operator 

L(z) =A-1(y)l(z) 

=Zyy + B*(y)zy + C*(y)z - D*(y)zs, z =z(y, s). 

The adjoint of L(z) is 

M(u) =ll yy - B*(y)u y + [C*(y) - d~ B*(y)] u + D*(y)u., 

u =u(y, sl. 

Let (\ be a rectangular domain in the Cartesian (y, s) 
plane with sides parallel to the y and s axes and lower 
left- hand corner at the origin, Furthermore, let z be 
a solution of L(z) = 0 and let u be a solution of the ad
joint equation M(u) = O. Then 

For the given Eq. (1. 1) we have 

J Jp' [uL(z)-ZM(u)]dyds=J.lde. orp,[Pds-Qdy]=O, 

where 
P =u az _ [au _ B*(y)uJz 

ay ay , 

Q = - A-l(y) zu. 

As to the existence of boundary condition solutions 
only the behavior of lim P as y + 0 is of interest. If we 
take for u the basic solution v(x, t; y, s) of L(z) = 0 given 
by (1. 7) and if we expect to obtain boundary condition 
solutions at least for identically constant limit func
tions g(t) (as x + 0), it follows that boundary condition 
solutions exist if and only if there exists a function 
P(x, t) from x > 0, I > 0, into lR such that 

J
t-

lim 0 p(x, T) dT = c as x + 0, (2.1) 

where c is a finite nonzero constant, and such that 

lim [~~ - B*(Y)V] =P(x, I - s), t > s?- 0, as y + O. 

(2.2) 

av B*() ~b-l1)_IV[_i\+H1_i\)rI~I(r)Iv.l(r)_(1_i\)1)I">'_0'-1{32bl">'1)I">'], Zv=Iv, a-- y v= 
y b-11)-IV [_ i\- v(l- i\) +t(1- i\)rI-;(r)I..,.I(r) - (1- i\)1)I..>. - a-1{32b1">'1)I">'], Zv =I..j)' 

This shows that the function (av/ay) - B*(y)v goes to 0 or +00 as y + 0 except in the following cases. 

(2.3) 

(2) A=O, v<O, Zv=I-v in (1.7): 

av B* - ( ) 1 -1 I_v _~ -a - v-P2 x,l-s =-(-)x '(J e . y r - v 
(2.4) 

(3) i\=0, O<v<l, Zv=I.., in (1.7): 

av - 1 -a - B*v-P3(x, t - s) =-( _)x-l'{Jl..ve-~. :v r - v 

This last case, however, is of no further interest 
here since the condition (2.1) is not satisfied for P 3(X, t). 

It is easily verified directly that the functions PI (x, t) 
and P2(X, t) are solutions of l(z) = 0 on x > 0, t> O. As 
a matter of fact, they are the only solutions of l(z) = ° 
of the form 

(2.5) 

for which (2.1) holds. Substitution of (2.5) into (1. 1) 
leads to 11 = - 1 and to a quadratic equation for T which 
has the roots Tl = 1- i\, T2 = 1 - i\- v(1- i\). The cor
responding a values are a1 = A, a2 = O. For (2.1) to hold, 
it is necessary that the exponents in (2.5) satisfy the 
condition 11 + a+ 1 - A = 0 which is trivial for a= al = i\ 

and which leads to A=O for a=a2=0. Thus, 11=-1, 
al=\ Tl=1-\ leads to (2,3) and 11=-1, a2=0, 
T2 = 1- v, leads to (2,4). 
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3. THE FUNCTION pIx, t) 

Using the function Pl(X, t) given in (2.3), we define 
on x > 0, - 00 < I < 00, the nonnegative function 

p(x, I) = = [0'(1- i\)2 /r(v) Jx-lb~'{Jt..\ exp(- '(Jt...\.) , f > 0, 
)

- O'vi\_I(1_ A)2p1 (X, t) 

0, t~o, (3.1) 

where i\ < 0, v = - i\( 1 - A)-I. The definitions of the vari
ables are given in (1. 4) and (1. 5). 

The function p(x, t) may also be expressed in terms 
of the function zo(x, t) given in (1. 8). For I > 0, this 
leads to 

r«1 _ i\ )-1) ).. ...\. 
p(x,t)=O'(l-i\) r(v) bo'{Jozo(x,n, l~·O. 

In particular, for A= - 1, v =t 13 1 =132 =0, and t, 0, 
we obtain 

40' X [2( )-1J PH (x, I) =JTl7Z (4~ exp - x 40't , 1-:-· 0, 

which is the well-known singular solution of the heat 
equation O'Z xx - Zt = 0 . 

We prove two basic theorems about the function 
p(x,t). 

Theorem 3.1:p(x,I)EC", x>O, _00 <{<oo. 

Proof: For t if' 0, the statement follows directly from 
the explicit form of p(x, t) in (3.1). 
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For t < 0, all derivatives of p(x, t) go to 0 as (x, t) 
- (xo, 0 -) for X o > O. 

Let t> O. It is convenient to express p(x, t) in the 
form 

p(x, t) =x..l.[y - a-1(1_ ,\)-1132]V y exp(- x1..1.y ) , 

with 
y = y(t) = b01+X(t) exp(1- A)13 2t = br/+X(t) + a-1(1 - A)"113 2, 

and 

~~ = - a(1 - A)2y2 + 132(1- A)y. 

The constant factor of p has been disregarded. We see 
now that any differentiation of p(x, t) produces an ex
pression of the same structure as p(x, t) itself. In par
ticular, the exponential factor exp(- x1..1.y ) will always 
occur. Therefore, since y t "" as t + 0, each derivative 
of p(x, t) goes to 0 as (x, t) - (xo, 0 +), Xo > O. This com
pletes the proof. 

Obviously, the function p(x, t) is a solution of l(z) = 0, 
A < 0, v = - A(1 - A )-1 for x> 0, t < 0, and it has been 
shown at the end of Sec. 2 that it is also a solution of 
l(z) =0 for x> 0, t > O. We prove now 

Theorem 3.2: p(x, t) is a solution of l(z) = 0 for x > 0, 
_oo<t<oo. 

Proof: Define the function 

a2p ap 
P(x, t) =A(x) a? + B(x) ax + C(x)p 

with A, B, and C given in (1. Ib). Then 

Up) = P(x, t) _ ap~, t) =0 (3.2) 

for x> 0 and t * O. Since lim[P(x, t) - ap(x, t)/at] = 0 as 
(x, t) - (xo, 0 -), Xo > 0, we have to show that this limit 
relation also holds as (x, t) - (xo, 0 +). Because of (3.2) 
it suffices to show that P(x, t) - 0 as (x, t) - (xo, 0 + ), 
x o> O. 

Let t > O. Introducing the new variable 

y = b01+
X(t) exp(l- A)13 2t, y t 00 as t + 0, 

and disre~arding a constant factor, we can write P(x, t) 
as 
P(x, t) =x..l.[(y - a-1(1_ A)-1132)y-l]Vy" exp(- x1..1.y ) 

x [(3aA - (31)(1- A)y-l + a(l- A)2X1..1. 

- 132(1- A)X1 ..1.y -1 + 132(1- A)y-2]y-l 

with J-l = (4 - 5A)(1 - A)-I> O. There exists a positive con
stant c which dominates the first bracketed factor. Fur
thermore, we observe the inequality 

O<s y" exp(- ry) <s (J-le- l r-1)" , O<s y <"", J-l > 0, r> O. 

If we apply it with J-l = (4 - 5A)(I- A)-I> 0, r=x1..1. > 0, 
and if we restrict x and t such that I x - X o I < 6, 0 < t < 6, 
and 0 < 6 < txo, then 

1 P(x, t) 1 < c(J-le-1
)" (2xiil)4(1..A)[ 13aA - 1311 (1- A)y-l 

+ a(l- A)2(~XO)I..1. + 1132 1 (1- ~)(txO)l..1.y-l 

+ 11321 (1- A)y-2]y-l (3.3) 

if y is sufficiently large. 
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Given now E: > 0, we shall have IP(x, t) I < € for Ix - X o I 
< 6, 0 < t < 6, if 6 > 0 is sufficiently small. This follows 
from the fact that [ ... ]y_l in (3.3) goes to 0 as y-l + 0, 
1. e., as t + O. Thus, the proof is complete. 

It is useful to list several properties of the function 
p(x, t) some of which are easily verified by inspection 
or implied by earlier results. 

(1) p(x, t) + 0 as t + 0, x> O. 

(2) p(x, t) + 0 as x + 0, t > O. In other words, p(x, t) is 
a singular solution of l(z) = 0 (in the sense of Doetsch4

). 

(3) p(x, tH 0 as tt "", x> O. 

(4) x> 0 => p(x, t) has exactly one maximum in 0 < t 
< 00 which is located at 

)

(1- A)-li3illog[tA-l(l- a -1132X1..1.) 

t". = + [i- A -2(1 _ a-1i32xl..A)2 + v-1]1 12}, 

a-1(1_ 2A)"1(1_ A)"lX1..1., 13 2 = 0, 

132 * 0, 

andt".+Oasx+O. Thus, forx>O, p(X,t)Et, O<st<st"., 
and p(x, t) E +, t". <s t < 00 (t = set of nondecreasing func
tions). Furthermore, since <flO(tm) - [(1- 2A)(I- A)"l ] (1..A)-1 
as x + 0 and since bO(tm) + 0 as x + 0, it follows that 
p(x, tm) t 00 as x + o. 

(5) There exists a constant kp > 0 such that 

0< t".p(x, t m) <S kp, O<x < "". 

This can be seen as follows. For 132 *0, let y =y(x) 
= exp(1- A)i3 2tm • Then 

t".p(x, t m ) (1;(~~.v y(l..\)-\y -1)(logy)(I- A- Ayt 

x exp[ - (1 + vy) ]. 

o < x < "" implies 0 < y < 1 if 13 2 <. 0 and 1 < y < 00 if 

(3.4) 

132 > O. The function t".p(x, t m ) E C (0 < y < 00) if we define 
its value at y = 1 by 

(1 + v)X 
~ exp[ - (1 + v)] = limt".p(x, t m) as y - 1. 

Furthermore, t"p(x, tm) + 0 as y + 0 and as y t "". Conse
quently, t".p(x, tm) is bounded. 

If 13 2 = 0, we obtain 

(1 + v)V 
t".p(x, tm ) =I'("V) exp[ - (1 + v)]. 

(6) x>O=> 

where 

r(v' a) = 1 ~ d'-le-a d(J a ~ O. 
'a ' 

This can be verified by reduction of f o~ p(x, t) to the 
gamma function integral by means of the substitution 
(xbijl)l..\ = (J. 
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(7)x > O=> 

P(x) = fa "'p(x, t) dt E t, limP(x) = 1 as x t O. (3.5) 

The limit relation is evident from (3.4). That P(x) is 
nonincreasing is obvious from (3.4) for 13 2 ? O. For 13 2 
< 0, set - a-I13 2(1- A)-IX1-' = y. Then, from (3.4), 

P(x)=eY[r(v)- f/cr"-l e -<1da]. 

Differentiating with respect to x and disregarding a po
sitive constant factor, we see that dP/dx is negative 
for x "> 0 since 

The two properties (3.5) of p(x, t) may be combined 
into 

(8)x>0, to>O=> 

lim fotop(x, t) dt= 1 as x + O. 

This limit relation can be verified by transformation of 
the original integral into the incomplete gamma func
tion integral by means of the substitution used under 6. 

(9) There exists a constant k"> 0 such that 

f '" \ ap(x, t) \ o t -a-I- dl < k, 0 < x < 00 

To see this, we observe that 

ap(x, t) {? 0, 

at ,,: 0, 

Therefore, 

( '" t I ap(x, t) I df 
J 0 I at 

= (tmtop(x,t)dt_j"'taP(X,t)dt, 
J 0 af t m at 

and partial integration leads to 

( '" t I ap (x, t) I dt 
Jo at I 

(tm f '" 
= 2tmP(x,tm)-)" p(x,t)dt+ p(x,t)dt. 

o tm 

Consequently, 

10'" t I ap~, t) \ dt < 2tmP(x, t m ) 

+ fa "'P(x,l)dt<2kp+1=k, O<x<oo. 

4. BOUNDARY CONDITION SOLUTIONS BY THE 
p-CONVOLUTION 

We introduce the unilateral convolution 

1270 

Zp(x, t) =p(x, t) * g(t) = fat p(x, t - s)g(s) ds, 

x> 0, t"> 0, 
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(4.1) 

where the convolution kernel p(x, t) is given in (3.1). 
Admissible functions g(t) are those wich are summable 
in every finite nonnegative interval. 

Theorem 4.1: x"> 0, t> 0, 

0,,:t O<t1 <00, 

=> zp(x, t) exists and zp(x, 0 +) =0. 

Proof: Because of the continuity of p(x, t) and the as
sumption about g(t), the existence of zp(x, t) is obvious. 
Next, since there exists a positive constant Po =/)u(:>;) 
such that 0,,: p(x, a),,: Po for x"> 0 and - 00·. a<. 00, we 
have the inequality 

which leads directly to the limit relation of the theorem. 
The next theorem deals with the inversion of the 

transformation (4.1). 

Theorem 4.2: x - 0, I> 0, 

Zp(x, t) =p(x, t) *g(t), g(t) EL (to": / ~ /1), 

O~tO<tl<OO =>Zp(O+,t)=g(t) a.e. 

Proof: Because of the summability assumption on g, 
almost every point t:> 0 is a Lebesgue point of g. There
fore, to prove the theorem, it is sufficient to prove its 
limit relation for a positive Lebesgue point / of g. This 
will be done in analogy to the proof given in ReL 5, 
p.78, for the special case of the heat equation (A = - 1, 
v =~). 

We rewrite (4.1) as 

Zp(x, t) = fot p(x, a)g(t - a) da. 

Since 

lim fat p(x, a) da= 1 as x + 0, / - 0, 

the limit relation of the theorem is equivalent to 

lim[zp(x, t) - g(t)] 

= lim fat p(x, a)[g(t - a) - g(t)] da as x + o. 

Let 

a(a) = faa [g(t - T) - g(t)] dt. 

Then 

Zp(x, I) - g(t) = fol p(x, a) da(a), 

which, by partial integration and since p(x, 0 +) =0, 
changes into 

f I ap(, a) 
zp(x, t) -g(t) =p(x, t)a(t) - -il-' -' -a(a) da. 

a [ a 

(4.2) 

(4.3) 

Sinc e the first term at the right- hand s ide goes to 0 as 
x + 0, it remains to show that the integral does the 
same. 

Let E > 0 be given. Since f, by assumption, is a posi
tive Lebesgue point of g, there exists 6, 0 < 6 < t, such 
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that 

1fl - Ig(T) - g(t) 1 dT ~ E, 
a t-<J 

0< a"" 6. 

A change of variable in (4.2) shows that 

a-1a(a)=.:!jt [g(T)-g(t)]dT, a"O, 
a I-a 

Therefore, 

a-1 Ia(a)lc,E, 0<a":6. 

We now write the integral in (4.3) as 

f I ap(x, a) ( )d - i 6 f t 

a a a a- + . 
o a 0 6 

(4.4) 

The first integral at the right- hand side can be estimat
ed as follows: 

I f 6 ap(x, a) ala) dal 
o oa I 

,,: fa 6 a\ ap(;~ a) \ a-1a(a) da< E fo 6 a\ ap~x; a) \ da 

i "' I ap(x a) I / E a ~-' - da < E k, 0 < x < 00 , 

o oa 

Property 9 of pix, t) in Sec. 3 has been used here. 

Since the function ala) given in (4.2) is continuous on 
o ~ a ~ [ there exists a constant k. > 0 such that I a (a) I 
<k., 0": a,,: t. Therefore, the second integral in (4,4) 
can be estimated by 

I f I ap~~ a) ala) dal <. ka J: t ap~ a) Ida. 

Now, pix, a) takes a maximum at a=lm > 0 and tm + 0 as 
x + O. Therefore, if x > 0 is sufficiently small, we have 
0<l m '6and, hence, p(x,a)e.+, 6,,: a (4, Sec. 3L 
Consequently, 

f t I op(x,a)ida=- (tap(x,a) da<- ("'ap(x,a)da 
6 oa )6 aa )6 oa 

=p(x, 6), x> 0 sufficiently small, 

where 3 of Sec. 3 has been used. Since pix, 6) + 0 as 
x + 0 (2, Sec. 3), 

. f6 t I ap~; a) I da < E if x> 0 is sufficiently small, 
1. e., 

"\ f t :EPt' a) a (a) da I <Ek., x> 0 sufficiently small, 
o 

We now obtain from (4.3) 

1 zp(x, t)- !fit) 1 <c. E(a(t) + k + ka), x> 0 sufficiently small, 

and the proof is complete. 

Theorem 4.3: x:> 0, t > 0, 

=' zp (x, t) is a boundary condition solution of liz) = 0 

with zp(O +, t) =g(t) a. e. and zp(x, 0 +) = O. 

Proof: Let 

a(s) = fo S !f(V) dy. 
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Then a(s) e. C[O, a] for every a> 0, and a(O) = O. We 
write 

zp(x, t) = fol pix, t - s) dais) 

and integrate by parts. Then 

f lap(X,t-S) 
zp(x,t)= 0 at a(s)ds. (4.5) 

Let 0 < T1 ,,: t "" T2. Then ap(x, t - s)/at e. C 00 for (t, s) 
E [T1' T 2]X[0, tJ for every x> 0 (Theorem 3.1), and it 
follows that 

azp(x, t) _ In t a
2
p(x, l- s) ( ) d 

at - al2 ass, 
o 

(4.6) 

[since ap(x, [)/at 1 1: 0+ = 0]. 

Next, let 0<x1 "" x,,:x2. Then ap(x, t- s)/at e. Coo for 
(x, s) e. [Xl' x 2 ]x [0, tl, and we obtain from (4.5) 

azp(x, t) = f I a
2
p(x, t - s) ( ) d (4.7) 

ax 0 atax ass, 

(4.8) 

Since pix, t) is a solution of l(z) = 0 for x> 0, - 00 < t 
< 00 (Theorem 3.2), and since liz) is autonomous, it 
follows that ap(x, t - s)/at is also a solution of liz) =0. 
Therefore, multiplying (4.5)-(4.8) by the appropriate 
coefficients A(x), B(x), and C(x) of liz) and adding the 
resulting expressions, we see that l(zp(x, t)) '" 0, x> 0, 
[> O. 

The limit relations of the theorem have been estab
lished already in Theorems 4. 1 and 4.2, respectively. 
This completes the proof. 

5. THE FUNCTION q( x, t) 

After having discussed in Sec. 3 the Green-Riemann 
limit function (2.3), we turn to the second limit func
tion P2(x, t) given in (2. 4L We define, on x> 0, - 00 < t 
< 00, the nonnegative function 

~ C1P2(X, t) =r(~ lJ)X-1'P~'" exp(- 'Po), i > 0, 
q(x, t) = 

0, t,,:O, (5.1) 

where lJ < 0 [and A = 0 in (1. 1) l. The variables are again 
specified by (1. 4) and (1, 5). For t > 0, q(x, t) may be 
expressed in terms of the function zo(x, t) of (1.8), 

q(x, t) = - C1lJZ O(X, t), t:> O. 

It should be pOinted out here that for A = 0, lJ < 0, Eq. 
(1. 1) becomes the special FellerS equation. If, in addi
tion, /3 2 = 0, (1. 1) reduces to the Kepinski7 equation. 

Theorem 5.1: q(X,t) =e. C", x>O, _oo<t<oo. 

Proof: The same arguments used in the proof of The
orem 3.1 can be applied here. The function to be con
sidered for t > 0 may be expressed as 

q(x, t) =x"'y1.., exp(- xy) 

(a constant factor has been disregarded), with 

y = b01 exp{32t = bi/ + a-1{32' y too as t + 0, 

and dy / dt = - ay2 + {32Y, so that the proof is complete. 
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The function q(x,t) is a solution of l(z)=O (A=O, 
v < 0) for x ~,O, / < 0, and it has been shown that it is 
also a solution for x > 0, t > 00 

Theorem 5,2: q (X, t) is a solution of 1 (z) = ° for 
x> 0, - 00 < t < 00 0 

Proof: We introduce the function 

a2q aq 
Q(x, t) =A(x) axz + B(x) ax + C(x)q 

with A, B, and C given by (l.lb) for A= 0. Then 

l(q(x, t)) =Q(x, t) _ aq~, t) =0 

for x> 0, t * 0, 

The arguments used in the proof of Theorem 3.2 are 
now applied to Q(x, I). For I ~. 0, we rewrite Q(x, t) by 
setting -" = bO

l exp132t, 

Q(x, t) =X-v-1:\,4"" exp(- x:\,)[v(O!(l + v) - 131)y-2 +132(1- V)xy-2 

+ (20!v - 131)x-,,-1 _ 132x2y-l + O!X2}y-1. 

(A constant factor has been disregarded. ) The same 
technique as in the proof of Theorem 3.2 leads to the 
completion of the proof. The inequality we arrive at is 

1 Q(x, t) 1 < [( 4 - v) e-1 ]4""(2xo
1 )5[ vi O!( 1 + v) - 131 1 y-2 

+ ix 0113 21 y-2 + ix 012 O!V - 131 1 y-l + (ixo)21 1321 y-l 

+ O!GXO)2}y-l, 0", Y <. 00. 

We mention the following properties of q (X, t): 

(1) q(x, t) .. ° as t+ 0, x> 0. 

(2) q(x, I) .. ° as x .. 0, t > 0, i. e., q(x, t) is singular. 

\
[O!V13~-V /r(-v)]x .... exp(- 0!-1132x) 

(3) q(x,t)- as tt oo , .8 2 >0, x>o, 

° as t t 00, 13 2 ",0, x> 0. 

(4) 0<. x < xc, Xc = + 00 if 132 ", 0, Xc = 0!13i1(1- v) if 132 > 0, 
=> q(x, t) has exactly one maximum in 0< t < 00 which 
is located at 

t",={13i1lOg{0!(1-V)[0!(1-V) -132x]-1}, 13 2 *0, 

0!-1(1_ V)-l X , 13 2 = 0, 

and / '" .. ° as x .. 0. For ° < x < xc, q(x, t) E t, 0", t", t"" 
and q(x, t) E .. , t",'" t < 00. Furthermore, since CPo(tm) 
= 1- v, q(x, t",) t 00 as x .. 0. 

(5) There exists a positive constant k. such that 

0"-:: lmq(x, t",) ", k., 

{
o < x", Xo < 0!13i1(1- v) if 132 > 0, 

O<x<oo if 13 2 ""°. 
To see this, we set y = y(x) = exp132t", for 13 2 * 0. Then 

(1- v)-V 
t",q(x, t",) = r(- v) [exp(-l + v)] (y - l)-ly logy. (5.2) 

If 132> 0, let O<x"" Xo < O!13il(1-v) so that 1 <y "" Yo 
= 0!(1- v)[O!(l- v) - 132xo]. Defining now the value of the 
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function (5.2) at y = 1 by the constant factor at the right
hand side of (5.2), we have tmq(x, (m) E C (1"" y "" Yo). 
Consequently, the function is bounded. 

If 132 <. 0, 0< x < 00 implies 0< Y <: 1. Defining again the 
value of (5.2) by the same constant as before and ob
serving that the function (5.2) is in t on 0< y "" 1, we 
see that it is boundedo 

Finally, if 132 = 0, we obtain 

(l-v)"" 
tmq(x, tm) r(-v) exp(- 1 + v). 

(6)x>0=> 

f o'" q(x, t) dt 

= -vr(v; - 0!-1132x)(- 0!-1132x) ..... exp(- 0!-113 2x), 13 2 < 0, 
) 

+ 00, 132 > 0, 

1, 132=0. 
(5.3) 

To evaluate this improper integral for .82 "" 0, the sub
stitution CPo = a may be usedo 

(7) x>O, 13 2""°=> 

Q(x)=fo"'q(x,t)dtE", limQ(x)=l asxtO. (5.4) 

The limit relation follows immediately from (5.3) 
(by means of de I'Hospital's rule if 132 < 0) and Q(x) is 
evidently nonincreasing for 132 = 0. 

Let /32 < 0. We set - 0!-1132x =y and have 

Q(x) = - vy ..... eY f ... rI-1 e-<1 da. 
Y 

Differentiating with respect to x and disregarding a posi
tive constant factor, we obtain 

d~~) =y""-leY[(y -v) ~'" rI-1e-<1 da- yve-y]' 

To show that the factor in brackets is negative for 0< y 
<00, we write 

with r(a) = - rf e-<1, s(a) = a - v. Then we compare the 
integrands and find 

rf-1e-<1 < s-2(r' s - rs'), 0< y", a, 

since this leads to the true inequality ° <. - Va for v <. 0, 
a>-y>O. 

The two properties (5,4) can be combined to give 

0< fo"'q(x,t)dt"" 1, o<x<OO, 13 2 ""°. 
(8)x>0, to>O=> 

lim foto q(x, t) dt = 1 as x" 0. (5.5) 

The substitution CPo = a leads to 

fot °q(x, t) dt 

J [l/r(- v)] Ju~ a""(a - 0!-113 2x )-le-<1 da, 

l[lIr(- v)] fu; a"",-le-a da, 13 2 = 0, 

13 2 *0, 
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with 
a

o 
={a-1i32X(- 1 + expi32tO) eXp/32to, 

a-1xt ii1, 

If 132 = 0, the limit relation (505) is immediate. 

If 13 2 "0, we have 

0< (a - a-1i32x)-1 ~ a-1 eXp/32t, 

We define the function 

{

a .... (a- a-li32x)-le-<>, 
g(a, x) = 

0, o~ a< ao, 

X'" 0, and have 

g(a, x) ~ a .... -1e-<1 expi3210, 0< a 

g(a, ° +) = a-v
-
1e-'. 

Lebesgue's dominated convergence theorem leads to 
the desired result. 

Turning to 13 2 < 0, we have 

(a - a-1i3 2x)-1 <- a-1, a> 0. 

Here, we define for x> ° the function 

g a,x = ( ) 
{ 

~(a- a-1i3 2x)-le-<> ~ ao, 

0, o~ a< ao, 
so that 

g(a, x) < a .... -1e"", 0<: a, 

g(a, ° +) = a-"-le-<1. 

Again, Lebesgue's dominated convergence theorem 
establishes the limit relation (5.5). 

(9) There exists a constant k> ° such that 

fo~tlaqt,t)ld'<k, O<x<xo, 

where 

T=~tO:>O, 13 2>0, 

l+OCJ, i32~ 0, 

Xo = ~ (1- v)bo(to) exp(- i3 2t O), 13 2 > 0, 

l+OCJ, (32~0, 

and k=k(lo) for 13 2 > 0. 

We consider the case /32 > ° first. The condition ° < x 
<xo implies ,,"(x) <to where 1m is defined under 4. Then 
for ° <: x.-: xo, 

aq(x,t) {'?o, O~t~tm(x), 

at ~o, tm(x)~t~to. 

Therefore, splitting the integral from ° to to into two, 
one from ° to tm(x), the other from tm(x) to to, we obtain 
by partial integration 

f to t \ aq~, t) I dt < 2tmq(x, t m) + toq(x, to) 
o t 

+ fa °q(X,t)dt, O<x<xo· (5.6) 

The first term is bounded by 2k. (see 5). Furthermore, 
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0< q(x, to) ~ max q(x, to) 
O<X<OCl 

Finally, 

Consequently, the right- hand side of (5.6) is not greater 
than 

k = k(to) = 2k. + k1(to) + k 2(to) for 0< x < xo' 

If 13 2 ~ 0, we may follow the arguments used under 9 
of Sec, 3 to see that k = 2k. + 1. 

6. BOUNDARY CONDITION SOLUTIONS BY THE 
q-CONVOLUTION 

USing the function q(x, t) defined in (5,1), we intro
duce the unilateral convolution 

z.(X, t) =q(x, t) *g(t) 

= Jot q(x, t - s)g(s) ds, X:> 0, t:> 0. (6.1) 

The discussions of this section parallel those of Sec. 4. 

Theorem 6.1: x> 0, t > 0, 

z.(x, t)=q(x, thg(t), g(t)reeL (tO~t~tl)' 

° ~ to < tl < 00, => z. (x, t) exists and Zq (x, ° +) = 0. 

Proof: If we replace P by q, the proof of Theorem 
40 1 carries over verbatim. 

Theorem 6.2: x> 0, t > 0, 

Z.(x, t) =q(x, t) *g(t), g(t) reeL (to~ t~ t1) 

o ~ to < t1 < 00 => z.(O +, t) =g(t) a. e. 

Proof: With p replaced by q, the various steps of the 
proof of Theorem 4.2 carryover verbatim to the pre
sent situation up to and including identity (4.4), i. e., 

(t aq(x, a)a(a)da=f
6 
+ (t, (6.2) 

J 0 aa 0 J 6 

and the first integral at the right- hand side of (6.2) can 
be estimated as 

/ fo 6 aq~; a) ala) dal < E ;:6 al aq~~ a) Ida. (6.3) 

Let (32> O. We have 

10 6 /aq(x,a)/d <ft laq(x,a)/d 
a a a al a a. o a 0 a 

(6.4) 

According to 9, Sec. 5, there exists a positive constant 
k = k(t), such that the integral at the right- hand side of 
(6.4) is less than kif 0 < x < Xo =xo(t) = (1- v)bo(t) 
x exp(- f3 2t). Thus, it follows from (6.3) that 

I fo6aq~;a)a(a)dal<Ek, O<x<xo· (6.5) 

USing again 9 of Sec. 5 in the case 13 2 ~ 0, we obtain 
at once (6.5), now for arbitrary positive x. Consequent
ly, inequality (6.5) holds for arbitrary /32 provided x> 0 
is sufficiently smalL 
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We look now at the second integral at the right-hand 
side of (6. 2). Using the same notation as in the corre
sponding part of the proof of Theorem 4.2, we arrive 
at 

I f t oq(x, a} ( ) I IIi t I oq(x, a} II ---a a (a <" 1\") --- (a 
o aa a 5 CIa . 

Now, q(x, a) takes a maximum at a= 1 m [with ° < x 
-< (1- v)all;;l if 13 2 ' 0, see 4, Sec. 5J and tm l ° as xl 0. 
Consequently, if x ' ° is sufficiently small, we have 
0<: 1 m < 6 and, hence, q(x, a) lee l [or 6 ,:; a'!C I. Therefore, 

i t I aq(x, a} /1 - f t ~Ij(x, a} I - (' 6) ( , I) -a-- (a - - -~-- ( a - q .\, - q x, . 
o a 0 ca 

(6.6) 

Since q(x, 1o} lO as x lO for every 10 ~,O, it follows from 
(6. 6) that 

f t \ oq(x, a} Ida <: EX.' 0 sufficiently small, 
o oa I ' 

and, consequently, 

'I (t oq(x a) I J 0 ~ a(a} rial < d'a' X' ° sufficiently small. 

Therefore, we finally arrive at the inequality 

x' ° sufficiently small, 

which completes the proof, 

Furthermore, the following theorem holds for the 
convolution (6.1). 

T1WOVCJJl 6.3: x' 0, I' 0, 

zQ(x,l)=q(x,t)*g(t), g(l}cL (lu$"I~11)' 

=' zQ (x, t) is a boundary condition solution of l(z} = ° 
with Zq(O +, I) =g(t} a. e. and zQ(x, ° +} = 0. 

PYoof: With j) replaced by q, the proof of Theorem 
4.3 carries over verbatim to the present case. 

7. INITIAL AND BOUNDARY CONDITION SOLUTIONS 

We consider now the function 

Z (x t)= {'OC1,*(x I·r)/'(\,)d\, x>O,O<I<to, *' , 0 ' ,- .. ., 

given by (1. 2) under the conditions onf(y) mentioned 
there and with c* specified in (1. 3}-(1. 6). We repeat 
the main result of Ref. 1. 

Theorem 7.1: With the kernell'*(x, I; y} given by 
(1. 3}-(1. 6) and under the hypotheses onjlY) listed in 
connection with (1. 2), the singular integral 

is an initial condition solution of I(z} on the half-strip 
x>O, O<.t<to, and 
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Assume now that f: (0, co) -lR is measurable and 
bounded. Theorem 7. 1 remains true in this special 
case for x 0, I 0. In addition, we prove 

T/II'o)'('1I17.2:x 0,1'0, 

(a) ,\ 0, v 0, ,= v (r,,) =Iv(ru) in (1. 3), 

(b) A + v(l- A) < 0, v' 1,,=v(') =I_v(r,) in (1. 3), 

j(\,) measurable and bounded => 

,,*(0 +, !) = lim I,] ~ I'*(X, I ;\')1(:\,) rl\' "- 0. 
'(1) 

I'rooF: If 1/( \,) i .' (u, 0" x' 'YO, then 

I,,, (x 1)1' < r [' oc1'*(x I· v)d\' *' , U , () , ,_ . 

(7.1) 

(7.2) 

Estimate (7.1) holds for case (a), (7. 2) for (b). Fur
thermore, c1 and c2 are certain positive constants and 
q, is the confluent hypergeometric function. The expres
sions for the integral of 1'* can be found in Ref. 8, 
6.643.2 (see also Ref. 1, Proof of Theorem 5.1). The 
limit relation of the theorem is now obvious. 

From Theorems 4.3, 7.1, and 7. 2(a), we now obtain 

Tflco)"eJll7.3:r' 0, I 0, ;'<0, 

v=-_ ,\(1- A)-t,-v(rl)) c-1vCvl)) in (1. 3), 

/(x) measurable and bounded on (0, c,c.), 

,1;( t) L (i l) " 1 C' 11), 0·" 1 II < 11 / C/C 

dr, t) = I~ I'*(X, I; \')((\') rI\' + r t /)(x, I - s}g(s) rls 
, II . , () 

is an initial and boundary condition solution of l(z) = ° 
with 

"(.I,O+)-,-/(.I) a.e., z(o+,t)~g(t) a.e. 

We also combine Theorems 6. 3, 7. 1, and 7. 2(b). 

Tlico)"CIJI 7.4: x' 0, I' 0, /'=0, v<O, 

,: "(;·o) =1 ..,(r ll ) in (1. 3), 

f(x} measurable and bounded on (0,00), 

z(x!)~ r 00 1'*(1 I· \')/(I'ld\, +)'t q(x,l-s)g(s)ds 
, . \l ' ,- -. - 0 

is an initial and boundary condition solution of 1 (z) = ° 
with 

,,(x, 0+) =/(x) a. e., 2(0 +, t) =g(l) a. e. 
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We show that the scattered part of the many-body wavefunction initiated by two incoming clusters is 
given by a fully connected operator acting on the initial channel state. The structure of this operator 
suggests a division of the full wavefunction into two-cluster components. A set of coupled equations in 
both the differential and integral form is then derived for these components. These equations have 
structure and properties similar to the three-body equations of Faddeev. We demonstrate that each 
component has outgoing waves in a unique two-cluster partition. The transition amplitude for any final 
arrangement can therefore be extracted directly from the outgoing waves in the relevant components. 

I. INTRODUCTION 

The essential difficulty in the N -body scattering prob
lem is that there can be different arrangements of the 
particles. In the asymptotic region of the many-parti
cle coordinate space, the "free" propagation is there
fore not governed by a single channel Hamiltonian. As 
a result, it is hard to specify boundary conditions. If 
one uses a dynamical equation which describes the 
asymptotic propagation in terms of one of the channel 
Hamiltonians, real calculations will have trouble pro
ducing outgoing waves in the other arrangements. 

These difficulties are overcome in the case of three 
particles by the method of Faddeev. 1-3 The method can 
be realized in equations either for wavefunctions or 
transition operators, in momentum or coordinate rep
resentations, and via differential or integral equations. 

In the nonrelativistic many-body scattering problem 
most recent work has emphasized the connectivity struc
ture of the kernel of an integral equation for tranSition 
operators. 4-15 This eliminates the troublesome discon
nected diagrams, 4 permits some iterate of the kernel 
to be compact, and thereby offers the possibility of 
solutions by standard numerical techniques. An alter
native view focuses on the structure of the outgoing 
waves in coordinate space. This provides a different 
perspective on the problem and may yield new insights 
for developing approximate methods. 

In this paper we divide the N-body scattering wave
function into components and find equations for them. 
These equations reduce to Faddeev's for the case N = 3, 
have the Faddeev structure for all N, and solve the dif
ficulties of the asymptotic behavior of the N-body wave
function. In Sec. II we briefly review the Faddeev treat
ment of the three-body wavefunction and pick out the 
essential features. In Sec. III we define our notation 

alResearch supported in part by the U. S. ERDA. 

for the N-body problem and recall a number of basic 
results. In Sec. IV we demonstrate that the scattered 
part of the N-body wavefunction for a two-cluster ini
tial state is equal to a completely connected operator 
acting on the initial channel state. The structure of 
this operator suggests a decomposition of the wave
function into two-cluster components. This is done in 
Sec. V where equations for these components are de
rived and their structure is discussed. A summary and 
conclusions are presented in Sec. VI. 

II. THE THREE-BODY CASE 

We begin by reviewing briefly Faddeev's method to 
stress its essential characteristics. Let ~i be the ex
act wavefunction for particle i incident on the other pair 
of particles in their bound state. (For SimpliCity of 
presentation we assume each pair of particles has a 
single bound state. ) We label the pair of particles not 
including particle i as the "i-pair." The wavefunction 
J.'j satisfies 

(1) 

We introduce the channel Hamiltonians 

H;=Ho+V;, (2) 

where Vi is the interaction of the i- pair and H 0 is the 
kinetic energy of all the particles. The initial channel 
state <Pi satisfies 

Hi<Pi=E<Pi' 

The wavefunction ~j then satisfies the set of 
Lippmann-Schwinger (LS) integral equations 

~i = <p;ii jj + GjVj~i' j = 1, 2, 3, 

where 

V j =H -Hj 

is the residual interaction and 

(3) 

(4) 

(5) 

(6) 
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is the channel Green function. It is understood that the 
limit E - 0 + is to be taken at the end of the calculation. 
All three of the equations (4) are necessary to specify 
that there are no incoming waves in rearrangement 
channels. 16 No single one suffices to specify ifJ; uniquely 
since outgoing waves in one channel may be superposed 
to give an incoming wave in a rearrangement channel. 
FUrthermore, it would be difficult to describe outgoing 
waves of all three types with a single Green function. 

Some insight into these problems can be gained by 
considering the spatial extent of the source term for 
Eq. (4). LetS1s=Vj<?i=(V;+Vk)~; where (i,j,l<) is some 
permutation of (1,2,3). We denote the relative separa
tion of the j-pair by r j , and the separation of particle 
j from the center of mass of the j-pair by R j • The posi
tions of the three particles in their center of mass sys
tem can be described by anyone of the three sets 
(ri, R i), i = 1, 2,3. Take a fixed j and consider the 
asymptotic behavior of S~(r, R) in each of the three 
directions 1'/ <. c, R/ - 00 where l = 1, 2, 3, and c is a 
constant specifying the range of a pair interaction. 
When l =j, S7s decays rapidly due to the potentials. 
However, when l*j, one of the potentials in Vj remains 
constant and S1s falls off like the wavefunction, i. eo 
S1s -exp(ipzRz)/Rz. Thus the source term is not con
fined to a finite volume. Since the angular momentum 
barrier term of Ho depends on the inverse square of 
distance, the source term should fali off faster than 
an inverse square law before the boundary condition on 
the wavefunction can be determined from that of the 
Green function Gj • 

These problems are overcome by using all three of 
the equations (4). These three separate equations, 
which must be satisfied Simultaneously, can be com
bined into a set of coupled equations by dividing <ti into 
three components. This can be done by multiplying Eq. 
(4) by (1- Go Vj) to get 

(7) 

Since we want to divide Wi into parts propagated asymp
totically by their own channel Hamiltonian, we define 

(8) 

with 

ifJ; =,0 <tin. (9) 

Since Vj is localized to the region where the particles 
of the j-pair are close together, we expect that <p;(j) pro
pagates asymptotically only by Gj • To see this we sub
stitute Eq. (9) into Eq. (8) and multiply by Gi/ to get 
the set of coupled equations 

(E - Ho - Vj)ifJ~) = Vj L)5jk1W), (10) 
k 

where 5jk is one if j * I? and 0 if j = k. 

These are the Faddeev equations for the wavefunction 
components ifJ;IJ). The advantage in this approach is that 
the source terms are confined. Consider the Source 

F - (Jl 
Sj = Vj Lk OjkifJ; ) of Eq. (10), From Eq. (8), ifJf') is that 
part of <Pi in which the k-pair interacts last. The poten
tial Vj requires both particles of the j-pair to be within 
range of their interaction. Since the 5jk requires the j_ 
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and h-pairs to be different, Sf is made up from terms 
in which each of the three particles is experiencing an 
interaction. This contrasts with S;s which depends on 
the full wave function and so contair,s terms in which a 
given pair experiences repeated interactions. 

As a result, ~ is confined to a finite volume, and 
in the asymptotic region the component ifJ~j) satisfies 

(E - Hj)<tV) = O. (11) 

The full wavefunction ifJ; has therefore been divided into 
components ifJf) each of which is propagated everywhere 
in the asymptotic region by its own channel Hamiltonian. 
Writing the set (10) in integral form yields 

(12) 

It can be shown2 that these equations suffice to specify 
a unique solution. The details of the asymptotic behavior 
of the components ifJ)i} is readily deduced from the sin
gularity structure in momentum space. 17 We use these 
results to illustrate the confinement of the sources. In 
the directions Yl < c, R z - 00, described above, ~ is 
well confined for N j due to the potential VJ' When I =j, 
this potential is constant and Sf behaves in this direc
tion like the wavefunction components Lk 6 jk ifJf'). 

Consider firstly the asymptotic behavior when a pair 
remains bound, Only the k-pair can remain bound in 
the component <Pf'). However in the direction R j - 00, the 
bound state wavefunctions of the pairs other than j de
cay exponentially. The leading asymptotic behavior in 
this direction is provided by the breakup contribution 
to <Pi" )(rk, Rk). Both of the coordinates r k, Rk for k * j, 
are linear combinations of rj and Rj . Hence in the direc
tion Yj'-: C, Rj_oo, we have r k _00 and Rk _00 while Yk/ 

Rk - constant. The components Lk6jkifJf') and therefore 
the Source ~, fall off according to the power law ~ 
- (R)-5/2 which is faster than the angular momentum 
barrier. Thus in the integral equation (12) the boundary 
conditions on the wavefunction are well determined by 
those of the Green functions. Because of the power law 
behavior the volume of confinement of the sources can 
be quite large. Such long range effects are necessarily 
present in the three-body problem when the breakup 
channel is open. 

In summary, the crucial properties that make the 
Eqs. (10) and (12) a solution of the difficulties are: 

(i) The wavefunction is divided into parts zpfi) which 
satisfy Eq. (11) anywhere in the asymptotic region. 
Therefore, <tf) may only have outgoing waves having a 
bound ,i-pair or three-body breakup. There is no mixing 
in of bound states in other arrangements. Only the dia
gonal term <t; i) has the incoming wave. 

This property follows from: 

(ii) The source (coupling) term in Eq. (10) is con
fined in the sense that it faUs off with distance faster 
than the angular momentum barrier. This confinement 
is an expression of the fact that the iterated kernel in 
Eq. (12) is completely connected. 

III. NOTATION AND BASIC RELATIONS 

We consider a system of N distinguishable particles 
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interacting by two- body potentials. A division of the 
particles into groups is called a partition and is labeled 
by Latin letters a, b, c, .. '. The number of clusters in 
partition a is na. The two-cluster partitions playa spe
cial role in our formulation so we label them distinc
tively by Greek letters (Y, (3, Y, ••.• We restrict our an
alysis to states initiated by an incoming wave of two 
bound clusters of some partition (3. We write this state 
as <Ps suppressing the quantum numbers associated with 
the particular bound states of the clusters. This state 
satisfies the Schrodinger equation 

and the set of LS equations 

<Ps = 0aSCPS + Ga Va<pa, 

where CPa is the incoming state to be defined below. 

(13) 

(14) 

We use the definitions that Ho is the total kinetic en
ergy operator for the N particles, Vb is the sum of the 
two-body interactions internal to the clusters of b, and 
~ is the sum of the interactions between the particles 
in different clusters of b. The partition Hamiltonians 
are 

(15) 

and the full Hamiltonian satisfies 

for any partition b. The full Green function is 

G(E + iE) = (E -H +iE)"l, (17) 

and the partition Green functions are 

Gb(E + iE) = (E - Hb + iE)-l. 

The incoming state CPa is the product of the internal 
wavefunctions of the clusters with a plane wave for 
their relative motion. It satisfies 

(E - Hs)CPs = O. 

We observe that this implies 

GoVsCPs=¢a 

(18) 

(19) 

(20) 

when the energy of the operator matches the energy of 
the state, L e., on shell. 

For an arbitrary partition a the Green function satis
fies a resolvent equation 

G = G a + G a vaG = G a + G vaG a. 

The exact wavefunction is defined by1
8 

<J!e = lim iEG(E + iE)¢S. 
, - 0 

(21) 

(22) 

We use Eqs. (18) and (19) to express the wave function 
as .1 

<Pe = GGa CPs. (23) 

This wavefunction is actually a function of the param
eter E, but this dependence is not made explicit. In 
this equation and in other equations involving Green 
functions conSiderable care must be taken to maintain 
the iE not equal to zero until all formal manipulations 
have been carried out. (See for example the discussion 
in Ref. 19 and in Appendix A beloW). 
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We now introduce the transition operators 

Tab = Va + V"C;Vb
• (24) 

The matrix elements of these operators between on
shell channel states give the scattering probability am
plitudes. 1S Using Eq. (21) these operators can be ex
pressed in the convenient form 

This implies that 

va~a co. TaB ¢s. 

In the limit E - 0, we may write 

<J!a = G oT
l1l d)B' 

where the relation 

which holds in the same limit, has been used, 

IV. THE LINKED CLUSTER THEOREM 

(25) 

(26) 

(27) 

(28) 

We can now transfer the information which has been 
learned in the past few years about the structure of the 
transition operators to the wavefunction via Eq. (27). 
In particular, we eventually have applications to nuclear, 
atomic, and molecular problems in mind. Since highly 
clustered systems dominate most of reaction theory, 
we apply the Bencze-Redish-Sloan (BRS) equations, 9-11 

These equations relate the two-cluster to two-cluster 
transition operators, so highly clustered final and inter
mediate states are easily accessible. 211 

The BRS equations state that the transition operators 
defined by Eq. (24) satisfy11 

(29) 

The two-cluster to two-cluster operators are coupled 
in a set of 2N -1 - 1 equations, while the breakup ampli
tudes are given by quadratures. The potential vg is the 
sum of all two-body potentials which are both internal 
to (3 and external to (I, The kernel operator K: can be 
described20 as the sum of all Weinberg graphs4 having 
connectivity y and ending (on the left) with an interac
tion external to a. 

In the BRS Eqso (29), the inhomogeneous term has 
been Simplified by omitting contributions which vanish 
in the limit E - 0" In ReL 19 it is demonstrated that the 
omitted parts of the inhomogeneous term do not contri
bute to the physical solutions for the transition ampli
tudes, The omitted parts also do not contribute to the 
equations for the phySical wavefunction that are derived 
in the following section, For simplicity of presentation, 
we work with Eq. (29) carrying E*-O and justify this 
procedure in Appendix A. 

Inserting the BRS equations (29) into the expression 
(27) gives 

(30) 

where we have written Ky for X;; and Eq. (20) has been 
used. We refer to this result as the linhcd elllsicr thc
orem dues to its characterization in terms of graphs. 
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Recalling Eq. (24), we see that, apart from the first 
term, TY~ is the sum of all graphs beginning with an 
interaction external to {3 and ending with an interaction 
external to y. 

This means that a major part of the scattered wave
function, <P~ = <Ps - ¢s, may be characterized as the sum 
of all completely connected graphs beginning with an 
interaction external to {3 acting on the initial state ¢s. 
To be more precise, let us introduce 

(31) 

which is the sum of all two- body interactions external 
to both of the partitions y and {3. 

Then the operator Th1 can be written 

(32) 

where 

(33) 

is the sum of all Weinberg graphs beginning with an 
interaction external to {3 and ending with one external 
to y. Inserting Eq. (32) into Eq. (30) we get the follow
ing representation of the scattered wave 

<pt = ~!8 - ¢8 =.0 (Gof\y GoTYS 1¢8 
r 

(34) 

We define the operators 

(35) 

(36) 

From the graphical characterizations of Ky and r8 
we see that Koa is the sum of all completely connected 
graphs starting with an interaction external to {3. The 
operator Ws is the sum of all completely connected 
graphs which begin with an interaction internal to (3 but 
which are irreducible in the sense of Weinberg, 4 that 
is, they become disconnected when the first interaction 
is removed. With these definitions the linked cluster 
theorem, Eq. (30), can be expressed as 

1/;~=GOKos¢8 +GoWs¢a. (37) 

We note that a somewhat similar structure is demon
strated in the work of Rosenberg. 5 

V. DIVISION OF THE WAVEFUNCTION INTO TWO
CLUSTER COMPONENTS 

The structure of the linked-cluster theorem, Eq. (30), 
suggests a division of the wavefunction into components 
labeled by the two- cluster partitions. We divide <Ps as 
follows, 

1/;8 =.0 ~liYl, (38) 
Y 

where 

(39) 

Since Ky is the sum of all possible Weinberg graphs 
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of connectivity Y, it contains all those interactions 
necessary to combine the particles of the system into 
the two bound clusters of the partition y. This is done 
by an infinite number of terms adding to contribute 
through Kr a primary Singularity at the end of the 
graph. 21 This generates an outgoing wave in the coordi
nate space representation. 17 Any infinite sequence ap
pearing in the middle of the graph which is associated 
with a two-cluster partition QI *- Y does not yield a pri
mary singularity. The final part of the graph having 
connectivity y will have at least one interaction external 
to QI occuring after the singular part. The intermediate 
integration in the relative coordinate associated with 
this potential weakens the singularity enough to prevent 
it from producing primary Singularities in the final 
state. 22 

As a result, the only outgoing waves present in a 
component </Jiy

) are of the y type. This means that it may 
have outgoing waves only in the two-cluster channels 
of the partition Y, and only those breakup waves which 
can be obtained by breaking the clusters of the parti
tion "y. The outgoing waves in a channel of partition a 
having more than two clusters are in all those compo
nents if;~Y) for which the partition y can be obtained by 
combining two or more clusters of a o (To denote this 
relation we write y::J a.) 

We now derive the equations satisfied by the compo
nents. We do this by expressing the y>8¢a appearing in 
Eq. (39) in terms of the full wavefunction ~a. The divi
sion (38) is then used to produce coupled equations of 
the Faddeev type for the components 

To express TysdJ a in terms of <Pa we use Eq. (23) and 
the resolvent equation (21) for the partition y. This 
gives 

<Ps = Gy Gi1¢a + Gy y>adJ 8. (40) 

Equation (25) has also been used. Solving for r's¢a 
gives 

TY8r/Ja= G;l<PB - Gi1r/Ja• (41) 

Inserting' this in Eq. (39) gives 

(42) 

[The structure of the inhomogeneous term appears as 
it does here because contributions which vanish in the 
limit E - 0 have been omitted in obtaining the Simplified 
structure of the first term of Eq. (39). The validity of 
these subtle limiting procedures is shown in Appendix 
A.J 

The inhomogeneous term of Eq. (42) simplifies on
shell. We apply the anticluster expansion2o for the op
erator Ky. This is the inversion of the Yakubovskii 
cluster expansions and takes the form 

KyGo= .0 N(Y,a)VaG a. 
t')'d )a 

(43) 

The numerical coefficients N(y, a) guarantee cancella
tion of the parts having connectivities other than y. 

Labels bracketed under the summation sign are not 
summed over. This yields 

(44) 
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Applying the Lippmann identity23 

G.C;/1)e =c Bae¢B' (If! {3, 

which holds in the limit E - 0, Eq. (44) becomes 

G"KyGuGslqJe =GoVe¢eBre, 

where we have used the fact that N(y, y) == 1. 

(45) 

(46) 

By Eq. (20) this term cancels the rest of the inhomo
geneity in Eq. (42) giving 

It is convenient to introduce the operator Vy by the 
relation 

(47) 

(48) 

We refer to Vy as the irredllcible y-comzrcted f)o/cillial. 
Since Gy contains the term Go, Vy has the same connec
tivity as Ky. It is the sum of all y-connected graphs 
which become more disconnected when their rightmost 
interaction is removed. In the case N = 3, partition y 

specifies a pair, Ky is the two-body T matrix ty , and 
Vy is simply the pair interaction. 

For N 3, an explicit expression for Vy can be ob
tained in terms of strings of the fundamental potentials 
and Green functions. Working from the corresponding 
relationllJ for Ky and using Eq. (48) gives 

where we have written 11m to indicate an m-cluster 
partition. 

(49) 

To illustrate the structure of this operator, we dis
play it for the particular example of N =4, Y == (12)(34). 
In this case the sum reduces to 

v' "'- B F C 1'
a3 

( a
3 

a3 r . 
.3 (-Y) 

This sum contains the two terms for {/3 =c (1)(2)(34) 
and (/3= (12)(3)(4) giving 

(50) 

(51) 

where /' ij is the interaction of the pair ij and the rela
tion /'jjG jj = / ijGIJ has been used. The connectivity and 
irreducibility structure can easily be seen from the 
graphical representation of Eq, (51) as shown in Fig. 1. 

Returning to the general case, using Eq. (48), Eq. 
(47) becomes 

3 -----.----

4-----'---

+ 
() 

(52) 

FIG. 1. Graphical representation of the irreducible two-clus
ter potential operator Vy for the case N~4 and y=(12) (34). 
Circles indicate two-body T matrices and dotted lines indicate 
two-body potentials. 
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This is completely parallel to the three-body result, 
Eq. (8). Multiplying by Gal, dividing I/Je into parts by 
Eq. (38), and bringing the diagonal term to the left gives 
the equation 

(E-Ho-Vy)!j;~Y)=I/y B6y",l/Jeft». (53) 

" 
The integral form of Eq, (53) is 

J;~r) = Bre<Ve + (I~ + iO - HIJ - VyJ-1VyB~" I/JJ") (54) 
a 

The inhomogeneous term specifies the incoming bound
ary condition and is shown to have the above form in 
Appendix A where the limit E - 0 is considered., The 
Eqs. (52) and (53) along with the specification of the 
components by Eq. (39) are the main results of this 
paper. In the case N = 3 where Vy is the interaction for 
the y-pair, this formulation is identical to that of 
Faddeev. 

Let us now consider whether Eq. (53) solves the prob
lem of too many channel Hamiltonians for the N-body 
case as Eq. (10) does for the three-body case. The 
crucial property is the confinement of the source term 
in coordinate space. The irreducible potential Vy con
sists only of graphs with y- connectivity. Therefore, 
every term Vy contains interactions of each particle 
within one of the clusters of y with all of the other par
ticles of that same cluster either directly or through a 
chain of interactions. Assuming the potentials to be 
short ranged, if any of the particles gets far away from 
its cluster, Vy will vanish. The only coordinate which 
is not confined by Vy is the relative distance between 
the center of mass of the two clusters. The support of 
Vy can be therefore visualized as a tube in the many
body configuration space. We refer to this as the y

tube. 

Equation (52) says that !j;'~Y) has its source within the 
y-tube. Since the source term on the right of Eq. (53) 
contains the product of Vy and I/Je(a) and ()I * y, it is de
scribed by the intersection of two distinct tubes in the 
N-body configuration space. As a result of this inter
section, any pair of particles is connected by a string 
of interactions, and the source term in Eq. (53) is con
fined in the sense that it falls off faster than the kinetic 
energy term. 

We note that as the number of particles is increased 
the confinement of the source may become weaker. The 
operator Vy does not confine the clusters of 'Y to bound 
states. The outgoing wave of a breakup part of one of 
the clusters will only fall off with distance according to 
a power law. In the three-body problem this long-range 
effect is well known24 ,25 and has important physical im
plications for both bound26 and scattering states. 25 The 
long range character can be seen in the structure of 
Vy in the four-body example given above. The presence 
of the Green function between the interactions in Eq. 
(51) and the dependence of the energy denominator of 
the two-body T matrix on the spectator momenta both 
lead to slowly decaying terms, even for potentials of 
short range. Since these effects have important physi
cal consequences, their appearance here is necessary. 
If, in the treatment of a many-body problem, a trunca-

L'Huillier, Redish, and Tandy 1280 



                                                                                                                                    

tion is made to eliminate breakup into more than m 
clusters, the long range effects associated with m and 
fewer cluster states should still be present. 

Since the source term in Eq. (53) is confined, !J!~l') 
satisfies 

(55) 

everywhere in the asymptotic region. The component 
!J!~l') is therefore propagated asymptotically by the effec
tive channel Hamiltonian 

(56) 

In the two- cluster part of the asymptotic region Hy 

reduces to Hy. To see this we apply the anticluster ex
pansion, Eq, (43), to the definition of the irreducible 
potential, Eq. (48). This gives the anticluster expansion 
for Vy , 

Vy = ~ N(y, a)VaGaG;l. (57) 
(",2 )a 

In the two-cluster region, the wave function will have 
the structure of the product of the two internal wave
functions times a relative outgoing wave. Asymptotical
ly the relative wavefunction must be on-Shell so the 
entire function satisfies 

(58) 

The only term in Vl'¢y which can cancel the zero of 
the G;l is the term y = a, We therefore have on the two
cluster asymptotic part 

(59) 

The component wavefunction l/J~Y) also has outgoing 
waves corresponding to breakup. Those breakup waves 
found in this particular component correspond to bound 
clusters in partitions a (c y). In this part of the asymp
totic region, Vy not only provides the internal interac
tions necessary to bind the clusters of a, but also that 
part of their interactions in which the last scattering is 
external to a but internal to y. The full breakup wave 
for partition a is obtained by adding all those compo
nents Ij!~") for which y::l a. 

Finally we demonstrate that the on-shell transition 
amplitudes are precisely the coefficients of the outgoing 
waves of a component. This means that the Eqs. (53) 
could be solved in coordinate space and the scattering 
amplitude determined directly from the asymptotic form 
of the solution without the need for a quadrature. We 
show this here for the case of two-cluster final states. 
The demonstration of the similar result for breakup is 
somewhat more technical and is given in Appendix B. 

From Eq. (39) the scattered wave in the components 
has the form 

(60) 

Applying the anticluster expansion to GrJ(" [analogous to 
Eq. (43)] gives 

GrJ(" = B N(y, alGa Va_ 
(l' d )a 

SubstitUting this into Eq. (60) gives 
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(61) 

l/J~l')S= ~ N(y, a)GaVaGoT,,8¢B' (62) 
(I'd )a 

The only term in this sum which can have an outgoing 
two-cluster state is a=y. If y::l a, then the operator 
GaVaG O cannot provide enough interactions to bind the 
particles into two separate clusters. The operator T"B 
has a final vY [ef. Eq. (25)1 which blocks the singulari
ties of terms to its right and prevents them from build
ing a two-cluster outgoing wave. 21 

Making a spectral expansion of Gy gives 

1 
G,. = E + iE - Ty - E) cPy><cPy I 

+ outgoing waveS of three and more clusters. (63) 

The operator Ty is the relative kinetic energy of the two 
clusters and Ey is the sum of their internal energies. 
Applying the expansion (63) to Eq, (62) we have 

I/J~r)s = E + iE _ ~y _ Er I ¢r><CPr I VyGoTrBI CPa> 

+ outgoing waves of three and more clusters, 

(64) 

The first term of Eq. (64) is the primary pole singular
ity which produces two-cluster outgoing waves. 17 

Asymptotically only on- shell states cPy lead to nonvanish
ing contributions. Since on-shell 

the coefficient of the outgoing two-cluster state is 

(¢y I VyGoT"B I CPa> = (CPr I T'B I CP8), 

the tranSition amplitude for the process. 

VI. SUMMARY AND CONCLUSIONS 

(65) 

(66) 

The fundamental formal problem of many-body scat
tering theory is the appearance of many-channel 
Hamiltonians needed to describe the asymptotic region. 
This difficulty is much more complex for N-bodies than 
for three because of the large number of possible ar
rangement and breakup channels. The three-body meth
od of Faddeev overcomes this difficulty by obtaining an 
integral equation formulation in which the iterated kern
el is connected. In terms of differential equations for 
the three wavefunction components, this latter condi
tion translates into confinement of source terms. Thus 
the boundary conditions are well specified since each 
component is propagated in the entire asymptotic region 
by its own channel Hamiltonian. 

We develop a wavefunction formulation for the N-body 
problem by making use of recent work on integral equa
tions for transition operators. We translate the condi
tion of a connected iterated kernel of the transition 
operator equations into a confinement property for the 
source terms of differential equations for components 
of the N-body wavefunction. 

We find a division of the full wavefunction into two
cluster components which satisfy a set of coupled differ
ential equations of Faddeev structure. These equations 
satisfy the basic requirements for a solution, namely 
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that there is a confined source term, and therefore 
that each component is propagated in the asymptotic 
region by its own effective channel Hamiltonian. Though 
our effective channel Hamiltonian is in general a com
plicated operator, in the region of asymptotic coordi
nate space relevant to the propagation of two-cluster 
states it reduces to the usual partition Hamiltonian. 
Each wavefunction component is labeled by a two
cluster partition index and has outgoing waves corre
sponding to bound and breakup states of that partition 
only. Scattering amplitudes can therefore be extracted 
directly from the coefficients of the outgoing waves of 
the relevant components. 

In the present formulation we have choSen to label 
the components by two-cluster indices only and to con
struct components satisfying Faddeev-like equations. 
By "Faddeev-like equations" we mean equations having 
the algebraic structure of Eq. (10) in which the confine
ment of the sources arises from the property that, in 
them, any particle interacts with any other particle, 
either directly, or through a connected string of inter
actions involving other particles. (In the language of 
integral equations this is equivalent to saying that the 
first iterate of the kernel is completely connected.) As 
a result we are required to introduce operators of high 
connectivity. This necessary characteristic is satisfied 
by a two-cluster decompOSition because of the unique 
property of two-cluster connected graphs: The conjoin
ing' of two subgraphs having two- cluster connectivity 
corresponding to any two distinct partitions always 
yields a completely connected graph. 

A less highly connected operator could be employed, 
but as the degree of connectivity is lowered, additional 
iterations must be introduced before the kernel becomes 
connected. The two divisions of the N-body wavefunc
tion into components which exist in the literature use 
kernels of low connectivity but employ different methods 
to guarantee confinement (connectivity). The division 
of Sandhas27 introduces a chain of indices so that a 
wavefunction component is labeled by a sequence of 
partitions a", _1 = a v -2 •.• = a3 = y. The effective potential 
is then only a single potential operator so it is as dis
connected as possible. A string of restrictions on the 
coupling of successive indices produces confinement 
(connectivity) after N-2 iterations. The resulting equa
tions have the form of the three-body Faddeev equation, 
(10), but all the operators are now matrices with in
dices being chains of partitions. 

A second method is that of Kouri, Kruger, and Levin28 

who decompose as we do, by two-cluster indices, but 
retain a kernel of first order in the potential by fore
going the Faddeev structure. The components are 
coupled chainwise, each one only to a single other com
ponent. The connectivity arises from the fact that the 
product v'" 1GO v'" 2 •• 0 Go v'" n contains only completely con
nected graphs if the partitions ai, ... , an include all the 
two- cluster partitions. 

Each of the three methods has advantages and dis
advantages. The division of Sandhas has the advantage 
that the kernel contains only simple operators (poten
tials) but has the disadvantage of introducing the most 
complete decompOSition possible. This latter fact can 
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be an advantage in the case N = 3 or 4 but becomes a 
disaster for N significantly larger than that. The num
ber of equations grows precipitously29 with N and the 
partition indices not associated with channels of the 
asymptotic wavefunction suggest that the equations can
not be truncated in a simple manner. 

The division of Kouri el al. has the double advantage 
of only having two- cluster indices and involving simple 
operators, but has the disadvantages of not always re
ducing to Faddeev equations for the treatment of three
body degrees of freedom and of depending on a choice 
of ordering the two-cluster partitions. Their equations 
do not explicitly preserve the symmetry group of ex
change of partition labels. This causes no trouble in an 
exact treatment, but in any truncation different choices 
may lead to different results. The implication of the 
symmetry breaking is not yet fully understood. 

In our method, the index structure is simple and the 
connectivity obtained very directly. Many of the diffi
culties of the N-body problem are suppressed into un
derstanding the structure of the complicated operators, 
/1" Yet the explicit forms we have for these operators, 
Eqs. (49) and (57), show that the sybsystem Green func
tions appear inside V, in straightforward ways. The 
highly clustered states which dominate most reactionS 
can thereby be easily introduced. One may therefore 
have the hope of finding truncations of our equations 
which form a bridge between the standard two-cluster 
methods of reaction theory3o and the recently developed 
methods of the three-body problem. 31 In addition, we 
hope that by giving us new insights into the structure of 
the iV-body scattering wavefunction these results should 
lead to the development of more versatile approximate 
methods and a firmer basis for a theory of reactions 
than we now possess. 
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APPENDIX A 

In this appendix we demonstrate that the limit ( - 0 
is properly handled in the derivation of the final result, 
Eqs. (53) and (54). The basic difficulty is that the 
Lippmann identity, Eq. (45), does not necessarily hold 
when multiplied from the left by an operator before the 
( limit is taken. It holds only under certain restrictive 
conditions. Essentially, these conditions state that each 
term in the perturbation expansion characterizing the 
multiplicative operator, when followed from the right, 
must have an interaction residual to f3 before it has an 
infinite number of each of the interactions internal to f3 
occuring in all possible sequences. 19,22 If the condition 
were not satisfied, a Green function G$ would be built 
and the operator would contain a string of the form G$ Va 
leading to (a*f3) 

Ga Va(G", Gti1cbB ) 
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= [Gs - G", + Gs V'" G", ]G,i\bs 

=[G", (Vs - V",)Gs + Gs V'" G", ]Gti1¢s 

= G", (VS - V",)¢S + GS V",G",Gti1¢s, (A1) 

which does not vanish in the limit E: - 0 as would be re
:].uired by Eq. (45). To get (A1) we have used 

Gs =G", + G",(Vs - V",)Gs 

(A2) 

In Eqs. (53) and (54) the wavefunctions and hence the 
Lippmann identity are multiplied by operators from the 
left. What should be done is to take none of the limits 
E: - 0 until after all manipulations have been carried out. 
This means that instead of Eq. (29) we should employ 
the version of the BRS equations in which the inhomo
geneous term is not transformed uSing the limit E: - O. 

Sketching this briefly, we begin with Eqs. (23) and 
(25) as definitions of <Jis and Tall for E: * O. Instead of Eq. 
(28) we then get 

(A3) 

Equation (26) is still correct, so with (A3) we obtain 

<Jii3 = GoTos¢s + GOGti1¢s, 

instead of Eq. (27). 

The untransformed BRS equations for TOB take the 
form ll 

(M) 

TUs¢s =6KcGoG;1¢s + ~KyGo TYB¢B. (A5) 
c y 

Putting this into Eq. (A4) gives 

ifJs = GoG;l¢S + 6 GoKcGoGti1¢s 
c 

+'LGOKyGOyYB¢S' (A6) 
y 

Introducing components defined as before by Eq. (39), 
we now get 

~'s =6 <p~r> + [Go - Gs +.0 GoKcGolGtil¢s, (A7) 
y 

instead of Eq. (38). To get a system of equations for 
the components we now express yYs¢s in terms of <Ps by 
USing Eq. (41). Substitution of Eq, (41) into Eq. (39) 
still yields Eq. (42) for finite E. However, since the 
diviSion of <PB into components is now given by Eq, (A 7) 
instead of Eq. (38), we obtain the system of equations 

(E+iE: -Ho- Vy)<p~Y) 

= Vy 66,.", <pia) + (OrsGi/ - VyGyGi1)¢s 

'" 
+ Vy[G o - Gs +;C GoKcGolGa1¢s. (A8) 

c 

The integral form of these equations is obtained by 
multiplying both sides by gy defined as 

~·y=(E+iE:-Ho-Vy)-l. (A9) 

The contribution from the second term on the right 
of Eq. (A8) is 
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gr(OrsGii1- VyGyGti1)¢s 

= Ors9y(Gii1 - Vy)¢s - ~sgYVyGyGBl¢S 
- -1 

= Ors ¢s - Orsgr Vy Gy Gs ¢s· (AIO) 

We now take the limit E: - O. Since 9y Vy is y-connected, 
it must be missing at least one interaction internal to 
{3, and therefore cannot provide a singularity to cancel 
the zero in Gi1¢s. So Eq. (45) may be used and the 
standard incoming boundary condition Ors¢s is obtained. 
The vanishing of the second term of Eq, (AIO) is still 
valid when the factor gy is removed, since Vy is still 
y-connected. So in the differential equation form, the 
contribution is just OrBg;l¢s, which, because of Eqs. (5S) 
and (20), vanishes in the limit. 

To treat the third term on the right of Eq. (AS) we 
use the cluster expansion of Gs - Go. This takes the 
formll 

(All) 

Apart from the simple factor Go, the inverse of this 
expansion is what we have given in Eq, (43). Essential
ly, Eq. (All) is just a claSSification of the perturba
tion graphs of Gs - Go into Weinberg graphS of connec
tivities equal to or contained in {3. The third term on 
the right of Eq. (AS) becomes 

Vy 6 GoKcGoGti1¢s· 
{Jl,Q)C 

(A12) 

We now take the limit E - O. Because of the condition 
fJ t c, every term Kc that enters has at least one inter
action external to {3, and is missing at least one of the 
interactions internal to S. This fulfils the condition 
stated above and Eq. (45) can be used to show the vanish
ing of this term, Multiplication by gy from the left prior 
to the limit leaves the above reasoning unchanged and 
this term does not contribute to the integral or differ
ential forms of Eq. (A8), This verifies that Eqs. (53) 
and (54) hold in the limit E - O. 

APPENDIX B 

We outline here the structure of our wavefunction 
components for outgoing breakup waves (i. e., for final 
states of more than two clusters). In particular we de
monstrate that the coefficient of an outgoing breakup 
wave is the corresponding on-shell transition amplitude, 
This case is more difficult than the two-cluster states 
treated in Sec. V because our wavefunction components 
are labeled only by two-cluster partitions. Thus in the 
anticluster expansion for GoKr [see Eq. (61)] there will 
be more than one term contributing to a given multi
cluster outgoing wave, 

We overcome this difficulty by revealing the subpar
tition structure of Ky. Equations (48) and (49) combine 
to give 

X VaN-lG ••• G V a3 C (Bl) 
aN _2 aN _2 a3 r y • 

If we omit all terms to the right of Gan , we have left 
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the sum of all Weinberg graphs of connectivity an' This 
is just the definition of Ka

n
• Explicitly 

(B2) 

Combining Eqs. (B2) and (B1) we have 

substituting Eq" (B3) into Eq, (60), the total scattered 
wave can be written 

~ ~~r)S == GoL;KyGoT"'6¢6 
y y 

(B4) 

where II is fixed, and 

(B5) 

With Eq. (B4) we are now in a position to look at out
going waves of II bound clusters, Let the corresponding 
partition be (I, where "a = II. Applying the anticluster 
expansion [analogous to Eq. (61)] 

GoKa= I; N(a, b)GbVb 
{ad )b 

to the appropriate term of Eq. (B4) gives 

GoKaGJ'a6¢e = I; N(a, b)Gb VoGoTa6¢e. 
(ad )0 

(B6) 

(B7) 

The only term that can have an outgoing wave of the n 
clusters specified by partition a is b = a. The method 
now parallels exactly that used for Eq. (62). The result 
is that the coefficient of the outgoing wave is the on
shell matrix element 

(B8) 

We now establish that this on-shell matrix element 
is identical to the on- shell transition amplitude 
(<;6 a I Ta61 ¢6)' Consider a wavefunction defined according 
to 

i/!e = GoL;Kan GoT
an6 ¢6, 

an 

(B9) 

where Eqs. (21) and (25) have been used. The summa
tion extends over partitions having Jl clusters. From 
the definition of Ka and the structure [Eqc (24)) of rano, 
the term in squarenbrackets can be characterized as 
the sum of all Weinberg graphs having connectivity 
greater than that of an n-cluster graph. We can divide 
it into two parts: 

(1) the sum of all fully connected Weinberg graphs, 
plus 
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(2) the sum of all Weinberg graphs having connecti
vity greater than that of an 11- cluster graph but less 
than or equal to the connectivity of a two-cluster graph. 

Using the operator description of each of these two 
parts, Eq. (B9) becomes 

I [", 0 ~I, l -I 
</Ja==G o ~KyGoT'" +~~KamJGOG6 ¢a 

(BID) 

where Eqs. (21) and (25) have been used on the first 
term. 

The second term simplifies in the limit E - O. Only 
the term am =(3 provides enough interactions to cancel 
the zero in G;I¢S' and by Eqs. (46) and (20), we have 

</J; = GoL;KyGoT"'s¢e + ¢e c (B11) 
y 

Therefore, by Eq. (30), </J; equals the full wavefunction 
i/!a. Combining Eqs. (B4), and (B9) and (B11) yields 

(BI2) 

Thus for any breakup channel corresponding to a parti
tion an the coefficients of the outgoing waves in Eq. 
(BI2) are all zero, and hence the on-shell matrix ele
ments of TanS and :pnS are identical. To be more expli
cit, applying the anticluster expansion [Eq. (B6)) for 
Ka in Eq. (BI2), and using (¢a IVa GO=(¢a I for on-

n n n n 
shell states, we obtain, by the method analogous to that 
employed for Eq. (62), the result 

(BI3) 

on the energy shell. 
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Nonlinear Langmuir waves in a plasma governed by the dimensionless equations i 0 E/o I = - V2E + n E, 

o 'n 1 at' = 'Ii[n + g(IEI2)] are studied, where E is the complex amplitude of the high-frequency 
electric field, n is the low frequency perturbation in the ion density from its constant equilibrium value, 
and g is a given function of 11'1'. General conditions for the existence or nonexistence of a class of 
multidimensional solitary-wave and nonlinear periodic travelling-wave solutions in the form 
E(t ,x) = h(k.x- vI) and n (I ,x) = s(k·x - VI) are established. The results are applied to the special 
cases: (i) g~E1') =11'12 corresponding to the usual pondermotive force, and (ii) g~E12) 

= K [1-exp( -11'1')], K is a positive constant, representing ion density saturation. 

1. INTRODUCTION 

The formation, interaction and collapse of nonlinear 
Langmuir waves in plasmas have been studied exten
sively in recent years, 1-10 In most of the existing works, 
attention is focused primarily on the formation and 
interaction of solitary waves. Exact expressions for 
these solitary waves for various regimes have been 
obtained only for the one-dimensional case. Recently, 
Gibbons et (II- 10 discussed the possibility of existence 
of solitary Langmuir waves for higher dimensions, In 
this study, we obtain conditions for the existence or 
nonexistence of a class of multidimensional nonlinear 
Langmuir travelling waves including the periodic and 
the usual one-dimensional solitary waves. 

We begll1 with the following basic equations l describ
ing the nonlinear interaction of high-frequency electron 
oscillations with an ion fluid; 

I?E/(lI= - veE + liE, 
(1) 

?2n/?t2 = V2[/I + g( IE 12)], 

where i = v'- 1, E = (E I, ••• , EN) is the complex amplitude 
of the high-frequency electric field C. given by 

((l,x) =Re[E(t,x) exp(- iw~t)]; (2) 

n is a real quantity corresponding to the low-frequency 
perturbation in the ion density from its constant 
equilibrium value no; and g is a specified real-valued 
function of IE 12. Here, we have used dimensionless 
quantities, The units of time l, spatial coordinates 
X= (XI"" ,xN ), electric field E and density n are, 
respectively, 3q/(20'w p), (3YD/2)(qO')-1/2, 8(qO'l101TT/3), 
and 4qO'lIj3, where 0' is the electron-ion mass ratio 
1'Il r nl i , q = T/Te, T= T" + T i , Te, Ti the electron and 
ion temperatures respectively, Y D the electron Debye 
radius, and w p is the plasma frequency. The function K 
is introduced here so as to permit the consideration of 
a wide class of nonlinear effects such as saturation. 

2. TRAVELLING WAVE SOLUTIONS 

Let lRv and <r N denote the N -dimensional real and 
complex Euclidean spaces respectively, and Cm(lR; V) 
the space of all m-times continuously differentiable 
functions defined on lR and taking their values in the 
vector space V. The norms for lRN and o;N are denoted 
by II ·11 and i . ! respectively. The dot notation is used to 
denote the usual scalar product on lRN or o;N. 

Let k be a specified unit vector in RN and v a given 
real number corresponding to a constant dimensionless 
velocity, We seek travelling-wave solutions of (1) in 
the form 

E(t,x) =h(k'x -vt), 
(3) 

n(t,x)=s(k oX -vt), 

where hand s are undetermined functions in C 2 (R, aN) 
and C2 (lR, lR) respectively 0 For physical reasons, we 
shall restrict h and s to functions such that 1 h(~) 1 
and 1 s (01 are uniformly bounded on lR, where 
~ = k· x - vL In particular, we shall consider multi
dimensional SOlitary-wave solutions which are analogous 
to those in the one-dimensional case o Here, we require 
that I h(U I and s (0 tend to finite values as 1 ~ 1- 00. 

Substituting (3) into (1) leads directly to the following 
equations for h=(hu ... ,fiN) and s; 

-ivdh/d~ +d2h/de=s(Uh(O, 

(v 2 
_ 1 )d2s/de =d2g( I h 12)/d~Z, 

where we have adopted the rectangular Cartesian 
coordinate system. 

Equation (5) can be integrated to give 

(1.,2 -l)s(~) =K( Ih(~) 12) + C~ + C, 
A 

where C and C are integration constants. From the 

(4) 

(5) 

(6) 

boundedness requirement, we set C = O. Assuming that 
v 2 * 1, we can solve for s(O in (6) and substitute it into 
(4) to give a complex differential equation for h: 

d2h/d~2 - iI'dh/ d~ = (v 2 
- 1)-1l/J( I h(~ W) + C]h. (7) 

It is advantageous to rewrite (7) in polar form. Let 
hj(~) =AjWexp[iBj(O], j = 1, .. , ,N. Then, we have 

d"A/de + Aj e~W[1' - e~w 1= (v 2 
_l)-

lA j [g(11 A 112) + C], (8) 

d2e/de=[I'-2e;(O]d(lnA)/d~, j=l, ... ,N, (9) 

where A=(A
" 

.... ,AN)' IIAII= Ihl and 9;=de/rl~. 

Equation (9) can be integrated to give 

e;(n= [v - IljA~2(O]/2, 

where Il j =A~(O)lv - 29;(0)]. 

Substituting (10) into (8) leads to the following 
differential equations for A j : 

d2A/de =f(Il"C, A)A, , j=l, ... ,N, 

(10) 

(11) 
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where 

j(ll j , c, A) ~ (IlJAj4 - v 2)/ 4 + (v 2 _1)-1[g(IIAI12) + C].(12) 

Evidently, given C, O;(O),Aj(O),A}(O), j=l, ... ,N, 
(11) can be integrated independently. Since j is a function 
tion of C and 11. [depending on A.(O)], (11) must be 

1 1 

solved with initial conditions at ~ = 0 which are 
consistent with the A j (0) in 11 j' Also, only those portions 
of solutions of (11) with A(O? 0 [i.e., Aj(~)? 0, 
j = 1, ... ,N] are meaningful here. 

We note that (11) can be rewritten in the form: 

d 2A/de=aU/aAj , j= 1, ... ,N, 

where 
N 

UtA, Il,C)~ UI(IIAW, C) -B IlJ/(8A~), 
j =1 

(13) 

(14) 

(15) 

(16) 

and J.I. = (111,'" ,IlN ). A first integral of (13) is given by 

I(A(O, A'(O)~ IIA'(OW - 2UI(IIA(OI12 ,C) 

N 

-lill;Aj2(O/4=C u (17) 

where IIA'(~)W ~Lf=l[dAj(O/d~]2 and 
N 

CI = IIA'(0)11 2 - 2UI(IIA(0)11\ C) -6[v - 20;(0)]. (18) 
j =1 

Evidently, if Ilj *O for somej, then I(A(~),A'(O) 
- - 00 as 11A'(o1I and IIA(oII- O. Since C I is finite for 
finite IIA'(O)II, IIA(O)II, C, and 0;(0), j = 1, ... ,N, there
fore there do not exist solutions of (13) or solitary
wave solutions of (7) such that IIA(~)II and 11A'(OII- 0 
as 1 ~ 1- 00 when Il j * 0 for some j. 

In what follows, we shall focus attention on the par
ticu lar case where J.I. = O. Here, we have 

(19) 

as a solution of (10) or (9), Note that Il
j 

= 0 when 
Aj(O)=O and/or 8;(0)=v/2. This implies that along any 
trajectory of (8), (9) starting from a point z(O) 
=(A(O), A'(O), 9(0), 9'(0)) in the set Z~{(A,A', 9,9') 
E JR4N: A. (v - 28 j') = 0, j = 1, ... ,N}, its corresponding 

1 " phase 8(0 = (0 1 (U, ... ,8 JO) has the form (19). In this 
case, j no longer depends on A(O) and 9' (0), and (13) 
reduces to 

(20) 

The eqUIlibrium points of (20) are points (Ae , 0) in JR2N 

such that A. are the stationary points of UI or the roots 
of the equationj(O,C,A)A=O. Obviously, A:s include 
A=O and all those A's satisfying g(IIAW)=V 2 (V 2 -1)/4 
-C. 

To obtain some qualitative information on the 
solutions of (20), we first derive a differential equation 
for u(O ~ IIAWII2. By direct computation, 

d2u/de= 21IA'(~)112 + 2A(~)' d2A/de 

= 211A'(0112 + 2uj(C,u), 
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(21) 

wherej(C,IIAW)~j(O,C,A) as defined by (12). Along an 
integral curve (17) corresponding to a fixed CI and 
J.I. = 0, (21) can be rewritten as 

d2Zl/d~2=2[lIj(C,u)+C\ +2UI(II,C)]~P(1l,C, CIl. (22) 

Its solution, starting with initial conditions 

It (0) = IIA(O)W, /li(O) = 2A(0)' N(O), 

satisfying 

IIA'(O)W = C 1+ 2UI (II A(O)W, C)~, 0, 

describes the evolution of II A(~ )11 with ~ along the 
integral curve. 

A first integral of (22) is given by 

[11'(0]2 = [11 '(0)]2 + J u(02P(77, C, CI)rlrj 
u(O) . 

~ Q(u, C, CI,U'(O)), 

(23) 

(24) 

(25) 

where /I' =du/d~o Equation (25) is valid only when its 
right-hand side is nonnegative, An implicit expression 
for IIAWW can be obtained by integrating (25). 

J""A(O,:2 ( '" '( ))-1/2 
2 Q I), (, (I' 1/ 0 d1) = ± i: . 

'AWl" 
(26) 

Note that if an explicit expression for IIA(UW is obtain
able from (26), then A(~) can be determined by inte
grating each equation in (11) independently with J.I. = O. 

In the sequel, we shall establish conditions for the 
existence or nonexistence of solutions of (20) having 
the property that IIA(OII- 0 as I ~ 1- Xl, or solitary-wave 
solutions of (7) with J.I. = 0, 

Theore 111 1. If 

Kg(U) +y? 0 

for all II' 0, then there do not exist solutions of (20) 
such that IIA(O)II > 0 and IIA(i:)II- 0 as i ~ 1- 00, 

(27) 

Pro oj: Condition (27) is equivalent to J( C ,1/ h" 0 for 
allu? O. In view of (21), we have d 2u/di: 2

" 0 implying 
that IIA(0112 along any solution of (20) is a convex func
tion of C Hence, it is impossible to have II A(O)II " 0 
and IIA(~)II- 0 as i i: ,- 00 •• 

Note that for the subsonic (1,2 < 1) and supersonic 
(1)2> 1) cases, (27) implies that g(u) is uniformly 
bounded above and below by 1)2({'2 - 1)/4 - C 
Also, if (27) is a strict inequality, then (A, A') = (0, 0) 
is the only equilibrium point of (20). 

Thea re rn 2: Assume that the following conditions are 
satisfied: 

(il V
2

(V
2 

- 1) > 4C and 1,2 < 1; 

(iil g is a strictly monotone increasing function in 
C I (JR, JR) withg(O)=O, and there exists a positive 
number it l < 00 such that 

J"I g(1)) d77 = [V 2 (V 2 - 1)/4 - C ]1/ 1 (28) 
11 

and 

J"g(1))dl) > [v 2 (l,,2_1)/4_C]u for allllu l • (29) 
o 

Then (20) has a solution A(U? 0 for all i: c JR, with 
IIA(O)II> 0 and IIA'(O)II = 0 such that 
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IIA(OII and IIA'(Oll- ° as 1 ~ 1- "". (30) 

Proof: First, we note from (15) and (17) with IJ. = ° 
that for a solution to have property (30), the initial 
condition (A(O), A'(O» must satisfy 

Cl~IIA'(0)112_2Ul(llA(0)W, C)=O, (31) 

We shall show that, under condition (U, Cl = 0 implies 
property (30), From (17), it is evident that when 
(A(O), A'(O» satisfies (31), its corresponding trajectory 
is a zero-level curve of I(A, A') defined by 

I(A, A') ~ 11A'1I2 - 2Ul(IIAI1 2, C)=O, (32) 

or the points along the trajectory belong to the set 

rl(O)={(A, A')EJR2N :IIA'W=2U I (lIAW, C)}. (33) 

Obviously, the equilibrium point (A, A') = (0, Ok rl(o). 
Now the foregoing implications can be established by 
verifying that (0,0) is the only equilibrium point in 
r 1(0); moreover, it is a saddle poinL 

Let (A" 0) be an equilibrium pOint of (20) with 
IIA,II > O. Then, A, must satisfy f(O,C,A,)=O or 

4g(lIA.11 2 )=V2(1,2_1)_4C. (34) 

Suppose that (A.,O)Erl(O). Then, we must have 
2 

A ~IIA 11 

2U1(IIA.W, C) = J
o 

e [Kg(1)) +y ]d1) = O. 

From (34), we have 

(35) 

(36) 

which is a positive quantity for IIA.II> 0 under condition 
(iiL This contradicts (35). Hence (A, A') = (0,0) is the 
only equilibrium point in rl(O). 

To show that (A,A')= (0,0) is a saddle point, consider 
the following linearized equation (20) about (A, A') = 
=(0,0): 

d26A/de= (a2u/aA~)IA=o6AJ' j=l, ... ,N, 

where 

(37) 

(38) 

Note that due to the symmetry of VI about A=O, 
(a:U/OA~OAk) IA=o=.O for j* k. Under CO~dition (O~ 
(a u/aAJ)IA=o> 0, J=I, ... ,N, so (A,A )=(0,0) IS a 
saddle point. Moreover, it is the limit point of some 
trajectory lying in rl(O) as 1 ~ 1 - "". Hence, C 1 = ° 
implies property (30). 

Next, we must verify that there exist points 
(A(O), A'(O) = (A(O),O) with IIA(O)II> 0 such that C1 =0, 
From (15) and (31), this corresponds to finding a 
IIA(O)II> ° such that 

which, in view of (29), can be rewritten as 

IIA(O)W = W(IIA(OlW) ~ 4[V 2 (V 2 
- 1) - 4Cl 

2 

f"A (O)1 ()d x g1) 1). 
o 

Evidently, under condition (ii), the mapping W has a 
nonzero fixed point IIA(0)II2< "". 
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(40) 

We have established that there exist points (A(O),O) 
in rl(O) with IIA(O)II> O. Now, we must show that, for 
such a point, there exists a trajectory curve lying 
in rl(O) which joins (A(O),O) and (0,0). This is assured 
when rl(o) is compacL It is straightforward to show 
that rl(O) is closed. To show that rl(O) is bounded, 
we rewrite (32) as 

w=j"[Kg(1)l+yld1), (41) 
o 

where w = IIA'II2 and u = IIAW. Condition (0 implies that 
y> ° and K< 0. From (ii), there exists a finite U 1 > ° 
such that the right-hand side of (41) is zero at u 1 and 
negative for all u > up Since (41) is valid only for w? 0, 
hence IIAW", HI' Also, from Weierstrass theorem, 
there exists a finite WI> ° such that 1IA'1I2", WI' since 
the right-hand side of (41) is continuous on the compact 
interval 0"'u"'u 1 , Thus, the boundedness of r 1(0) is 
established. 

Finally, since only the nonnegative solutions of (20) 
are meaningful here, it remains to show that for a 
point (A(O) , OlE 1-1(0) with A(O)? ° and IIA(O)II> 0, its 
corresponding solution is nonnegative, that is, 
A(~)? 0 and for all ~ E JR. This is immediately apparent 
from the fact that r 1(0) =1':1(0) LJ 1:1(0) and 1;1(0) n 1:1(0) 
= {CO, OJ}, where 1;1(0) = {(A, A') E r 1(0): A? 0 and 1:1(0) 
={(A,A')(~rl(O):A"'O}, since UI(O,C)=O .• 

Remarks: (R-l) Theorems 1 and 2 give, respectively, 
sufficient conditions for the nonexistence and existence 
of multidimensional solitary-wave solutions of (1) which 
are directly analogous to those for the one-dimensional 
case. From (33), it is evident that rl(O) is symmetric 
about A=O and A'=O, Also, 1':1(0) and 1:1(0) are 
symmetric about A' = 0. Thus, under the conditions of 
Theorem 2, the trajectory curves in the (A, A')-space 
corresponding to the solitary-wave solutions of (7) 
satisfying (30) have similar properties, and they have 
the form: 

(42) 

(R-2) Along any solution of (20), its corresponding 
density s(O can be found directly by solving (26) for 
IIA(OW or 1 h(O 12 and substituting the result into (6) 
with t = O. Complete knowledge of the solution A(~) is 
not necessary here. 

We note that if the assumptions of Theorem 2 are 
satisfied and there exists a positive number r. such that 

Kg(r!)+y=O or g(r!)=v 2 (v 2 _l)/4-C, (43) 

then (20) has an uncountably infinite number of non
isolated, nonzero equilibrium points (Ae , 0) such that 

A. lies on the sphere {A. E JRN: IIA,II = Yo}' 

Now, we show that there exist solutions A(O of (20) 
in some neighborhood of these equilibrium points such 
that their norms are periodiC functions of ~. 

First, we rewrite (22) in the form 

(44) 

where 

V(u, C I ) = 2 j"{1J[Kg(1)) +y] + C 1 + 2U 1 (1), C)]d1), 
o 

(45) 

and the initial conditions u(O) = II A(0)11 2 and /l/(0) 
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= 2A(0) . A'(O) are chosen such that condition (24) is 
satisfied. It can be readily verified that if we set 
C1 =C~ given by 

° Ir; C1 =- ° [Kg('I)+yjd'l) , (46) 

then ue=r. is a stationary point of V( 0 ,C~), or 
(u,u')=(r;,O) is an equilibrium point of (44). For 
CI = q, condition (24) becomes 

Under condition (i) and (ii) of Theorem 2, we have 
Kg('I) + Y > ° for 0.,,; 1) < r;, and Kg( 'I) + y < 0 for all 

(47) 

1) > r~. Evidently, (47) is satisfied if and only if II A(O)II 
=r •. Hence, the only solution to (44) with initial 
condition (u(O), u'(O» satisfying (47) is the equilibrium 
solution (u(O, u,(~»= (r;,0) for all ~. 

Now, we consider the solutions of (44) with CI=q 
+oCI and initial condition (u(O),u'(O»=(IIA(O)W, 
2A(0)' A'(O» satisfying (24), where OCI is a small 
perturbation of C1 about C~. Let u.(C I) denote a 
stationary point of V(· , CJ or a root of the equation 

U[Kg(U) +y j + C I + 2U, (u, C) = O. (48) 

For CI=C~+OCI' we can write 

lie (CI ) = r., + OUe • (49) 

Clearly, under the assumptions of Theorem 2, OUt 

depends continuously on oC I and Iliu.l- 0 as I oC II ~ O. 
Also, since 

(50) 

we have (a 2V(u,C , )/au2 )l u=r = 2 Kr"g'(re) <0, or ue=r. 
is a relative maximum poiJt of V( 0 ,q). In fact, since 
2 KUg' (u) < ° for all 11 > ° and Kg(?) + y = 0, there exists 
a positive number E such that for each OC 1, I oC II < E, 

it corresponding u •. (C I) = r; + ou. is a relative maximum 
point of V( 0 ,C~+ OCI)' Consequently, for any fixed 
OC 1> I BC II < €, (44) has periodic solutions in some 
neighborhood of the corresponding equilibrium point 
(u,u')=(r!+ou.,O).l1 They are given by the solution of 

[u'(OJ2/2 = V(u(O, C~ + OCI) - V(u o, q + IiC , ) 

+ (u~)2/2 (51) 

with u(O) =uo, where the initial point (u, (0), u'(O» 
= (uo, u~) is sufficiently close to (u, u') = (r~ + oue , 0). 
In particular, we can choose U o = IIA(0)11 2 > 0 and 
u;=2A(0)' A'(O) such that condition (24) is given by 

IIA/(O)lj2=C~+OC, +2U, (IIA(Ol/l2,C) 

(52) 

is satisfied, This is possible for any positive BC, . The 
existence of solutions of (20) in some neighborhood of 
the equilibrium points (A., 0) with II A.II = r .. , whose 
norms are periodic functions of ~ follows from the fact 
that I oU,1 ~ ° as I oC,I- 0. The foregoing result can be 
summarized as a theorem o 

Theorem 3: Assume that the conditions of Theorem 
2 are satisfied, and there exists a real number r. > ° 
satisfying (43), Then there exist solutions A(O of (20) 
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in some neighborhood of the equilibrium set {(A, A') 
E JR2N : IIAII = re , A' = o} such that their norms IIA(OII 
are periodic functions of ~. 

Note that in the multidimensional case, the periodicity 
of u(O = IIA(~)W generally does not imply the periodicity 
of A(~). Since the energy denSity of the electric field 
is proportional to I h(O 12, solutions with periodic 
I h(~) I represent oscillatory energy densities. Evidently, 
from (6) (with C = 0), the periodiCity of s(O is implied 
by that of I h(~) I . Now, we give a simple sufficient 
condition for the nonexistence of periodic travelling 
waves in the sense that I h(O I and s(~) are periodic in 
~. 

Theorem 4; Suppose that the follwing conditions are 
satisfied: 

(i) g is a real-valued continuous monotone increaSing 
function defined on JR such that g(O) =0; 

(ii) V 2(V
2 -1) < 4C and v 2 > 1: 

(iii) the initigl conditions 4-<0) and A'(O) satisfy 
IIA(Olll> ° and CI ? 0, where C 1 is defined in (31). 

Then, the norm of the corresponding solutions 
A(O of (20) is nonperiodic in ~. 

Proof: Consider (22) given explicitly by 

d211/d~2=4y/{+2CI+2K{llg(It)+ )oUg(7)d7)~, (53) 

where y and K are as in (16). Under condition (i), the 
{, .. } term in (53) is nonnegative for II> 0. From con
ditions (ii) and (iii), we have y:> ° so that d 2u/de ~ ° 
for allu? 0, Since u(O) = IIA(0)11 2

, 0, It is a nonzero 
convex function of ~ which cannot be periodic • 

Theorem 4 gives a sufficient condition for the non
existence of supersonic periodic travelling waves, 
In the subsonic case (v 2 < 1), the condition ['2(V

2 
- 1)< 4(; 

implies that 'V < O. Thus, under condition (i) of 
Iheorem 4, we have d2lt/d~2.,,; 0 for allll?: ° when 
C I"'; 0, which implies the nonexistence_of subsonic 
periodic travelling waves. However, C 1 ~ 0 corresponds 
to 

(54) 

whose right-hand side is nonpositive 0 Thus, this 
condition can be satisfied only in the trivial case when 
A(O) = 0 and A'(Ol= O. 

3. SPECIAL CASES 

Now, we apply the results in Sec. 2 to Eq, (1) 
with particular forms of g arising in physical situations. 

3.1: g( I E 12) = i E 12: This corresponds to the 
case with the usual ponder motive force 0 Here, U t as 
given by (15) has the explicit form; 

(55) 

where y and /( are as in (16). A first integral of (13) is 
given by 

N 

11A'(~)W -yIIA(OW - KIIA(OI14/2 -6 I1jA;2(O/4 = C
1

• 

J = 1 

(56) 

When A(O) and 9(0) are chosen such that Jl = 0, the 
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equation for A/~) given by (20) reduces to 

d2A/d~2=(Y+KIIAW)Aj' j=l, ... ,N, (57) 

and the equation for u(n = II A(~)1I2 given by (22) becomes 

d2U/d~2=3KU2+4yu+2Cl' (58) 

A first integral of (53) is given by 

(u'W)2/2 =KU3W + 2yu2W + 2C 1uW + C2 , (59) 

where C2 is an integration constant. By restricting 
the right-hand side of (59) to be nonnegative, we have 
the following implicit expression for u(~): 

JU<l)(K1]3+2y1]2+2CID+C2tl/2d1]=,(2~, ~0JR. (60) 
uCO) 

Now, we apply Theorem 1 to this special caseo 
Clearly, for v 2 < 1, condition (27) cannot be satisfied. 
But, for v2> 1, (27) is satisfied when V

2
(V

2 - 1)/4 = C. 
Under this condition. there do not exist solUtions of 
(20) or solitary-wave solutions of (7) such that Ih(O)I>O 
and 1 h(~) 1- 0 as 1 ~ 1- 00 ~ To apply Theorem 2 to this 
special case, we see that under condition (i), g(u) = u 
satisfies condition (ii). Thus, under condition (0, (57) 
has solitary-wave solutions satisfying (30L For such 
solutions, we see from (56) with J.L=O that C1 must be 
zero. Also, from (59), C2 must be zero. Since u(O) 
= IIA(0)11 2 > 0 and u'(O) =0, IIA(O)II must satisfy 

IIA(0)11 2 =-2Y/K, (61) 

where y > 0 and K < 0 under condition 0). Thus, (60) 
becomes 

2 

j ".\(I)" ( 3 2 2)-1/2d ;-2 t. K1] + y1] D='i ~ 
21' /1 K I ' 

It follows that 

IIA(nll = (2y / 1 K 1)1/2 sech("YO, ~c: JR, 

and, in view of (6), we have 

(62) 

(63) 

s(U = (v2 _1)-1[(2·y/ 1 K I) sech2(vy- 0 + C]. (64) 

Substituting (64) into (11) with Il j = 0 leads to a set of 
uncoupled equations for A, 's given given by 

-20 

d2A/de = (y + KIIAII2)Aj =y[l - 2 sech2(Vy' UlA j , 

j=l,oo. ,N, (65) 

FIG. 1. Trajectories of (58) with y= 1 and K = - 2 in the 
(u, u') plane for u(O) satisfying (76) and fixed values of C j , 

(curvesl-5correspondtoC j =1.1, 0.4, 0.0, -1/8, -3/16, 
respectively); curve 3 is the solitary-wave solution. 
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which can be integrated independently to obtain A/Uo 
The foregoing results are consistent with those for the 
one-dimensional solitary waves, 10 

Turning now to the periodic travelling waves, we 
observe that, under condition (i) of Theorem 2, (57) has 
an uncountably infinite number of nonisolated equilibrium 
points (A"O) such that IIA,112= v!= -ylK > O. Also, (58) 
can be written in the form of (44) with 

(66) 

If we set C1 =C~~y2/(21{), then 11 = -1'/1{ is a relative 
maximum point of V(· ,q). Now, we consider the solu
tions of (58) with initial conditions 1/.(0) = IIA(O)W and 
u'(O) = 2A(0)' A'(O) satisfying condition (24) given 
expliCitly by 

IIA'(O)W = C1 +yu(O) + KI/(0)/2?- O. (67) 

Let U(C 1 ) denote the set of all II(Ob 0 satisfying (67) 
for a fixed Cp It can be readily verified that, under 
condition (i) of Theorem 2, we have 

U(C I ) = iu(O): (y - (-l + 21 K 1 C 1)1/2]/ II( 1,-:; 11(0) 

,-:;[y+(y2+2IKIC1)1/211IKI} for O?- C 1 ?e y 2/(2K) 
(68) 

U(C 1l={u(0):0"" 1l(0)"" [y + (y2 + 21K IC1)1/2]1IK I r 
for C 1 > 0, (69) 

and U(C 1 ) is empty for C 1 < y2/(2KL Note that for 
C1 =y2/(21{), U(C 1 ) contains only the point 11(0)= -y/I(, 

Thus, from Theorem 3, if condition (i) of Theorem 2 is 
satisfied, then there exist solutions A(~) of (20) in some 
neighborhood of the equilibrium set {(A, A') C JR2N: 
IIAW = - y /K, A' = O} such that their norms IIA(~)II are 
periodic in ~. These solution curves correspond to 
(56) with J.i. = 0 and C 1 satisfying 0:> C1 :> y2 /(21{). When 
C1 is set to zero, we have solitary-wave solutions 
such that IIA(OIi and IIA'(UII- 0 as I ~ 1- 00 as given 
by (63). In this case, (u,u') = (0,0) is a saddle point of 
(58) with C1 =0. 

Figure 1 shows the trajectories of (58) with y = 1 and 
I{= -2 in the (ll,u')-plane for various values of C) and 
u(O) satisfying (67). Note that, for Cl~>O, (1(,11')=(0,0) 

is not an equilibrium point of (58L In fact, these solu
tions pass through the origin and they are periodic 
functions of ~. Figure 2 shows the behavior of the 
trajectories in the ~ domaino 

20,-----------,-----------,-----------,---, 

15 

U 

"" 3 
10 

0.5 

0 
0 

FIG. 2. Behavior of the trajectories shown in Fig. 1 in the 
~ domain. 
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Finally, for the supersonic case v 2 > 1, we have 
from Theorem 4 that if V

2
(V

2 -1)< 4C and A(O), 

A'(O) satisfy IIA(O)II> 0 and Cl ~ 0 or 

IIA'(O)W ~yIIA(O)W + KIIA(0)W/2 > 0, (70) 

then the norm of the corresponding solution A(~) of (57) 
is nonperiodic in ~ 0 

3 0 2: g(IEI 2 )=K[I_exp(_IEI2)]: This form of g, with 
K being a positive constant, has been proposed by 
Wilcox and WilCOX12 to represent ion density saturation o 

For this g, Ul is given by 

2Ul (IIAIIZ, C) = (KK + y)IIAW - KK[1 - exp(-IIAI12)], (71) 

and a first integral of (13) is given by 

1IA'(OIl2 - (KK +y)IIA(OW + /(K[1 - exp(-IIA(~)W)l 
N 

-0f-L~A~(O/4=Cl. 
J:l 

(72) 

The equations for the A/O's with J.L=O corresponding 
to (20) have the form 

d 2A/de = (y + KK{1 - exp[ -IIA(OIl2]})A j , 

j= 1, ... ,1'1. (73) 

The evolution of u(O = IIA(~)1I2 with ~ along an integral 
curve of (73) specified by C l is governed by 

d2u/de = 2{2(y + KK)u + C l - KK[1 - (1 - u) exp(- u)]}, 
(74) 

which has a first integral of the form 

[u'(~ »)2/2 = 2(1' + KK)1l2(~) + 21{(O(C l + KK{exp[ - u(O 1 
-1})+C2 , (75) 

where C2 is an integration constant. By restricting the 
right-hand side of (75) to be nonnegative, we can 
integrate (75) to give an implicit expression for u(~). 

To apply Theorem 1 to this case, consider inequality 
(27) given explicitly by 

KK[1 - exp(-u)] +y > 0 for all u;, O. 

This condition is satisfied when 

v 2 > 1 and y> 0 

or 

(76) 

(77) 

(78) 

Thus, under (77) or (78), there do not exist solitary
wave solutions such that 1 h(O) 1 > 0 and 1 h(~) 1- 0 as 
1 ~ 1- 00. Moreover, from Theorem 4, when v 2 > 1, 
I' > 0 and (A(O), A'(O» satisfies 

IIA'(O)W;, (KK +y)IIA(0)1I 2 
- KK{1 - exp[ -IIA(O)ll2]), 

(79) 

then the norm of the corresponding solution A(O of (73) 
is nonperiodic in ~. 

Now, consider condition (29) in Theorem 2 which 
requires the existence of a 111 > 0 such that 

K[u l + exp(-u l ) - 1] = (- y/K )u l 

and, for all u > ul> 

K[u + exp( - u) - 1] > (- I' / K )u. 
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(80) 

(81) 

This condition is satisfied if 

(82) 

Thus, if v 2 < 1 and I' > 0, then the hypotheses of Theorem 
2 are satisfied. Hence (73) has solitary-wave solutions 
satisfying (30L For such a solution with IIA/(O)II =0, we 
have from (72) with C l =0 and J.L =0 that IIA(O)II must 
satisfy 

IIA(O)1I 2 =KK(KK + ytl{1 - exp[ -I/A(O)W]L (83) 

which always has a solution I/A(O)W > 0 if v 2 < 1 and 
I' > O. 

Next, we observe that if 

KK/(y + KK) > 1, (84) 

then (73) has an uncountably infinite number of 
nonisolated equilibrium points (A, A') = (A" 0) such that 

u. ~ I/A,W = In[KK/(y + KK)] > O. (85) 

Note that if v 2 < 1, then (84) implies (82) and 

We shall verify that, under the conditions of 
Theorem 2, (74) has periodic solutions in some 
neighborhood of the point (u, u') = (u., 0). 

(86) 

First, we rewrite (74) in the form of (44) with V given 
by 

V(Cuu) = 2(y + KK)u2 + 2(C l - KK)u + 2KKu exp(-ll). 
(87) 

If we set C l = q given by 

[
(I' +KK)] [( KK \1 q = 2(1' + KK) In (KK) + KK - (y + KK) 1 -In (y + K!{j)J ' 

(88) 

then u. given by (85) is a stationary point of V(o ,C~), 
or (u, u') = (u" 0) is an equilibrium point of (74), At this 
point, [a2V(u,C~)/au2]lu'u =2u e (y+K!<). Thus, under 
condition (86), lie is a relative maximum point of 
V(· , C~). Now we consider the solutions of (74) for 
various values of C l in some neighborhood of C~, with 
initial conditions u(O) = IIA(0)1/2 and 11'(0) = 2A(O)· N(O) 
satisfying condition (24) given by 

1/A'(0)1I2=C 1 + (y + KK)u(O) - KK{1 - exp[ -u(0)Jr> O. 
(89) 

As in Sec 0 3. 1, let U( C 1) denote the set of all 11 (0) > 0 
satisfying (89) for a fixed C l or 

U(C 1 ) = {u(O);, 0: C 1 + (y + KK)u(O);' KK[1 - exp[ -1l(0)]]}. 
(90) 

It can be readily verified that if v 2 < 1 and condition 
(84) is satisfied, then U(CJ is empty for all C1 < q, 
and 

U(Cf) = {u*(O)}, 

where 

11* (0) = In[KK/(y + KK)], 

C! = (y + KK) In[KK/(y + KK)], 

(91) 

(92) 

(93) 

where u*(O) corresponds to the point of tangency between 
the line Yl(U)=C!(KK)·l+[1 +Y(KKt1]1I and the curve 
Y2(U) = 1 - exp(- 11). Also, 
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20 

FIG. 3. Trajectories of (74) with 'Y = 1 and /( = - 2 in the (u, u') 
plane for u(O) satisfying (89) and fixed values of CI (curves 
1-5 correspond to CI = O. 2707, 0.0, - 0.1522, - O. 2642, 
- O. 3069 respectively); curve 2 is the solitary-wave solution. 

U(C 1 ) ={u(O): ~; <; u(O)<; it} for q <; C1 <; 0, (94) 

U(C1)={u(0): O<;u(O)<;u} for C1>0, (95) 

where ~( and u with;; < u are the two distinct positive 
roots of the equation 

(96) 

Thus, from Theorem 3, if v 2 < 1 and (84) is satisfied, 
then there exist solutions A(~) of (73) in some neighbor
hood of the equilibrium set {(A, A'le ffi2n: IIAW=ln[KK/ 
(y + KK)], A' = o} such that their norms IIAWI! are 
periodic in ~. These solution curves correspond to 
(72) with J.L = 0 and C1 satisfying 0> C1 > q. The 
trajectories of (74) with 'Y = 1, K = - 2, and K = 1 for 
various values of C1 and u(O) satisfying (89) are shown 
in Fig. 3. Their corresponding trajectories in the 
~ domain are shown in Fig. 4. 

4. CONCLUSIONS 

We have shown that, under mild conditions on the 
nonlinearity g, (1) has multidimensional solitary-wave 
and periodic travelling-wave solutions (E(~),n(~)) in 
the sense that 1 E (~) 1 and n(O tend to finite values as 
I ~ 1- <Xl, and they are periodic functions of ~ 

respectively. Along these solutions, the phase of E(O 
is an affine function of ~. Moreover, u(~) = 1 E (01 2 

satisfies a scalar second-order ordinary differential 
equation whose solutions have properties similar to 
those in the one-dimensional case. Although in this 
study, we have treated only the case with electrostatic 

1292 J. Math. Phys., Vol. 19, No.6, June 1978 

2o,r""":------,----------,-------,----

u 

05+----- -._-----

--------
---~-°0~-----~,0~---.-__ -~2~,0~=--~~~3~0----

FIG. 4. Behavior of the trajectories shown in Fig. :3 in the 
~ domain. 

waves (Leo, VXE=O), the same approach may be 
used to obtain results for electromagnetic waveso 
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Resonances in a velocity-dependent square well potential are analyzed in terms of mUltiple reflections of 
the incident wave on the internal walls of the potential well. The results differ considerably from those 
obtained for static potentials with a similar analysis. 

1. INTRODUCTION 

Resonance phenomena are familiar in several branch
es of physics. Many authors have studied their peculiar
ities. McVoy, Heller, and Bolsterli1 have analyzed a 
variety of S-wave scattering problems, Others have 
considered resonances in potential scattering2 and re
lated topics such as residues at resonances, 3 time 
delay,4 and resonance wavefunctions o 5 

In a series of previous papers6
,7 we have studied the 

analyticity of the scattering matrix for a velocity-de
pendent potential. Our study has put in evidence the 
existence, for such potential, of very characteristic 
resonances. The purposes of this paper is to discuss 
these resonances in the velocity-dependent potential 
from an optical point of view (L e., in terms of multiple 
reflections), in order to obtain a better understanding 
of the physics involved in these phenomena, The method 
used is close to that developed by McVoy et al. 1 for a 
static potential, although our analysis runs along a dif
ferent line and is not limited to S wave. 

Let us consider the scattering of a particle of mass 
m and energy E by the velocity-dependent potential 

V(r,p)=Ap· e(b - r)p/2m (1.1) 

introduced by Razavy, Field, and LevingerB in the de
scription of nuclear forces, Let us call k and k' the 
wavenumbers respectively outside and inside the poten
tial well, 

k=(2mE)1/2/n, k'=1«1+A)-1/2. (1,2) 

In our subsequent analysis we shall use the adimension
al wavenumbers 

a =1<b, [3 =k'b, (1, 3) 

where b represents the range of the square potential, 
For our potential, partial wave analysis for the scatter
ing matrix6

,7 leads us to 

(1. 4) 

Here, jl1 h/1), and h/") are the familiar spherical 

alThis work has been supported by Instituto de Estudios 
Nucleares. 

Bessel and Hankel functions and the primes stand for 
derivatives with respect to their arguments. 

The analYSis of the Regge trajectories 7 for the poten
tial given by Eq, (L 1) has allowed us to recognize the 
existence of resonances, at certain energies, for differ
ent ranges of values of the intensity parameter A. In 
the case of a velocity-dependent barrier (0 <A), the 
modulus of the scattering amplitude shows in each par
tial wave an infinity of bumps. These bumps are, never
theless, very broad and cannot be considered as reso
nances. For a "shallow" velocity-dependent well 
(- 1 <A < 0), an infinite number of resonances occur for 
each partial wave. The resonances become sharper and 
sharper as A tends to - 1. If the potential well is 
"moderately deep" (- 2 <A < - 1), only one resonance 
appears for each partial wave. Such resonances be
come narrower as A approaches - 2. Finally, for a 
"very deep" well (A < - 2) there is one resonance only 
for values of the angular momentum 1 such that 1 «- 2 
-A )-1. For the highest physical value of 1 fulfilling 
this restriction, the resonance is very sharp, For 
smaller values of l, it becomes broader and broader, 
Moreover, these resonances for A < - 2 are associated 
with a Regge pole which for zero energy is located at 
l = (- 2 - A)-1 in the angular momentum plane and which 
leaves the reall-axis moving to the left and downwards 
as the energy increases, following a Regge trajectory 
in the fourth quadrant of the 1 plane, 

In Sec, 2 we define, following Nussenzveig, 9 coeffi
cients for reflection on and transmission across the 
spherical surface of radius Ii separating the interior 
and the exterior of the potential. We rewrite the S 
matrix in terms of these coefficients and obtain in this 
way its Debye expansion. Sections 3 and 4 are devoted 
to a phYSical explanation of the resonances found for the 
potential Eq, (L 1), in the cases - 1 <A and A < - 1 
respectively, in terms of the reflection and transmis
sion coefficients defined in Sec. 2. 

2. THE DEBYE EXPANSION 

The scattering by a cutoff potential can be explained 
in terms of interactions with the discontinuity surface 
of the potential well or barrier. What one obtains in 
this way is a parallel with geometrical optics, 1,2,9 In 
our subsequent treatment of the scattering by the velo-
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city-dependent potential of Eq, (1. 1), we follow closely, 
with the necessary modifications, the procedure de
veloped by Nussenzveig!l in the analysis of high frequen
cy scattering by a transparent sphere, 

Our potential is different from zero only in the in
terior of a sphere of radius IJ 0 Let us design by 1 this 
region. In the outside region 0 f the sphere, which we 
denote by 2, there is no interactiono Since the potential 
possesses spherical symmetry, we may study separately 
each angular momentum partial wave. 

Let us consider an incoming spherical wave of angular 
momentum 1 which arrives at the surface of radius h 
coming from region 2. This wave will be partly reflect
ed at the potential discontinuity and partly transmitted 
to region 1. The radial wavefunction can be written 

(2. 1) 

(2,2) 

Here, R22 and T21 are, respectively, the reflection and 
transmission coefficients for the wave incoming from 
region 2, Of course, both coefficients depend on the 
energy and angular momentum of the particle, The 
explicit form of such dependence can be obtained from 
the continuity conditions satisfied by the wavefunction 
and its radial derivative. For our velocity-dependent 
potential these conditions are6 

>¥2,I(b)=>¥1,1(1J), 

>¥f,I(IJ)=(l +A)>¥f,I(IJ). 

Let us denote 

\=Z+1/2, 

(2,3) 

(2,4) 

(2.5) 

as usual. Following Nussenzveig, 9 we introduce, for 
the sake of brevity, the symbols 

(2,6) 

(2.7) 

(2,8) 

to design the logarithmic derivatives of the cylindrical 
Bessel and Hankel functions, With this notation, we 
obtain from Eqs, (2.3) and (2.4) 

a[2aj- (1 +A}j3[213j+A/2 
R 22(A,E)=- a[la1- (I+A)13[213j+A/2 

a[la J - a[2a 1 
T21 (\,E)= a[la 1- (1 +A)13[2B1 +A/2 • 

(2,9) 

(2.10) 

In a similar way, by considering an outgoing spherical 
wave of angular momentum I which arrives, from region 
1, at the surface of radius b, we obtain for the reflection 
and transmission coefficients 

a[lal- (1 +A)B[lBj+A/2 
R ll (\,E)=- a[1al-(1+A)p[213J+A/2' (2.11) 

13 [113]- 13[213 ] 
T 12(\,E)=(1 +A) a[la 1- (1 +A)13[2131+A/2' (2.12) 

It is interesting to notice, from Eqs. (2.9)-(2 0 12), that 
there is no difficulty in extending the definition of re-
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flection and transmission coefficients to unphysical 
(i. e., complex) values of the angular momentum and the 
energy. Then it is easy to check, from the definitions 
Eqs. (2.9)-(2,12) and very general properties of the 
Hankel function (see Ref. 10, Eq, 9,1 6), that all the 
coefficients are even functions of \: 

Useful relations involving these coefficients can be 
obtained from Eqs. (2 3), (2,4) and their complex con
jugates, or directly from the expressions Eqs. (2,9)
(2.12). For instance, 

T 12 =1+R ll , 

T 21 =1+R22 , 

Im{(l + A)-l iT 121 2a [la 1- 13 [1131-1 Rll 1213 [2131 

- R 11(13[2131- 13[113])} = 0, 

1m {(I + A) 1 T211 2 13 [213 J - a [2a ]-1 R2212()1 [la J 

-R22(a[laj- a[2a 1)}=0, 

(2,16) 

(2,17) 

(2,18) 

where the bar denotes complex conjugateo In the case 
of \ and E being real, the last two equations admit a 
more concise form in view of the relation 

2[2z]=2[121, \,Z, reaL (2 19) 

We shall return later on this point. 

It is not difficult to write the 5 matrix, given by 
Eq. (1. 4), in terms of the reflection and transmission 
coefficients. It becomes 

x 

(2020) 

where we have denoted 

(2,21) 

It is to be noticed that the above expression for the S 
matrix is exactly the same as for a static (L e., velo
city-nondependent) potential, q although the expressions 
for the reflection and transmission coefficients are un
avoidably different in the velocity-dependent and static 
cases. The Debye expansion turns out by writing as a 
geometric series the factor (1 - p >-1 on the right-hand 
side of Eq. (2 20), We obtain 

5(\, E) = rH~2)(a )/H~l)(O')1 

X(R22 + T21[H~1)(B)/H~2)(i3)lEpPT12). 

as in the static case. This expression provides a very 
simple explanation9 of the scattering process: For an 
incident spherical wave, an interaction takes place at 
y = b (factor H~2) (a )/H~l) «()I)) and the wave is directly 
reflected (term R 22 ) or transmitted into the sphere 
(factor 1'21)' the transmitted part goes back and forth 
in the interior of the sphere (factor [H~l)(13 )/H~2)(i3) JP+1) 
being totally reflected P + 1 times at v = 0 and partially 
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reflected p times (factor Rfl) at the interior of the sur
face, to be finally transmitted to the outside (factor 
T 12 ), Of course, the validity of the Debye expansion is 
restricted by the convergence of the geometrical series, 
that is, it requires the condition I p 1< 1 to be satisfied. 
This condition will be examined in Secs. 3 and 4. 

There are several attributes which allow to recog
nize a scattering resonance, One of them is the maxi
mum, at the resonant energy, shown by the modulus of 
the amplitude of the internal or trapped wave. In view 
of the analogy with the optical problem provided by the 
Debye expansion, it is clear that the amplitude of the 
internal wavefunction is given by 

(2.23) 

In what follows we discuss the possible existence of 
maxima of A for positive energies and physical values 
of the angular momentum. 

3. CASE OF A BARRIER OR A "SHALLOW" WELL 

Let us start with the case of 0 <A (barrier) or 
- 1 < A < 0 ("shallow" well) in Eqo (10 1). At positive 
energies both QI and (3 are real and Eq. (2.19) can be 
applied with z replaced by QI and {3. Bearing this in 
mind, it is easy to obtain 

I Rlll2 + (1 +A til T l2HP)(f3)/HF)(QI) 12 = 1, (3.1) 

IR2212 + (1 +A)I T21H{2) (QI)/Hi2)({3W = 1, (3.2) 

from Eqs. (2.17) and (2,18) and the value of the Wron
skian of HP) and HF) (see ReL 10, Eq. 9.1. 17), Equa
tions (301) and (3.2) express the conservation of the 
probability in the interaction of the outgoing and in
coming waves with the surfaces of the potential. They 
can be written also in the form 

I R ul 2 + T 12 T 21 = 1, 

I R2212 + T 12 T 21 = 1. 

It is evident that T12T21 is a real quantity, that is, 

This implies 

IRul=IR221, 

(3.3) 

(3.4) 

(3,5) 

a relation, the same as in the static case,9 which is a 
consequence of the time reversal invariance of our 
potential. The transmission coefficients are related 
by 

(3.7) 

In the case under consideration 1 + A is positive. It 
can be also checked that, with exception of the case of 
zero energy, T12 and T21 have no zeros at physical 
values of E and :>c. So, T21T12 is strictly positive, 
From Eqs, (3.3) and (3.4) we have 

IRul < 1, IR221 < 10 (3 0 8) 

The first of these relations allows us to obtain, from 
the definition (2.21), 

(3.9) 

This guarantees the convergence of the Debye expan
sion. 
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In order to detect the existence of resonances, we 
shall examine the modulus of the internal amplitude. 
From Eq. (2.23), taking account of Eq, (2.16), we 
have 

(3.10) 

To search for possible maxima of this quantity, we 
must discuss the behavior of R11 and R 22 , at physical 
values of A., as the energy varies from zero to infinity. 
In the case of 5 wave, it is immediate to obtain 

R 11(l=0)=-{A-iQl[(I+A)I/2-1]}/ 

{A +iQl[(1 +A)I/2+1]}, 

R 22 (1 = 0) = - {A + iCl[(1 + A )1/2 - 1 H/ 
{A +iQl[(1 +A)I/2 + l]}. 

(3.11) 

(3.12) 

For 1 *0, approximate expressions for Rll and R22 can 
be obtained in the limits of low energy, 

R 11 ::.. - 1 + iQl21+12(1 + A )1/2-1/ A (l + 1) [(2l - 1)! ! ]2, 

(3.13) 

R22 ::::' - 1 + iQl21+12/A(l + 1)[(21-1)! ! ]2, 

and high energy 

Ru ;:; {[ (1 + A) 1/2 - 1 J/[ (1 + A )1/2 + I]) 

x{1 +i2(1 +A)1/2l!QI-l}, 

R22 :::: {[I - (1 + A )1/2J/[1 + (1 + A)l/2J) 

x{l- i21!QI-l}0 

(3.14) 

(3.15) 

(3,16) 

At intermediate energies, the explicit forms of Rll and 
R22 become rather cumbersome. A qualitative behavior 
of these coefficients can be easily deduced from the 
corresponding values of x[lxJ, discussed in the Ap
pendix. In Fig. 1 we show the reflection coefficients 
for the four lowest angular momentum waves and for 
two different values of A corresponding to barrier and 
shallow well, respectively. 

In view of the behavior of R 22 , it is evident that the 

FIG. 1. Internal (R11) and external (R 22 ) coefficients for 
two different velOCity-dependent square potentials of intensities 
A co 1 and A co - O. 5. We have represented the (complex) values 
of these coefficients in the cases of angular momenta 1=0, 1,2, 
and :3. As the energy varies from zero to infinity, those values 
describe in the complex plane the trajectories shown in the 
figure. The trajectories are half-circumferences for l = 0; for 
the other values of l they appear consecutively arranged. At 
zero energy, Rq coR 22 = - 1; at infinite energy, Rll = -R22 = [(1 +A)1/2 -11/[ (1 +A)1/2 +11. 

J. Sesma and V. Vento 1295 



                                                                                                                                    

first factor in the right-hand side of Eq, (3,10) has a 
smooth dependence on the energy, Therefore, the re
sonances would occur at energies for which \1 - p I 
shows a minimum. In other words, to detect reson
ances we must look for energies such that 

\ p\ '" 1, 

argp",,2I11T, n=0,±1,±2, ..• 

From Eq. (2.21) we see that 

\p\ =\R ll \, 

(3. 17a) 

(3.17b) 

(3. 18a) 

(3, 18b) 

The last term in Eq, (3, 18b) is an increasing function 
of {3, going from zero to infinity as the energy varies. 
So, Eq, (3, 17b) is fulfilled infinitely many times, In 
order to discuss Eqo (30 17a), let us distinguish the two 
cases of 0 <A (barrier) or - 1 <A < 0 (shallow well). 

For 0 <A, the requirement IRll I ::: 1 is satisfied at 
low energies for any A (Rll ::: - 1) and at high energies 
for 1 «A (Rll .::: + I), Nevertheless, in both situations it 
becomes R 22 ::: - 1, that is, I T211 .::: 0, So, the oscilla
tions in fA I motivated by the factor 11 - p I -1 are 
damped by the factor I T2l I. In more physical terms, 
although the reflection coefficient in the interior region, 
Rw has the correct value to produce resonance pheno
mena, these are prevented by the strong direct exter
nal reflection of the incoming wave at the surface. The 
resulting internal amplitude is small and resonances 
do not appear. The resonance like maxima of I A I are 
the most marked for approximately equal values of the 
two factors on the right-hand side of Eq. (3.10). This 
happens for an intensity of the potential A '" 1, that is, 
for a barrier of height nearly equal to the energy of 
the incident particle, 

In the case of - 1 <A < 0 we have Ru '" - 1 at low 
energies for any A and at high energies for - 1 :S A. 
The first situation does not correspond to resonances, 
since we have R22 '" - 1, as in the case discussed in the 
preceding paragraph. In the second Situation, instead, 
it turns out to be R22 "'" 1 and consequently T 21'" 2. So 
we have, in the case of a velocity-dependent square 
well of intensity - 1:S A, a strong transmission of the 
incident wave through the potential surface and a big 
reflection of the interior wave on this surface. Then, 
all that is needed to obtain a resonance is a construc
tive interference of the internal waves successively 
reflected on the surface, that is, the fulfilling of Eq. 
(3. 17b). This condition is satisfied at infinitely many 
values of the energy for each physical angular momen
tum. We expect, in this way, an infinite number of res
onances for each angular momentum at high energies. 
These resonanCes are more and more intense as A 
approaches - 1. In Fig. 2 we have represented, in a 
Chew-Frautschi plot, the resonances for A = - O. 9. 
It can be seen that, for a given Regge trajectory, the 
resonances become sharper for higher values of the 
angular momentum. 

4. CASE OF A "DEEP" WELL 

In the case of a velocity-dependent well of intensity 
A < - 1, the internal wavenumber (3 is pure imaginary 
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FIG. 2. Chew-Frautschi plot of the Regge trajectories for a 
velocity-dependent square well potential of intenSity A = - O. 9. 
There are an infinity of trajectories from whi"h we have repre
sented only the first three. The intersection of each trajectory 
with the horizontal lines ReI = integer shows the possibility of 
a resonance at the energy E at which the intersection takes 
place. In the lower half of the figure we have represented, in 
adimensional units, the quantity r =c 2Iml/[d(Rel)/dE], which 
at integer values of Rei gives the width of the eventual reso
nance. It can be seen that the Regge trajectories connect 
resonances which become narrower for higher values of the 
angular momentum. 

at positive energies. This corresponds to the fact that, 
using a terminology borrowed from nuclear physics, 11 

the "effective" mass of the particle becomes negative, 
Equation (2019) remains still valid for? replaced by 0', 

but not by (3. We have, instead, 

z[lzj =z[lz1, z[2z]=z[2z], \ real, z imaginary. 
(4.1) 

Using the relations Eq. (2.19) and Eq. (4.1), we ob
tain from Eqs. (2, 17) and (2.18) 

(4.2) 

(4.3) 

These two equations replace Eqs. (3.3) and (3.4), which 
are no more valid in the case under consideration. 
Equation (4.3) expresses the fact that the incident flux 
is totally reflected at the surface. There is no trans
mitted flux since the logarithmic derivative of the in
ternal wavefunction is real. However, the incident 
external wave originates a stationary internal wave and, 
conversely, a stationary internal wave gives rise to 
an outgoing external wave. Hence, we may define re
flection and transmission coefficients, in a generalized 
sense, just as in Seco 2. 

A difficulty arises from the fact that Eq. (3,9) is no 
more valid in general and, therefore, the Debye ex-
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pansion may not be convergent for some values of the 
energy. This is the same difficulty one encounters in 
the case of scattering by a static square barrier of a 
particle with energy below the height of the barrier. 
In fact, our velocity-dependent well, with A < - 1, 
acts as such a barrier for a particle of positive energy 0 

In a forthcoming paperl2 we analyze the convergence 
of the Debye expansion in a more general context 
(scattering by a complex potential) which includes the 
case here considered as a particular one, Nevertheless, 
the internal amplitude is still given by Eqo (2023), as 
it can be easily checked by means of the continuity con
ditions on the wavefunction and its derivative. 

It is well known (see Ref. 10, po 441) that H\(2)(B), 
with A = 1 +~, 3 + to 5 + ~, .. " vanishes at a given 
imaginary value of B. For this reason, we prefer to 
write Eq. (20 23) in an equivalent form, more suitable 
to discuss resonances. It is not difficult to obtain 

A=2iF/rrF2' 
with 

F 1 =H \(1XB)/J\(S) 1 H \(l)(a) 1 2
, 

(4.4) 

The factor F 1 is real for physical values of A. Its 
modulus shows an exponentially decreaSing behavior 
as the energy goes to infinity. To detect possible reso
nances we must look for minima of the modulus of F 2 • 

Of course, 

ImF2 = Im(]l[la], (4.7) 

and, as it can be seen in the Appendix, this imaginary 
part is always positive and increases monotonously 
with the energy. The real part, 

ReF2 =Rea[la]- (1 + A )B[B] + A/2, (4.8) 

is also monotonously increasing with the energy, going 
to infinity at high energies. If it is negative at ze ro 
energy, it necessarily vanishes at a certain energy, 
giving in this way one and only one minimum in the 
modulus of F 2 • The zero energy limit of F2 follows 
immediately from that of the Bessel and Hankel func
tions (see ReL 10, Eqs. 9,1.7 and 9 0 1. 9). It turns 
out to be 

ReF2 (E = 0)= - (l + 1/2) - (1 + A)(l + 1/2) + A/2 

=l(-2-A)-1. (4.9) 

In view of this we can conclude that for - 2 < A < - 1 
there will be one resonance of each angular momentum 
l, and for A < -2 there will occur one resonance only 
in I waves such that 1< (- 2 - A)"1 0 These resonances 
are very sharp if they appear at low energies. As the 
energy increases, the exponentially decreasing factor 
F, reduces strongly the modulus of the internal ampli
tude and the bumps in j A j occasionated by F2 cannot 
be considered as resonances. In the range - 2 <A < - 1, 
the resonances become sharper as A approaches - 2. 
For A < - 2, a very sharp resonance of angular momen
tum I appears if A takes a value slightly above - 2 
- 1/1. For A = - 2 - l/l, a zero energy resonance in 
the I wave occurs. In Figso 3 and 4 we show the reso
nances produced by a potential corresponding to 
A =-2. 2. 
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FIG. 3. Chew-Frautschi plot of the Regge trajectories for a 
velocity-dependent square well of intensity A = - 2.2. There is 
only one Regge trajectory related with resonances. It evi
dences the existence of one resonance of angular momentum 
1 = 5 at zero energy, one resonance for 1=4 and energy E 
'" O. 8b-2, and one resonance for 1= 3 and E'" 1. 2b-2• The width 
of these resonances is shov>'l1 in the lower half of the figure. 
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APPENDIX: LOGARITHMIC DERIVATIVES OF THE 
HANKEL AND BESSEL FUNCTIONS 

In the expression of the reflection and transmission 
coefficients defined in Sec. 2 enter the logarithmic 
derivatives of H\(I)(z), H\(2~Z), and J\(z). More pre
cisely, we want to discuss in this Appendix z[lz], z[2z], 
and z[z], defined by Eqso (2,6), (2.7), and (2.8), as 
functions of z. 

Let us start with z[lz] in the case of z taking real 
values, which we shall denote by x. Of course, x[2x] 
is merely the complex conjugate of x[lx]. Let us denote 
by M\(x) and 8\(x), respectively, the modulus and phase 
of H\(IXX): 

H~(l)(x)=M\(x)exp[i8\(x)). (AI) 

The logarithmic derivative gives 

[lx]=M~(x)jM\(x) + ie~(x). 

Using the relation (see Ref. 10, Eq. 9.2.21) 

8~(x) = 2/rrxM~(x), 

it becomes 
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FIG. 4. Internal probability in a velocity-dependent square 
well of intensity A" - 2. 2. We have represented the square 
modulus of the internal amplitude [see Eq. (2.23) in the text] 
for waves of angular momenta 1= 0, 1,2, 3,4, and 5. The lowest 
curve corresponds to 1=0. The others are consecutively 
disposed. The zero energy value becomes 1 A 1 2 = (21 + 1)2 1 1 
+A 121+1/ 121 + 1 +All 2. At infinite energy, all the trajectories 
tend asymptotically to the line IA \2=4exp[-2\ b2E/(l+A) \1/2]. 
The resonances quoted in the legend of Fig. 3 appear quite 
clearly as very narrow peaks in the internal probability. 

x[lxJ = x(M~(X»1/2M~(x) + i2/1T]\;I~(x)o (A4) 

For physical values of >t, the modulus of the Hankel 
function is given (see ReL 10, Eq. 10.1. 27) by 

2 2 1 (2l_k)!(2l_2k)!(2x)2k-21 
M 1+1 / 2(X) = 1TX E k![(l-k)!Jz (A5) 

and its derivative becomes 

(M~+l/ 2(X) Y (A6) 

__ --±-t (l- k + 1/2)(2l - k)! (2l- 2k)! (2x)2k-21 
- 1TX2 k:O k! [ (l - k)! J2 

It is obvious, from Eq. (A5), that Mi'I/2(X) is an in
creasing function of the index l. For a given 1, MLI/2(X) 
decreases monotonously as x increases. From Eq. (A6) 
we see that (M~'1/2(X))' is a negative function whose 
absolute value decreases as x increases. For a given 
x, this absolute value is an increasing function of the 
index l. From these considerations it is not difficult 
to convince oneself that the behavior of the real and 
imaginary parts of x[ Ix] is as shown in Fig. 5. Ap
proximate expressions, valid for limiting values of x, 
are 
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FIG. 5. Real and imaginary parts of the redueed logarithmic 
derivative of the Hankel function, x[lx) ,,"xHiI)'(x)/H~I)(x), for 
real argument x and phySical values of the index, A= 1+1/2, 
1 = 0, 1,2,3,4. The straight lines correspond to 1=0. The other 
lines correspond, eonsecutively, to the remaining values of 
I. 

Rex[lxj"" -7- 1/2, for x - 0, 

Imx[lx]",x21 +1/[(21_1)!!]2, forx-O, 

Rex[lx]", -1/2, for X-Xl, 

Imx[lx} '"' x, for x - 00, 

(A7a) 

(A7b) 

(ABa) 

(ABb) 

Now, let us discuss briefly the behavior of zlz} for 
z pure imaginary. Of course, it is a real quantity, If 
we denote 

z =iy, 

we have the approximate expressions 

z[ z ) '" 7 + 1/2 +1)2/2 (l + 3/2), for \' - 0, 

z[ z 1'" -" -1/2 + l(l + 1 )(21,)"1, for l' - 00. 

(A9) 

(AlO) 

(All) 

At intermediate values of _1', the behavior of z[z 1 is 
that shown in Fig. 6, 

z [z] 

10 

101m z 

FIG. 6. Reduced logarithmic derivative of the Bessel funetion 
z[z)'" zJ~(z)/Jx(z), for pure imaginary argument z and physical 
values of the index, A= 1+1/2, 1= 0,1,2, :1,4. The curves are 
ordered from bottom to top with inercasing; I. 
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Null infinity is not a good initial-data surfacea) 

Robert Geroch 

Enrico Fermi Institute, Chicago, Illinois 60637 
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An example is given of a space-time which is asymptotically flat and globally well-behaved, and yet 
which admits a nonzero Maxwell field, with zero source, having no incoming radiation from past null 
infinity. 

1. INTRODUCTION 

There are a number of circumstances in general 
relativity in which it would be of interest to know 
whether or not a zero-mass field without sources in a 
well-behaved space-time is uniquely determined by its 
asymptotic behavior at past null infinity, i. e" by its 
incoming radiation, For example, quantum field theory 
in curved space-times is usually studied1 in an 5 
operator framework. But this framework requires that 
in and out vacuum states can be identified, which re
quires in turn in and out creation and destruction op
erators, which requires that the classical fields in the 
space-time can be decomposed into their asymptotic 
positive and negative frequency parts, which requires, 
finally, that these classical fields can be characterized 
by their asymptotic behavior. Suppose, however, that 
one's space-time admits nonzero fields with zero in
coming radiation. Then the resulting "classical particle 
creation," uncontrollable from null infinity, would, 
among other things, make ambiguous the 5 operator. 
In the study2 of the stability of isolated gravitating 
systems, to take a second example, one sometimes 
considers perturbations which arise from incident 
radiation from the distant pasL Suppose, however, that 
additional perturbation fields could appear "spontane
ously," without their having been recorded as incident 
radiation, Then there would arise the possibility that 
one's system is unstable to only these perturbations, 
and thus is physically unstable, although an analysis 
in terms of incident radiation would not detect this 
fact, 

We shall here be concerned with the status of the 
following 

Statement Consider a space-time which is asymp
totically flat at past null infinity, and which satisfies 
certain other global conditions 0 Then any zero-source, 
zero-mass field in that space-time, which vanishes 
sufficiently quickly in the limit at past null infinity, 
must vanish. 

This statement is true, for example, for Minkowski 
space-time. Indeed, the zero-mass fields in this case 
satisfy Huygen's principle, i. e., the Green's function 
has support on the null cone, USing the Green's func
tion, the field at any point of Minkowski space-time 
can be written as an integral over the asymptotic field 
at past null infinity 0 Hence, whenever the field vanishes 
sufficiently quickly asymptotically, it must vanish 

alSupported in part by the National Science Foundation, under 
contract PRY 76-81102. 

everywhere, One might have thought that some sort of 
similar argument would work also in the presence of 
curvature, Although curvature, of course, in general 
destroys Huygen's principle, "virtually all" of the 
contributions to the field at a point of the space-time, 
via a Green's function, should come from i.nitial data 
at null infinity, for the surface at past null infinity is 
"practically a Cauchy surface, lacking only the single 
point at past timelike infinity." It would seem to be 
difficult to squeeze, via a zero-mass field, any real 
information into the space-time through this "single 
point. " 

There is a simple example which shows that no proof 
of the statement above can use only elementary prop
erties of hyperbolic equations. We claim. There exists 
a smooth potential V in Minkowski space-time, strictly 
vanishing in a neighborhood of past null infinity, to
gether with a nonzero <{J satisfying 'V 2 <{J = V <{J ('Vz = wave
operator) and vanishing as quickly as one wishes in the 
limi.t at past null infinity First recall that [in the usual 
coordinates, with r = (x2 + y2 + 22)1/2 and II = (- r j, 
f(lI)ir, for any smooth function /, is a solution of the 
wave equation, smooth for r> O. Set, for r> 1, <{J=/(u) 

r, with / any smooth positive function approaclling zero 
quickly as 11 - - /) (i. e _, in the limit at past null in
finity). For r < 1, let <{J be any smooth positive function 
such that the join at ,.=1 is smooth. Now set 1'='V2<{J/<{J, 

so this V of course has all tile required properties> 
This example, however, is not conclusive with respect 
to the statement above, for one could think of \' as 
endowing <{J with an "effective mass. " 

The present result is that, in the Maxwell case under 
what seem to be rather strong "other global conditions," 
the statement above is fals e, 

We turn now to the question of what is an appropriate 
set of global conditions, That some conditions will be 
required is illustrated by the following example, Con
sider the time reverse (in order to deal with past null 
infinity) of a solution for a collapsing, spherically 
symmetric, dust cloud, Schwarzschild outside, This 
space-time possesses a Cauchy surface which enters 
the (now time-reversed) black hole, Choose on such a 
surface data for Maxwell's equations which are non
zero inside the hole and zero outside, and evolve to 
obtain a Maxwell field on the entire space-time. Since 
no timelike or null curve, beginning inside the black 
hole, can reach past null infinity, the resulting Maxwell 
field, while nonzero, will even vanish in a neighbor
hood of past null infinity, The physical reason for this 
example is of course that there are regions of the 
space-time which are unable to communicate with past 
null infinity. One could eliminate examples of this type 
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by demanding that such communication be possible, 
L e" that the future of past null infinity be the entire 
space-time, But it turns out that this condition alone 
is not enough. Consider, in Minkowski space-time, 
the Maxwell field which results from an oscillating point 
dipole on the taxis, where the amplitude and frequency 
of the oscillations die off quickly into the past. Now 
excise the t axis from the space-time. There results 
a space-time which satisfies the communication con
dition, and yet which supports a smooth nonzero Max
well field with no incoming radiation from past null 
infinity. The problem now is that one has introduced a 
singularity which is capable of "emitting electromag
netic radiation at all times," thus giving ris e to fields 
on the space-time not recorded at past null infinity, 
One could eliminate such examples by demanding that 
one's space-time admit a Cauchy surface3-Le" that 
there be sam e initial-data surface for fields on the 
space-time. This example, of course, has no Cauchy 
surface. 

We conclude, then, that a possibe set of "other global 
conditions" is the existence of a Cauchy surface and 
that the future of past null infinity be the entire space
time. There eXists, however, another global condition, 
which on the one hand is even stronger than these two 
taken together, and, on the other, has a physical basiS. 
One might demand instead that every maximally ex
tended, past-direct null geodesic reach past null in
finity.4 One thinks of one's zero-mass field, in the 
optical limit, as yielding "particles" which travel along 
null geodesics, and so this condition requires that all 
such particles reach the asymptotic region. Our state
ment with this global condition, then, is essentially 
that if what happens internally is determined by what 
happens asymptotically in the optical limit, then it is 
also determined prior to that limiL 

Our example will satisfy all of these conditions. 

2. THE EXAMPLE 

We shall obtain an example of a space-time which is 
Minkowskian outside of a spatially bounded (defined 
with respect to the external metric) timelike world 
tube. Every null geodesic will emerge from, and re
main outside of, that world tube. Thus, the space-time 
will be topologically ffi\ will admit a Cauchy surface, 
will have no causality violations, will admit well-be
have spacelike slices, and will be asymptotically flat 
and even asymptotically simple. 4 It will also be spher
ically symmetric. This space-time will carry a smooth 
nonzero Maxwell field, with zero source, which 
vanishes exponentially at past null infinity. (That is, 
for some positive ro the Minkowskian components of 
this field, multiplied by exp(r/ro), will vanish in the 
limit along every past-directed null geodesic.) In 
particular, this field will be asymptotically regular 
at past null infinity, with zero data there. The Maxwell 
field will also have zero angular momentum. Since 
Maxwell's equations are conformally invariant, one can 
by means of a conformal rescaling also have the space
time nonsingular, Le" timelike and null complete. 
We do not impose Einstein's equation. 

Let M, gab be spherically symmetric, Le., admit 
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three independent Killing fields whose commutation 
relations are those of the rotation group and whose in
tegral surfaces are (except, of course for the origin) 
metric 2-spheres. Define the usual radial function 
r-such that 2 1-2 is the sum of the squares of the norms 
of the three Killing fields-and denote by Eab the alter
nating tensor of the 2-spheres. Let Fab be a zero
source Maxwell field on this space-time, and set <p 
=rEabFab • Then, applying the wave operator. using 
Maxwell's equations and spherical symmetry, one sees 
that <p satisfies the wave equation. Denote by 5 the 
manifold of 2 -spheres of spherical symmetry. (For 
example, this manifold for the Schwarzschild solution, 
is the Penrose diagram.) Then this 5 acquires a metric 
hab of signature (-, +), and also a function r. Now con
sider the special case in which <p = a,y·lu, where Ol is 
a spherical harmonic, prinCipal quantum number l, on 
the 2-spheres, and u is a function on 5. Then the wave 
equation becomes an equation for u on the two-dimen
sional manifold 5, 

[flu=r- 2 l(l + 1)u, 

where Da is the derivative operator of 5, hab' and D2 
=habDaDb, 

(1) 

The converse of all this is the follOwing, Let 5 be a 
two-dimensional manifold with metric hab of signature 
(-, +), nonnegative scalar field r, and scalar field u 
satisfying (1) for some positive integer l. Then one 
obtains from S, hab , and r a spherically symmetric 
space-time (with no singularity at the origin, provided 
hab and r have proper behavior as r - 0), and from u a 
Maxwell solution, via the formula 

(2) 

where Ol is a spherical harmonic, principal quantum 
number l, on the 2-spheres, and "Va denotes the gradient 
in this space-time. 

The idea is the following. Let 5, hab , and r be the 
manifold, metric, and field which results from this 
construction in flat space-time, so hab is flat and 
Dar is a constant, unit spacelike vector field on 5, We 
look for a function II which satisfies, instead of (1), 

[flu = r 2l (l + 1)1l + j, (3) 

where j, the source, is some function on 5, We now 
try to arrange matters so that j is nonnegative, j 
vanishes except between two finite r values (so, in 
particular, j vanishes near past null infinity and near 
the origin), and such that u is positive in the support of 
j. Having done this, we set 

(4) 

to obtain our solution, hab' u, r, of (1). Finally, one 
must check that, in the resulting space-time (defined 
by 5, hab' r), every null geodesic escapes to null in
finity. The idea, in short, is to "solve" Maxwell's 
equations for the metric rather than for the Maxwell 
field. 

Fix once and for all the positive integer l. We first 
consider the retarded Green's function for (3), i. e. , 
the retarded solution u for j a (; function located, say, 
at r = 1, t = O. It is easy to write out this Green's func-
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1"=0 1"= 1 

(center) 

FIG. 1. The support of the retarded Green's function, in the 
rt plane, for a source at r= I, t= O. Also shown is one of the 
rectangles, of width tv and centered on the line r= I, which is 
required for the example. 

tion explicitly, since (3) is essentially the wave equa
tion with source in Minkowski space-time, while one 
knows the Green's function for the wave equation, 
5 (retarded time)/ (spatial distance), The resulting func
tion u, we claim, has support the half-infinite rectangle 
shown in Fig, 1 (an immediate consequence of Huygen's 
principle for the wave equation), is smooth in the in
terior of its support, is bounded, and is positive at 
r = 1, t = T, for some 1 < T < 2. It follows from this last 
property that there exists positive w sufficiently small 
that this It is positive even in the square of side 2w 
centered at r = 1, t = T, and in addition 1 + 4w < T 

<2-4w. 

Fix once and for all a smooth, nonzero, nonnegative 
function A of two variables, such that A(r, x) vanishes 
unless I r -11 < wi 2 and I xl < w/ 2, We shall be con
sidering various rectangles in the rt plane, all having 
width w, but with various heights; and all centered at 
r = 1, but at various t values By a source of strength 
a in the rectangle of height h centered at t = to, we 
mean j(r, t) = aA(r, wh-1(t - to)); whose support of course 
is this rectangle, We now claim that there exists a 
constant c sufficiently large that the retarded solution 
u of (3) which results from a source of strength a> 0 
in the rectangle of height /1 ~ w at t = to has the following 
properties: (il In the rectangle of height h centered at 
t = to, 1111 ~ caJz2

, (iil In the rectangle of height w cen
tered at t = to + T, 1l> co1ah, (iii) In the rectangles of 
height w centered at t = to + nT, for nolO, 1, 11 vanishes, 
(iv) Everywhere, lui"" cah. Indeed, condition (il 
follows from boundedness of the Green's function and 
its support. (The region over which the integration 
must be performed has area bounded by /12

,) Condition 
(ii) follows from the first defining property of w 0 (The 
integral of the source over its support is bounded by 
ah.) Condition (iii) follows from the second defining 
property of w, and the support of the Green's function, 
Finally, condition (iv) follows again from boundedness 
of the Green's function. 

We now construct our example, Fix an infinite se
quence of rectangles, at t = 0, - T, - 2T, 000 , of heights 
h1'h2' 00 0 (each less than w), and in which there are 
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placed sources of positive strengths (/1' (/2' 0 0., Let the 
sum of these sources be the j in (3), and compute from 
this equation the resulting retarded II, (The integral 
for u must converge, for the support of the Green's 
function is such that no more than two rectangles will 
contribute to the 11 at anyone pOint .. ) We must choose 
these h's and a's such that three conditions are satis
fied: That u is positive in the support of j [in order that 
(4) will define a smooth r], that our Maxwell field 
decays exponentially at past null infinity, and that 
every null geodesic escapes to null infinity, Clearly, 
the simultaneous satisfaction of these conditions will 
complete the example. 

The first two conditions are easy. By (iii) above, 
the only contributions to II in the ith rectangle come 
from the sources in the ith and the (i + Ost. But these 
contributions are bounded. respectively, by properties 
(il and (ii) above. Thus, we may ensure that II is posi
tive in the ith rectangle by demanding C-1(li+llli+l C, 2 
ca,h; 0 (We have here inserted an extra factor of two 
on the right in order to have available, for later use, 
a lower bound on the value of It in the ith rectangle, 
namely }c"lOi+lh,+l') Furthermore, by (iv) above, our 
Maxwell field will decay exponentially at P3.st null in
finity provided a/hi is bounded by exp(- iiio) for some 
positive io" 

We must finally impose the third condition, that all 
null geodeSics escape. Consider a null geodesic, with 
tangent vector la, in our (curved, with r) space-time. 
Denote by L the total (conserved) angular momentum of 
this geodesic, i. e., L 2 is the sum of the squares of the 
inner products of la and the three Killing fields Pro-
j ecting this geodesic into 5, we obtain a curve in 5 
(still parametrized by the original affine parameter) 
whose tangent vector we denote 1'a. Then nullness of la 

becomes Val'" == - L ZY-2., The geodesic equation in space
time, projected into 5, yields the equation for this 
curve in 5, 

(5) 

We must arrange that all curves satisfying (5) escape 
to infinity. We first note that, outside of the rectangles, 
r = r, so (5) is there the equation in 5 for null straight 
lines in Minkowski space-time, while of course all 
such curves do escapeo Failure to escape, therefore, 
must be due to deflection of these curves by the rec
tangles, in which r oF r. By the choice of T and w, a 
past-directed null geodesic in Minkowski space-time, 
emerging from the ith rectangle, can meet no other 
rectangles except possibly for the (i + 1)st. Thus, the 
only past-directed null geodesics in the curved sp:lce
time which are even candidates for being trapped are 
those which meet all the rectangles beyond a certain 
one. The deflection suffered by a null geodesic on 
passing through a rectangle is estimated from (5) 
Contracting this equation with D t, replacing I,m D by 
(I'mDmtl didl, we obtain a m 

d/ dt(log(- vmDmt) = - [L 2 (l'mDmOo 2 j(D awa(r-2) \. (6) 

The first factor on the right is bounded by y2, and 
hence, from (4), is bounded. The second factor on the 
right is, by (4), a multiple of Da tD" (fll-l) = 1t"ID/D"r 

- u-2jD.tDalt. But, for the ith rectangle, the two terms 
on the right are bounded, respectively, by multiples of 
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(ai+!izi+!)-!(a;lI-/) and (ai+! hi+)'2(a)(ai+!hi+)' Hence, the 
right side of (6) is bounded by a multiple of aJi;!a;!! 
x hi!!. Integrating (6) along the geodesic through the 
ith rectangle, we see that the fractional change in 
1,mDm, is bqunded by a multiple of ai«;!!h;!!. This, 
then, is an upper bound on the deflection (as mea-
sured by the fractional change in 1,mDm tl of a null 
geodesic on passing through the ith rectangle 0 If this 
deflection is suffic iently small, then a null geodesic 
reaching the ith rectangle from the (i - Ust will not be 

able to reach the (i + list, and so will escape. We con
clude, then, that all null geodesics will escape provided 
that, for any 11, however large, and for any positive 
K, we have (Ii (r;!llii!l < K for some i ' 11. 

Our example will be completed, then, by displaying 
a sequence hI' 1i 2 , ••• of positive numhers all less than 
U' and a sequence a!, a2 , • o. of positive numbers, such 
that c-1ai+!hi+1 "> 2C{/ilz; for all i, that (/ihi is bounded by 
exp(- iiia) for some positive ia , and that aia;!lhi!! is not 
bounded away from zero. But suitable sequences are 
the following. Fix sufficiently small positive E, and set, 
foriodd, lzi=Ci'{/i=E3i, and, for i even, lzi=E6i'(/i 
==E .. 5i . 

3. CONCLUSION 
One could ask whether or not similar examples would 

be expected for fields other than the electromagnetic. 
Of course, the question is of interest only for fields 
or systems of fields whose equations admit an initial
value formulation. Otherwise, e.g., for Maxwell fields 
with freely specifiable current, one has available a 
source for the field other than the asymptotic region, 
and so examples are easy to w ri te down. Inspection of 
the present example reveals that it is also an example 
for the zero-mass Klein-Gordon equation (\7 2 cp = 0). 
One would perhaps also expect similar examples for 
the zero-mass, conformally invariant Klein-Gordon 
equation [(\7 2 -t R)cp = 0], and for the neutrino equation. 
For the nonzero mass fields, there are presumably 
examples even simpler than the present one, These 
fields, in the optical limit, yield "particles traveling 
along timelike geodesics," while such geodesics can 
never reach past null infinity. Examples for various 
nonlinear systems of coupled fields, eo go, charged 
Klein-Gordon and Maxwell, should also be simpler, 
for such a system could be regarded as having, by 
virtue of the coupling, an effective mass. Finally, one 
might ask the question for linearized Einstein fields. 
This case appears to be considerably more difficult. 
First, one must contend with the freedom of gauge 
transformations 0 The choice of gauge is important and 
delicate, for a poor choice can5 result in perturbation 
fields whose asymptotic behavior does not all reflect 
the "true" behavior of the asymptotic gravitational 
field, Second, one must find a background space-time 
in which the linearized fields are to be studied. This 
background, say for consideration of the gravitational 
field alone, would have to be nonflat (for there are 
no counterexamples for perturbations off Minkowski 
space-time), asymptotically simple, and satisfying 
Einstein's equation with zero source. But no such 
space-time are known. 

There is of course a second aspect of this issue, in 
which one deals with existence rather than uniqueness. 
By "existence," we mean in the stronger sense: Does 
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every set of initial data at past null infinity give rise 
to some solution? Although there seems to be no solid 
evidence on this question, one's suspicion might be 
that existence will also faiL Unfortunately, it appears 
that counterexamples will be more difficult to obtain, 
for, while uniqueness requires only the display of a 
single field, existence requires consideration of many 
possible fields 0 

The important question, however, is that of how 
common and of what character are the space-times 
which do have the property that the asymptotic be
havior of zero-mass fields suffices to determine the 
field in the entire space-time. One would of course 
like some positive results-to the effect that many 
space-times do have this property 0 An example of such 
a result-although far too weak to provide any real 
evidence on this issue-is the following 0 In a stationary, 
asymptotically simple space-time, a stationary Max
well field which vanishes sufficiently quickly at infinity 
must vanish. Let S be an asymptotically flat spacelike 
slice in the space-time, with unit normal na 

0 Set, at 
points of S, Da = Fabnb, and let Ea be the orthogonal 
proj ection into S of Fab ~b, where ~b is the Killing field. 
Then each of Da and Ea is a vector field on S; the former 
with vanishing divergence and the latter with vanishing 
curL So, the integral of DaEa over S vanishes 0 Similar
ly for the magnetic fields 0 So, the sum of these two 
integrals-which is the total energy of the electromag
netic field with respect to the Killing field-must 
vanish. But this is compatible with a nonzero Maxwell 
field only if the Killing field ~a becomes spacelike in 
some region. But now a null geodesic, beginning in 
this region with negative ~ energy, will be unable to 
ever reach the asymptotic region, violating asymptotic 
simplicity, 

One could imagine two approaches to stronger posi
tive results 0 The first begins with the observation that 
the present set of global conditions on our space-
times were, after all, chosen merely to eliminate a 
few obvious physical situations under which fields could 
enter the space-time without their having been re
corded asymptotically 0 Perhaps some further, physical
ly reasonabIe, global conditions would eliminate the 
present examples, It is not easy, however, to see 
what such conditions should be, for this example is 
quite tame globally. The second approach would be to 
accept the present set of global conditions, and instead 
ask whether space-times in which fields are de
termined by their asymptotic behavior are "generic" 
in any sense. Perhaps, for instance, the present ex
ample would be destroyed by a small change of the 
space-time metric, Is there some simple perturbation 
calculation which would decide this? 

lSee, for example, S. W. Hawking, Commun. Math. Phys. 
43, 199 (1975); R. Wald, Commun. Math. Phys. 45, 9 
(1975). 

2See, for example, K. Thorne, Appl. J. 158, 1 (1969); 
C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970). 

3See, e. g., S. W. Hawking and G. F. R. Ellis, The Large 
Scale Structure of Space-Time (Cambridge U. P., London, 
1973). 

4R. Penrose, Proc. Roy. Soc. A 270, 193 (1962). 
5See, for example, R. Geroch and B. Xanthopoulos, J. Math. 
Phys. 19, 714 (1978). 
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A particle model based on stringlike solitons 
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This paper deals with two scalar fields e(x,y,z, t) and <I>(x,y,z, t) which are governed by two coupled 
nonlinear differential equations. Some of the spatial field distributions of e and cj> are topologically stable 
and represent solitons in three-dimensional spaCe. The simplest stable solitons are identified with the 
electron and the positron. The asymptotic solutions of the fields are studied. e is shown to fall off 
asymptotically as ± a / r, where a is a constant related to the elementary charge and r the distance from 
the "site" of the soliton. 

A recent paperl describes a new class of solitons 
which are represented by field configurations of two 
scalar fields fj(x,Y,z,t) and cp(x,y,z,t). Some of these 
solitons are topologically stable in three-dimensional 
space. The field configurations, which are free from 
singularities, are the stationary solutions of a simple 
least-action principle. An attempt has been made to 
identify these solitons with elementary particles. The 
aim of the present paper is to clarify the asymptotic 
properties of the fields and to give additional agruments 
for such an identification. It will be shown that for a 
specific form of the basic action prinCiple e falls off as 
±o/r asymptotically, where r is the distance from the 
"site" of the soliton and a is a constant, which is related 
to the elementary charge. The least action prinCiple 
is assumed to be 

aw= 0, w J wd 3xdt 

and is based on a density 

w =K sin2e +ADo +ED~, 

where the abbreviation 

Do = (Ve)2 _ c-2e~ + [(V cp)2 - c-2cpn sin2e 

(1) 

(2) 

(3) 

is introduced, The energy density is defined as an 
expression analogous to (2) in which the time like 
derivatives enter with the positive sign. The scalar 
fields e and cp have the character of angular variables 
in an Euclidean space of three dimensions u j ' where 
they determine the direction of a unit vector n. The 
dimensions of the constants A, K, and E follow from (1) 
and (2). A term EDg, where s? 2, is necessary to 
assure the stability of the soliton in three-dimensional 
space. 1 Equation (3) demonstrates the Lorentz invari
ance of the model. The Euler equations corresponding 
to the least action prinCiple (1) are two coupled 
nonlinear partial differential equations of second order 
for e and cp. 1 They are not reproduced here but for the 
special case K=O [see Eqs. (7), (8)]. In the general 
case, no solution of the Euler equations1 was obtained 
However, in the case of cylindrical symmetry, with 
coordinates p, !fJ, z, solutions were found by assuming 
fj = fj (p) and ct> = !fJ + k z, where k is a constant. Equation 
(3) then takes the form 

Do = e! + (p-2 + k 2) sin2
fj. (4) 

From Eq. (4) it can be seen that singularity-free 
solutions at p=O imply sine(O)=O or fj(O)=MlT, where 
M is an integer. We impose the further boundary con-

dition e = 0 for p - 00. Solutions based on (4) represent 
field configurations which are infinitely extended in the 
z direction. The field e is equal to Mrr on the entire z 
axis and falls to zero for p - 00. These solutions are 
stable in a topological sense, related to the fact that cp 
changes by 21T on any simple closed path containing 
the z axis. 

The denSity w contributes only within a cylindrical 
region of finite lateral dimension appreciably to the 
integral (1). Such structures may be visualized as 
strings having an energy proportional to their length 
and thus a constant "tension." The line defined by 
fj = Mrr, the z axis, is called the core of the string. 
Two types of strings with different lateral dimensions 
are now considered, both of them based on Eq. (4). 

(i) K, E and A are all assumed to be different from 
zero. A static solution e(p) was found numerically for 
s = 2 and k = O. 1 The function e (p) decreases exponen
tially to zero for p - 00 within some multiples of the 
length lo=(E/K)1/4. For M=l, the energy per cm of the 
string was calculated to be 2rr (EK)1/211(Y)' where 11 
is a dimensionless integral depending on y = EK / A2 . 

For y = 1, this integral turned out to be about 12.9. 

(ii) If we assume E-f. 0 and K = 0, no solution with 
finite 10 exists for k = Oc However, for l~ '" 0 solutions 
with finite lateral dimensions do exisL These solutions 
represent twisted strings. Their lateral "size" is of 
the order of 1l/2k-1 12, where the length 

1 = (E/A)1/2 (5) 

as introduced. In this paper, mainly strings of type 
(ii) are considered: the Euler equations are given here 
for this case. Using the basic action principle (1) in 
dimensionless form 

(6) 

where D = l2DO and the ~ 's are dimensionless coordinates 
expressed in units of l, the Euler equations read 

2(1 + 2D)Oe + 4(VeVD - erD") 

- (1 + 2D)[(Vcp)2 - cp;] sin2e =0 (7) 

and 

[(1 + 2D)Ocp + 2(VcpVD - cp"D")] sine 

+ 2[(1 + 2D)(Vcpve - cp"e-r)) case = 0, (8) 

where T= ~4' 
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We now consider field configurations having the 
property that the major part of the total field energy 
is found inside a sphere of finite radius. Field configu
rations of such a type are constructed by forming 
closed twisted strings, i. e., strings whose core forms 
a closed curve. It is assumed that they represent 
approximative solutions to (1). The field remains 
continuous if the closed string contains N 21T twists on 
its circumference, where N is an integer. It can be 
shown! by topological arguments that strings of type 
(i) and (ii) with s ~. 2 are stable if N = 1, but unstable 
if N = 0. For N = 1 a minimum of the total action (6) 
occurs at a finite circumference 21TRo of the string. 
For N ~ 2, the stability problem is more complicated 
and cannot be decided by topological arguments. The 
minimum energy and the corresponding stable string 
radius Ro of a closed static string of type (i) have been 
calculated with the aid of a Ritz approximation! for 
N = 1 and s = 2. 

The continuity of ¢ furthermore implies the existence 
of either an open ended, infinite core e = ° or a closed, 
finite core e = ° interlocking with the string e = 1T, the 
two configurations being denoted by C = ° and C = 1, 
respectively. The structure C = 1 is symmetric with 
respect to e = 1T 12, in accordance with the symmetry of 
the basic expression (2) of the energy density. 

A further integer P may be introduced, describing the 
sense of rotation of the twist. P takes the value + 1 for 
a right-handed twist and the value - 1 for a left-handed 
twist, thus describing a mirror symmetry between the 
two structures. Summarizing, the symmetry and 
topological properties of closed strings of type (0 
and (ii) are characterized by the integers N, A1, C, P. 2 

Each of these structures has a finite size and a finite 
energy. These structures are solitons having a "site" 
or location in three dimensional space. The main part 
of the total field energy is concentrated about this site. 

We now discuss the asymptotic properties of the 
fields e and ci>, making the restriction to the simplest 
closed string of type (ii) with N =,''vi = C = 1, P = ± 1. 
The soliton is assumed to be at rest and to be located 
at the origine r = 0 of a polar coordinate system. 
Static asymptotic solutions of spherical symmetry 
with the boundary conditions e(r) - 0 and ci> - const for 
r - 00 are considered. It is important to realize, that 
the boundary condition for ¢ is compatible only with 
solutions described by C = 1 and not with those with 
C = O. This property follows directly from the topology 
of the structures C = 0 and C = 1. Equation (8) is ful
filled by ci> = const for any 8. Equation (3) then reduces 
to 

if y is measured in units of l. With (9) Eq, (7) takes 
the form 

(1 + 28;)(8rr + ;8 r) + 48;8 rr = 0, 

Equation (10) separates and has the solution 

8 +8 = (.pdr(P) dp 
M Jo dp , 
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(9) 

(10) 

(11) 

where 

(12) 

and q = ar' The complete asymptotic solution of (10) 
which contains the integration constants 8M and a> 0, 
is found from (11) and (12) by elimination of q. The 
boundary conditions imply 8 ~ = O. As (10) applies only 
to the case r» 1, we expand 8(r) in this limit to yield 

e(r)",,±alr. (13) 

The value of a is not determined by the asymptotic 
sohltion alone. A preliminary analysis, however, seem 
to show that the complete Euler equation (7), (8) deter
mine a unique value of a for all structures C = 1. For 
C = 0 we find a = 0, 8(r) then decays faster than 1/r. 
In conclusion we find that closed strings of type (ii) 
with C = 1 have an asymptotic solution ± air. It can be 
shown that an asymptotic 1/r dependence of a also 
results for strings of type (i), but only for a time 
dependence of ci> of the form wt, with w=c(KjA)!j2, 
and only if s ;" 3, and not for s = 2 as has been 
incorrectly stated in Ref. 1. 

A physical interpretation is now given. The idea is to 
equate the total energy of a given field structure to 
the rest energy of a particle and in this way to establish 
a correspondence between solitons and particles. In 
particular, by hypothesis, the solitons characterized by 
N = Ai = C = 1, P = ± 1 are identified with the electron 
and the pOSitron. This assignment is the same as made 
before, ! but is now based on strings of type OiL An 
argument for such a choice is that these solitons are 
the simplest stable structures having an asymptotic 
behaviour ± a I r. The total energy is defined as the 
spatial integral]! over the energy density, following in 
dimensionless form from (6) (timelike derivatives with 
positive sign!). We then put 

(14) 

where m is the mass of the electron. The fundamental 
length I is determined by identifying the circumference 
21TRo of the stable string with the Compton wavelength: 

(15) 

The stable string radius Ro follows in principle from 
(6) in units of l, so that l is determined by (15L The 
motivation for the assignment (15) is that the Compton 
wavelength can be regarded as a structural element of 
the electron. 3,4 A further argument concerns the 
corresponding frequency mc 211'i obtained if the twist is 
thought to move along the string with velocity c, thus 
establishing an internal motion or spin. At a given 
point in space, 8 shows then a timelike variation with 
the above frequency. We think that this timelike 
variation of e if a property of the solutions of the basic 
action principle. The whole structure can then be con
sidered as an extended oscillator of frequency mc 2lti. 
This concept makes a link between the proposed struc
ture and quantum mechanics, which was originally5 
based on moving oscillators of this frequency. 
Equations (14) and (15) determine both available con
stants E and l, so that no further adjustment is possible. 
The constants E, l, and c are therefore the basic 
physical constants of this model. 
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If, as in Ref. 1, the energy density in the asymptotic 
part of the solition (here Ar2a 21'"4) is equated to the 
energy density of the electric field of the electron 
(1'-00) we find c 2 =a2E=Ar 2a2

• From Eqs. (14) and 
(15) the following relation between dimensionless 
parameters is found: 

(16) 

As all of the numbers a, Roll, I, follow in principle from 
(7), Eq. (16) is a test on the validity of the assumption 
(2).6 The following argument may also contribute to 
justify a correspondence between solitons and 
particles. The straight strings described have a 
constant "tension," a property which they share with the 
strings that have been introduced7 in the context of 
quark confinemenL It might be speculated that a soliton 
with N = 3 twists corresponds to the proton, which has 
a three-quark structure. As the validity of the model 
presented depends on the values of dimensionless 
constants and mass ratios, numerical solutions of 
Eq. (7) are desirable. 
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Analytic expressions for the correlations of the light emitted by an N -mode laser are given. We study in 
particular a special case of strongest couplings and show, for example, that at steady state, the second 
order cross intensity correlation tends toward a negative value, - 1/( N - I), for large pump parameters. 
We also study the time dependent solutions, and express the second order amplitude and intensity 
correlations of the emitted light in terms of the eigenvalues and eigenfunctions of a Schrodinger-type 
difTerential equation which reduces to that studied by Risken for N = I and to that studied by M-Tehrani 
and Mandel for N = 2. Analytic expressions which approximate the eigenvalues of this differential 
equation for a general N are given. 

1. INTRODUCTION 

The theory of laser has been extensively studied for 
many years. 1 In the original theory of the laser put 
forward by Lamb, 2 he solved a set of coupled Maxwell 
equations for the field and Bloch equations for the 
atoms, and by demanding that the field be self-con
sistent, he obtained a set of coupled nonlinear equations 
in the field amplitudes, A very important generalization 
has been the inclusion to this set of equations of the 
random noises associated with the spontaneous atomic 
emission, for mathematically, this makes it possible 
to replace the deterministic coupled nonlinear equations 
infield amplitudes, Ei(t), i=1,2"",N, bytheprob
abilistic multidimensional Fokker- Planck equation 
linear in p(EI> £2" " , EN; I), the probability of finding 
the field to be characterized by E 1, E2" , , , Ex at time 
t, Thus the inclusion of noises serves the doubly useful 
purposes of simplifying the problem mathematically as 
well as accounting for the naturally occurring effect 
physically, Moreover, all the physically interesting 
quantities such as the correlations (E; (t)E j (t + T) can be 
obtained if the joint probability of finding the field to be 
characterized by E;(i) at time t and by Ej{t+ T) at time 
I + T is known, 

A number of papers based on the Fokker- Planck ap
proach have been published, Of particular interest are 
perhaps those by Risken and Vollmer, 3 Hempstead and 
Lax, 4 and Wang and Lamb5 for the one-mode case 
(N = 1), Grossman and Richter, 6 and :\1- Tehrani and 
Mandel' for the two-mode case (N=2) and many 
others, 8 

In this paper, we present several analytic results for 
the general N-mode case, the general stationary solu
tion among them, We shall be concerned in particular 
with what we shall refer to as the spherical case which 
is a special case of very strong couplings, We show, 
for example, that at steady state, the second- order 
cross intensity correlation tends toward the value 
-l/(N-l) for large pump parameters, For N=2 this 
reduces to the result obtained by .H-Tehrani and 
MandeL 7 For the time-dependent solutions, we have 
expressed the second-order correlations of the emitted 
light in terms of the eigenvalues and eigenfunctions of a 
Schrodinger-type differential equation which reduces 

alResearch partially supported by the Army Research Grant 
No. DAAG 29-77-G-0060. 

to that studied by Risken3 for N = 1 and to that studied 
by }\'1- Tehrani and Mandel7 for N = 2. The compact ex
pressions which we derived, as will be seen, are a 
result of our use of the hyperspherical coordinates 
which have been well studied but not very frequently 
used before. In the last section we present analytic 
representations of the eigenvalues and eigenfunctions 
which characterize the time-dependent correlation 
functions. 

2. EQUATIONS OF MOTION AND THE STATIONARY 
ST A TE SOLUTION 

The familiar equations of motion for the complex am
plitudes E 1 (t), E2 (f), 0 , • , E N(t) of the N modes of a laser 
which were given by Lamb 9 and others are 

n=I,2, ... ,N, (2,1) 

where the a's are referred to as the pump parameters, 
and the 8's the coupling parameters, and the 'ii's are 
of the form 

'iin"",,=(vn-v,,+v.-va)t+dJn-<b,,+dJ.-<ba' (2 0 2) 

We consider the so-called free running approximations lO 

and we further supplement these equations by introduc
ing random Langevin forces corresponding to spontane
ous emission fluctuations. Equations (2.1) now take the 
form 

:!.~n=En(an- PI 8nmIEmI2)+~n(t), n=I,2, ... ,N, 

(2,3) 

where the Langevin noise terms ~l(t), ~2(t), ... , ~N(t) are 
assumed to be random and 6-correlated functions with 
zero mean values and 

(2.4) 

It is known l1 that to a system of equations with fluctuat
ing noises 

d;;=f,(X)+I;glm(XHm(t),1=1,2, ... ,d, (2.5) 
m=1 

where fs are independent, Gaussian, delta-correlated 
random functions with zero mean values and unit in
tensities, there corresponds a (multidimensional) 
Fokker- Planck equation for the joint probability density 
P (;K I> x2, ••• , xd;f) given by 
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ap d (I 1 d 02 

-=- ~ - (A.h) + - ~7:--- (B h) 
(If ~1 aXi ,V 2 .-1,;~ aX

i 
OXj iii', 

(2.6) 

where 

(2.7) 

d 

Blm(X)=2 6 g/j(x)gmj(x). 
Jd 

(2.8) 

Thus, if we express the complex field amplitudes 
EI> E2, ••• , EN in terms of real and imaginary parts 

(2.9) 

the 2N-dimenSional vector X= (xt>Yt> ••• ,x .'I')' .'I) repre
sents the state of the laser, and the Fokker- Planck 
equation for the probability density P (E1o E2, ••• , E N;t) 
Or p (x, /) is given by 

where 

The introduction of the Langevin noise terms has thus 
conveniently led us to a linear equation in p from the 
more difficult nonlinear coupled equations in E's. Equa
tion (2. 10) was the starting point of the treatments of 
lasers by many authors. 

The probability density Ps(x) of the stationary state 
which the system generally reaches after a sufficiently 
long time is the time-independent solution of Eq. (2.10), 
i. e, , P 5 satisfies the equation 

s (1 ~ (n) a ] 6 0 -,- (Ai Ps) - -a- Ps = 0 
bln:x.y 017; 1)i 

(2.12) 

which may be viewed as stating that the divergence of 
the probability current Ainlp s - (1) /(1)i vanishes. The 
probability current itself does not have to vanish in 
generaL It has been shown12 however, that the prob
ability current itself vanishes, i. e. , 

ah 
A~"lp _-1'_5=0 

1 S 21]; 
(2.13) 

in the special case called the potential case in which the 
Ainl(x)'s are derivable from a potential function U(x) 

such that 

A 
(nl( ) __ 2U(x) . x - , 
• i'1)i 

(2.14) 

and moreover, the Ainl(x)'s satisfy 

(2. 15) 

It can be verified that the potential function correspond
ing to Eq. (2.10) satisfying (2.15) is 
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.'I 

U(x) = 6 [- ~ai (xi + yi) + fBi! (xi +v~)21 
i: 1 

N 

+t 66 eij(X~+Y~)(x;+y;). 
it i= 1 
if.j 

(2.16) 

Thus the steady state probability density Ps(x) is given 
by 

(2. 17) 

where Q is the normalization constant given by 

The expression for U(x) for an N-mode laser, Eq. 
(2.16), has not appeared explicitly previously even 
though it is a rather straightforward generalization of 
those for the one-mode case given by Risken,3 
Hempstead and Lax,4 and the two-mode case given by 
M-Tehrani and Mandel. 7 

We now consider the special case which we Shall 
refer to as the spherical case in which 

and we shall obtain moments of the light intensities for 
this case. We shall not use the polar coordinates 

xi=1'icOSrj)i, "i=1'isinrj)i, i=1,2, ••• ,N 

as it was normally done, but we shall find it more con
venient to use the hyperspherical coordinates 13 

Xl =1'cosBt> 

Yl =1' sinB! cosB2, 

x 2 = l' sinB1 sinBz cosB 3, 

Y2 =1' sinB1 sinB2 sinB3 cosB4, 

X .'1-1 = l' sinBl sinB2 ... sinBu_4 cos B2N _3, 

y .'1-1 = l' sinBI sinB2· .. sinB2N_3 COSB2N_2, 

x N = l' sinB1 sinB2· .. sinB2N_2 cosrj), 

Y .'1=1' sinB! sinB2··· sinB2N_2 sinrj), (2.20) 

with1'?0,00Bj 7T U=1,2, ... ,2N-2), O~ rj),,-27T, 
except for the N = 1 case for which we use, 
naturally, x=1'cosrj), .v=ysinrj), with00rj)"'.27T. The 
volume element dx 1 dV1 ••• dx Ndy N in these hyperspheri
cal coordinates is 

(2.21) 

It can be verified that 
N 

y2 = 0 (x~ + :vi). (2.22) 
i:l 

Thus in the spherical case given by (2,19), the steady 
state probability density, (2.17), can be written as 

P 5 (1') = (,}-1 exp(~ aY - h A ), 

where 

F.r. Hioe 

(2.23) 

1308 



                                                                                                                                    

Q = fo ~ y2N-j exp(iaJ,.2 - ty4) dr 

J
'. r'J'2' ( . 8 )2N-2( . 8 )2N-S (. 8 ) x 0 '" J 0 0 sm j sm 2 ••• sm 2N-2 

(A2), and (A3) of Appendix A, for example, we can 
express Q, for N= 1 and 2 cases, in terms of the error 
function as given by Risken3 and M-Tehrani and Mandef: 

Xd81d82···d82N-2d<b. (2.24) N= 1, Q=rr3/2 exp(a2/4)(1 + erf(a/2' / 2», (2.26) 

The integral over 8's and rjJ (the surface area) is 2rr N
/ 

r(N), where rex) is the Gamma function; and the in
tegral over l' can be expressed in terms of the con
fluent hypergeometric function, j4 jFj(a,c;x) or <l>(a,e;x) 
in the Humbert's notation, We obtain 

N=2, Q=rr5/2[2/rrl/2+aexp(a2/4)(1 +erf(a/2»]. 

(2.27) 
Writing 

Ii=x~ +y~, i=l, 2, ••• , ;V, 

the moments of the light intensities at steady state 
O~f 2 2 2 2 (!'!1!'!2 •• , ) = J (K. + v· )"j (r. + v· )"2 

'j '2 -~ 'j' '1 '1' '2 

X·,, Ps(x) dXj dYj' 0 ,dxNdj' N 

The confluent hypergeometric function is a well studied 
function, and for convenience, some of its useful prop
erties are listed in Appendix A. Using relations (AI), 

can be readily evaluated in the spherical case using the 
hyperspherical coordinate (2,20), Thus for the mean 
light intensity (I j;, since it is independent of i, we may 
choose to evaluate (IN), and find 

(Is) = Q-j fOC 1'2(S+1)-j exp(iar2 - tr4)dr f'··. /'12' (sin81)2(N<1>-2 ••• (sin82N_2)SdB1••• d82N_2drjJ 
o 0 0 0 

<l> (i(:v + 1), ~; a2
/ 4)/r(i(N + 2» + a<l>(t(:V + 2),~; a2

/ 4)/r(i(N + 1» 
<l> d-N, f; a2/4)/rmN + 1» + a<l> 0(N + 1), 1; a 2/4)/rd:V) 

For large positive values of a, we obtain 

UN) -a/N 

(2.30) 

(2.31) 

by applying relation (A4) in Appendix A to (2.30), It should perhaps be mentioned that although the third-order laser 
theory of Lamb holds in the neighborhood of the threshold, it covers a large range of pump parameters a of up to 
several hundred. 

Similarly, we find 

U~)=Q-j fOO1,2(N<2Hexp(iar2_ty4) 1···· f< f2. (sin8j)2(N+2>-2.,.(sin82N_2)5dBl···d82N_2dq:, 
o 0 0 0 

_ 2 X <l>(t(:V + 2), t; a2/4)/r(t(:V + 3» + a<l>(i(N + 3),~; a~4)6r(i(N + 2» _ 2a2 

- <l>(!N,±;a2/4Vr(±(N+l»+a<l>(i(:V+1),1;a 4) q!JV) N(N+1) asa-+
oo

• 

Also, 

(I 1 \ Q-l (~2(1>+2)-1 (' ,2 '4)d « (' (2«. )2(N+2)-2 (. B )7 N-IN/= JoY eXp2aJ -4:r 1'Jo,o')oJo sm81 ·,· sm 2N_4 

X sin48u _s sinS82N_2 (cos2 82N-3 + sin2 82 N-3 cos 2 82N- 2) d 8 j 0 •• d 82 N-2 d<b 

=~(I~)-a2/,V(N+1) asa-+ oo • 

Thus, denoting 

61; = Ii - (I;), 

we find, using (2.31), (2.32), and (2.33), that, for large positive values of a, 

«61j )V(lj;2 - (N - l)/(N + 1), 

«61i )(61i»/(Ij;(I) --1/(X+1), i*j, 

«Mi)(Mj»/[«Mi)~«A.1)~1l/2--1/(N-l), i*j. 

It is seen that for N = 2, we recover the result of M-Tehrani and Mandel. 7 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

The results above for the spherical case which represents a special case of strongest coupling, may be com
pared with the N independent-mode case specified by 

8ij = °iJ 
in (2.3) and (2.10) in which we have 

(If; -ai' 

(ID -aL 
while «61i)~ as well as all the cross correlation terms equal zero. 
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(2.39) 

(2.40) 
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3. TIME-DEPENDENT SOLUTION 

In this section, we consider the more general prob
lem of finding the time-dependent solution for the prob
ability density, p(x, f), of the Fokker-Planck equation 
(2. 10). A substitution of 

p(x, !) =exp[1/J(xH.dx) T(I) 

into (2.10), with the choice 

(3. 1) 

1/i(X) =' - W(x) (3.2) 

where U(x) is given by (2.16), results in the following 
eigenvalue equation: 

T' IT= - L!di{= - A, (3.3) 
where 

L = t 0 (- ~ + 1. (Ai~»)2 + 1. OAi~») 
h 1 ~ox.;> oTJ; 4 2 oTJi 

+a.- e .. (x 2 + v2Il-..f".. e. 1_2 +V2)} (3.4) t ttl _ L.J 1m \A m _ m ' 
",=1 

The factor exp[l/'(x)l in (3.1) and the choice (302) for 
l/'(x) is to eliminate the first order derivative terms (J j 

ax; and a/a.!'; such that the operator L given by (3.4) is a 
Sturm- Liouville self-adjoint operator, 15 If {n} denotes 
the set of labels or "quantum numbers" for all the 
possible eigenvalues, the general solution of the 
Fokker- Planck equation (2,10) can be written as 

p(x, t):=: exp[ - ±U(x) 16 elM) K In) (X) exp(- AIM)!)' (3" 5) 
IMI 

where the coefficients c In} are to be determined by the 
boundary conditions, The lowest eigenvalue must be 
zero if the probability density p (x, t) is to reach a steady 
state limit, which has been shown to exist in the pre
vious section, It also follows that the normalized eigen
function g 101 (x) in 

(3.6) 

corresponding to the zero eigenvalue (A=O) is given by 

f[IO} (x) =Q-l/2 exp(- ±U(x)t (3.7) 

It will be noted from Eqs. (2,17) and (3.7) that Ps(x) 
= Ig lo } (x) 12

, More generally, we shall normalize all 
eigenfunctions of Eq. (3.6) such that 

r: ... f '{(nl·(X)g Inl (x) fix 1 dy 1000 dx A,dy N = 6 In) In}', 

(3.8) 

and we assume that they obey the completeness relation 

o gin} (X'klnl (x) = 6(x - X'). 
Inl 

(3.9) 

The conditional probability density, or the Green's 
function, G(x, t; xo, to) for the amplitudes of the fields to 
be characterized by x at time t if the amplitudes of the 
fields were characterized by Xo at time 10 , can be ex
pressed in terms of the eigenvalues Aln) and eigen
functions gin) as 

1310 

G(x, t; xo, to) = 6 gl~) (x)Kln) (Xu) 
In) 

X exp[ - W(x) + ±U(xo) 1 exp[ - A(nl (t - to) 1, 
t?· 0, (3.10) 
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for this function satisfies the original Fokker- Planck 
equation (2.10), and it reduces to 6(x- Xo) when I = to 
according to (3.9). The jOint probability density 
h(X, t; x', (') for the field at two different times can now 
be written down. We have in the stationary state which 
is independent of the origin of time, 

Pz (x, t + T; x' , f) 

= (; (x, T; x' , 0)/) s (x') 

= ([16 ;,rln) (X)glnl (X') exp[- ~U(x)- ~U(X/) 1 exp(- Aln) T), 
(n) 

T;· 0 

=;,rrO) (X)glol (x') 6 ginl (x)g Inl (x') exp(- Aln) T), 
In) 

The second- order amplitude and intenSity correlations 
defined by 

< Ej.(f) E j (t + T) 

= r: . , . f (x~.- ivj·) ~'\:j + i1'j)P2(X, / + T; x', !)d2Nx d 2Nx', 

(3.12) 

and 

<Ir(t)Ij (I + T) 

= r: . , . f ~t} + v;t)~'.:; +V;)P2(X, I + T; x', f)r/2f1x dUx', 

where d2f1x:dxl dy!" 'dxNdvN, can be expressed in 
terms of the eigenvalues and eigenfunctions of the 
operator L in (3 0 4). 

We shall now consider the spherical case as specified 
by (2.19). Noting the definition of y given by Eqo (2.22), 
the operator L in Eq. (3.4) becomes 

(3.14) 

where 

F(Y) = ,Va - (N + 1)1'2 + h-2(a _1.2)2, (3.15) 

If we use the hyperspherical coordinates (2.20) and 
write the eigenfunctions, g(x), of L in the form 

(3.16) 

the radial part, R(v), of g(x) satisfies the equation13 

r/2Rnl+2N-ldRnl +[A _F(y)_1(Z+2N-2)]R =0 
rlr2 l' dr nl 1'2 nl' 

(3. 17) 

while the Y's are known functions [independent of F(r) 
as F does not depend on e'g or 1J 1 which can be ex
pressed in terms of the Gegenbauer polynomials. 13 The 
eigenvalues Ani and the radial eigenfunctions Rnl (1') 
depend, of course, on N but the dependence is not ex
pliCitly shown for notational convenience. For every 
value of 1=0,1,2"" (which can be referred to as the 
orbital quantum number), there are II (;V, l) linearly 
independent Y's, where 

leN 1)=2(V+l-l). (2N+I-3)! 
I , " (2.V - 2)! l! (3. 1 B) 

The lz (N, 7) linearly independent Y's are given by13 
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Y{m,(e1, °2, ••• , 82A - 2, ¢) 
2N-3 

= 11(111 0,1111." 0' IJ/2A_2) exp(± im2N-Z¢) fl (sinek+l)mk+1 
k.O 

xCmk+f+,N/2-I(cose ) (3.19) 
mk -m k+1 k+1 , 

where /JIo, III I. .,. ,1I12N-2 are integers such that I = 1110 

? 1111? ••• ? 1I12N-2? 0, and C~(x) is the Gegenbauer poly
nomial of degree II and order v, and .11(1110,111 1, ••• , 

/}/2A-2) is some normalization constant which we shall 
use later [see Eqc (3.27)1. 

Returning to Eq. (3.17), the first order derivative 
term in the equation can be eliminated by the following 
substitution 

R(r)=r-(2N-I)/\(r) (3.20) 

which results in the following equation: 

d
2

Xnl + [~ _ F(r) _ (1 + N - .:l)(l + N - ~).] - 0 
dr2 nl 1'2 Xnl - , 

(3. 21) 

where F(Y) is given by (3,15). Equation (3.21) gives the 
relevant eigenvalue equation for any number of modes 
in the spherical case in a rather compact form, It can 
be verified that for .v = 1 and 2, it reduces to those 
equations studied by Risken, 3 and by M-Tehrani and 
MandeL 7 

We have labeled the eigenvalues of Eq. (3,21) Ani 
since for every value of I, we have n = 0,1,2, ' " (n may 
be referred to as the principal quantum number), Each 
of these eigenvalues is generally degenerate with II (;V, I) 
given by (3.18) as the number of degeneracies, since 
there are" (N, l) independent eigenfunctions correspond
ing to a given Ani' Thus in writing the joint probability 
density, Eq. (3.11), as 

pz (x, f + T; x' , !) 
00 

=g6'o(x)goo(x') 6 g:I(X)gnl(X') exp(- AnI T), T? 0, 
n, 1=0 

(3, 22) 
we should remember to take into account of the ap
propriate degeneracies. The "ground state" eigenfunc
tioni1·oo(x) corresponding to Aoo = 0 is, from Eq. (3.7), 
known for a general set of parameter a i and 0ij' For 
the spherical case in particular, the normalized ground 
state eigenfunction is 

goo (x) = (r J 12 exp(inr2 _ *1'4), 

where q is given by (2.25). 

(3.23) 

The exact analytic form of the general g nl (x) and Ani 
other than the ground state is not known, but we have 
found simple approximate analytic expressions for them 
and these will be presented in the following section. 
In the remainder of this section, we want to show that 
for the second-order amplitude and intensity correla
tions. (3.12) and (3.13), not all eigenvalues and eigen
functions contribute to them. The "selection rule" 
arises, as we shall see, when we integrate the angUlar 
parts of the eigenfunctions. 

First, let us write out (3,12) and (3,13) more ex
plicitly. For the spherical case, as pointed out in the 
previous section, because of the symmetry, these cor
relations do not depend on the j's. Therefore, without 
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any loss of generality, for the casej'==j, we may 
choosej=N, and for the casej'*j, we may choose 
jf = N - 1, j = N, We use the hyperspherical coordinates 
(2.20) and consider first the case j' =), for which, 
following (3.11), (3.12), (3.16), and (3.20), we find 

ro 

(Ej (t)E j (f + T) = 6 Unl exp(- Ani T), (3.24) 
"t 1::0 

where 

unl = / foro 1'XOO (r)Xnl (r) d1' fo" .• , for fo 2v (sinel )2N-I 

x (sin82)ZN-2 ••• (sine2N_z)Z exp(icp) 

XYoY/(8j, 82, ••• , 82N_2,¢)deld82' •• d82N_2dCPI2. 

(3. 24a) 

The appropriate degeneracies for every I value should 
always be remembered. The normalization of the eigen
functions g(x), Eq. (3.8), means that the transformed 
eigenfunctions Xnl (1') given by (3.21) have been normal
ized such that 

fo ~ Ixn' (r) /2 dr= 1 (3.25) 

and that the Y/'s have been normalized such that 

(' 1.' (211' ( • 8)2N-2(. 8)2N-3 . 8 J 0 '"' 0 Jo sm 1 S1l1 2 ••• sm ZA-2 

x I Y I (8j, 82, 0 •• , 82A- 2¢) /2 del d82• •• d82N_2 d¢ = 1. 

(3.26) 

To satisfy (3,26), Min (3.19) should be chosen to be 
(Ref. 13, p. 240) 

.H(mo, 1I1j" 0' ,1112N-2) = {2/;[2 Ek(mk-t. mk)}_I': (3.27) 
k=1 

where 
1T2k-2m -2 N+2 r(l + 11/ + 2:V - 1 - k) 

Ek(l,m)= (1 'T 1 1 )(l [( \T 1 1 12' + 1\ - Z - zk - In)! r 111 + 1 - '" - zl?) 

(3.28) 

Let us examine the integral over the angular part in 
(3. 24) first for the case N == 1. The integral in this case 
is 

1. Zs 
o exp[i(l±l)m]d¢ (3.29) 

from which it is clear that only I = 1, among all non
negative values of l, has a nonzero contribution in 
(3.24). 

Next we consider the N == 2 case. The integral over 
the angular part in this case is 

,(" exp[i (1 ± 1112)CP 1 dcp fo' (sin81)ml+3C~.1~~(cos til) d81 

x {' (sine )m2+Zcm2+1/2(costi ) d8 J 0 2 mcm2 2· 2· 

We see that, to be nonzero, 1112 = 1. The integral over 
82 then becomes 

I I 

J (1_X2)C3/2 (x)dx=J (1_X2)3/2-1/2C3/2 ix)dx 
-I ml-I -I ml-I ~ 

(3.31) 

which, from the orthogonality property of the Gegen
bauer polynomial (see Eqo (Bl) in Appendix Bl, is zero 
unless m 1= 1. The integral over 81 then becomes r: (1 - x2)3/2Ci_1 ,y) dx = r: (1 - x2)2-1I2Ci_1 (x) dx 
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from which it follows that only 1 = 1 contributes in 
(3.24) for the case X= 2, 

For the more general value of :V( 2), other values 
of 1 will generally contribute, All that can be said is 
that the only contributing value of IIIZ,\_,\' IJIZ X-3, and 
1J12s-2 in the set 1 = 1110 c 1111 ' "';' 1112,\_2; 0 is 1. 

For;' "i, < Ej.(t) Ii j (t + T) = 0, This follows readily if 
we note that the integral over m and ch' as we choose 
)' = X - 1 and i =.Y, is given by 

.1/" exp(± ilil 2N_20')r!(i)' Jo
z
, exp[i(l ± 1Il2S_z)m 1 deb 0=0, 

(3.33) 

Next consider the intensity correlation for the case 
j'=j, which, following (3,11), (3,13), (3.16) and (3.20), 
can be expressed as 

(Ij(t)l j (/ + T) = :0 I'nl exp(- AnIT), (3.34) 
n,I=O 

where 

l' = I' /' ~ 1'Z\ (1')" (r) rl1' nl ,0 OO,\nl 

X .1
0

' •• , ./0" Jo 2. (sin81)2"(sin02)2N-1 ..• (sin2,\_Z)3 

x Yo Y 1 (B1' fJ2, ... , fJ2,\-Z, rt» d 81 d 8Z ••• d 82 '\-2 d ch 12. 

(3. 34a) 

First consider the case X = 1. The integral over the 
angular part is 

,2" 
)0 exp(±ilriJ)drt> 

which shows that only 1 = 0 contributes in (3.34). For 

where 

N = 2, the integral over the angular part is 

.10
2
• exp(± im2¢) deb ./~. (sin81)ml+4Cr_1~:(COS81) dA1 

x I'" (sinB )m2+3cm2+1 / 2 (cosB )dO , 0 2 m1-m2 2 ZO 

To be nonzero, first 1112 = O. The integral over Oz is then 

r 1 (1 _ x2)C1/Z(y)tlx = r I (1 _ xZ)(l _ x 2) 1/2-1/ZC1/ Z(r) dx 
,-1 ml ' _I ml' 

(3.35) 

which is zero unless 1111 = 0 or 2, When iJll = 0, the in
tegral over Bl is 

L: (1 - xZ)3 !2cl (r) dx = r: (1 - x 2) (1 - x2)1-1/ZC} (,) dx, 

(3. 36) 

which is zero unless 1=0 or 2, When iii 1 = 2, the in
tegral over Bl is r: (1 - x 2)5/2CL2(') dx = r: (1 - X2)3-1/2C~_2(Y) rlx, 

(3.37) 

which is zero unless 1=2. We thus conclude that for the 
case :V = 2, l = 0, and 2 are the only contributing values 
of 1 for the second order intensity correlations (3.33). 

For the more general value of N(' 2), other values of 
1 will in general contribute. We can say, however, that 
in the set of IJ1 values 1 = 1Il0~' 1111;' .,'? IIlZN-Z? 0, the only 
contributing values of 1J12N-4 and 1112,\_3 are 0 and 2 and 
of 11I2N_2 zero only. 

For the casej' ii, (Ij,(I)lj (t + T) is given by 

(Ir(f)I,(' + T) = '0 l('nl exp(- Ani T), (3.38) 
n, 1:::0 

1 I
, ~ 2 12)'" r' 1,2., 2N· 2 \-1 .' l('n/=o rxoo(rlxnl(r)r!Y 0·00 Jo ,0 (Sm&l) (sm82)' "'(Sm&2N_2)YOl/(Bj,o,o,&2N_2eb)d&lo"dU2N_2deb 

I, r ". f' 2.. Z v. 2 A -1 ' 5 2 ' 2 2 ' 2 • 
X, 0 •• , .10 ,0 (SmOl)' (sm82) '" (sm8Z,\_4) (COS &2.\-3 + sm 02"-3 COS &2,\_2)Sm &2N-3 Sm82N_2 

x }'O}'/(81" •• , t12S_2eb)r1&I" ,dt12s _2d¢, 

For Y = 2, it can be shown similarly that 1 = 0 and 2 are 
the only contributing values of 1 for this correlation, 

For easy reference, some of the useful properties of 
the Gegenbauer polynomial16 C~~\:) are listed in Appendix 
B. USing these properties together with the well known 
formula 

f " /2 / / 
• m-ltJ n-11) 1" 1 rem, 2)r(ll. 2) 

(I sm cos (u=2~+I1)/21' (3,39) 

it can be verified that the exact expressions for the 
cases X = 1 and 2 can be written more simply as 
follows: 

(3. 38a) 

I 
V=2 

(Ej-(l)Ej(t + T) 

~£ exp(- An1T) 1 j~~rXOO(rlxnl(Y)drI2, j'=j, (3. 42a) 
'" n=O 

=(0, j'ii,(3.42b) 

(IJ,(I)Ij(l + T) = i '0 {exp(- AnO T) 1 .fo ~ r2XOO (Ylxno (v) dr 12 
n=O 

±)3 exp(- An2T) 1 .fo ~ r2xOO(r)Xn2(r)(iY 12L 
(3.43) 

,Y = 1 00 00 where the + sign is for the case j' =j and the - sign is 
(E* (t)E(t + T) = '0 exp(- AnI T) 1 fo YXoo (Y)Xn1(Y) d1' 12, for the case j' *j. 

n=O 

(3.40) 

(1(1)l(t + T) = £ exp(- AnOT) 1 fo 00 y2xoo(1'lxno(Y)d1' 11, 
n=O 

(3.41) 
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The result for N = 2 agrees with that obtained by M
Tehrani and Mandel. Some numerical data and graphs 
for various quantities of interest for this case have 
been presented in their paper. 

The ground state eigenvalue, AOO' is, as already 
shown, exactly zero independent of the value of the 
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pump parameter a, It has been observed numerically, 
for the cases of N = 1 and 2, that the values of AOI for 
1 * 0 approach zero as the pump parameter a is in
creased and becomes positively large, This means that 
for large pump parameter, the intensity correlation for 
the case N = 2 is no longer well represented by a single 
exponential as in the N = 1 case and that the correlations 
persist for longer times. This also holds for N> 2. An 
argument which indicates that AO' - 0 as a becomes 
very large for any value of N will be given in the next 
section. 

4. ANALYTIC APPROXIMATIONS OF THE 
EIGENVALUES Ani 

In the previous section, we have expressed the sec
ond-order amplitdue and intensity correlations, (3.12) 
and (3.13), in terms of the eigenvalues and eigenfunc
tions of the operator L given in (3.4). For the spherical 
case specified by (2.19), the correlations (3.24), (3. 34), 
and (3.38) are expressed in terms of the eigenvalues 
\, and eigenfunctions Xn,(r) of Eq, (3.21). The exact 
analytic solution of Eq. (3.21) is not known, and pre
vious studies for the cases N = 1 and 2 have been based 
on computer numerical calculations. 

Differential equations similar to Eq, (3,21) have been 
recently studied by the author l7

- 19 in collaboration with 
Montroll and Mac Millen in a different problem, and we 
have found that the WKB formula, which in theory pro
vides good approximations to the eigenvalues when the 
quantum number is large, is good even when the 
quantum number is small. We shall see in this section 
that when properly scaled and expanded, the WKB 
formula provides a beautifully simple formula for all 
eigenvalues and all values of parameters, We shall also 
indicate how the eigenfunctions can be analytically 
represented, 

The basis of our analytic approximation scheme is 
Titchmarsh's formula2o which is a rigorous version of 
the WKB formula. Beginning with Eq. (3,21), Titch
marsh's theorem states that the eigenvalues AnI' in the 
large quantum number limit, are given by 

(4.1) 

where ro is the smallest positive root of 

(4.2) 

With F(r) given by (3,15), the integral on the left-hand 
side of (4,1) can be expressed in terms of complete 
elliptic integrals of the first, second, and third kinds. 18 

However, this expression is very lengthy and too 
cumbersome to be used for practical purposes, As 
shown in Ret 19 on the other hand, the integral on the 
left-hand side of (4,1) can be expanded in simple series 
either in integral powers of AnI for the case of small 
AnI or in integral powers of A~1/3 for the case of large 
AnI' The appearance of the 1/3 power is interesting and 
is due to a remarkably useful scale transformation. 
The reader is referred to Ret 19 for detail, The large 
An' expansion turns out to cover most cases for our 
problem here, 
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Denoting 

(4.3) 

we find, following the expansion procedure described in 
Ret 19, that Eq, (4,1) becomes 

11.2 / 3 00 

622% 1/2:0 Bj=n+~(l+N), (4,4) 
, rr j=O 

where 
B - (_I)f ± (j)(3hyPr«2j +2p +1) 6) (4.5) 
f- j! p=O P r«5+j+P) 3-j)' 

(3=22/3(a2/4-N-l)A~i/3, Y=_21/3aA~1/3. (4.6) 

I AnI I must be greater than the larger of 

21a1 3/27 and 21(a2/4-N-lliI 3/2 

for the series L: B j to converge, By successively truncat
ing the series on the left-hand side of (4,4), successive 
approximations of AnI for any values of n, l, and N can 
be obtained, Formula (4,4) can be written out more ex
plicitly in the form 

A~(3(bo + blA~1/3 + b2Kn~ 13 + h3A~1 + b4A~t 13 + ... ) 

=11 + ~(l + N), (4,8) 

where we found 

hO = 0.36525, 

hi = 0, 094341a, 

b2 = (N + 1)/6, 

b3 = O. 081167 (N + l)a - 0, 0045093a3, 

b4 = 0,031447 (N + 1)2 + 0, 010482(N + l)a2 

- O. 00058235a4, 

By inverting this expression, AnI can be expressed ex
plicitly as follows; 

Denoting 

ll,=,n+i(l+N) 

we have 

An,=Na+4.530181l3/2 

(4.10) 

X[1 +A11l-1/2 +A21l-1 +A3!.L-3/2 +A41l-2 +." p, 

where 

AI = - 0, 078051a, 

A 2 =- (N+l)/12 +0, 0030459a2
, 

A3 = - 0,024527 (N + 1)a + 0, 0013626a3, 

A4 = - 0,0092152 (N + 1)2 - 0, 0035748(N + l)a2 

+ 0, 00020807a4, 

(4, 11) 

Some samples of AnI for l = 0, a = 0, obtained from this 
formula (with terms up to A4 only) are compared in 
Table I with the numerical results obtained by Risken 
(N = 1) and by the author (N = 2), The accuracy is seen 
to be quite remarkable, Formula (4,11) has been found 
to be also reasonably good (always increaSingly better, 
of course, as n, l increase) for other values of param
eters; we must remember, however, the range of its 
validity as specified by (4.7), 
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TABLE 1. Comparison of some AnZ for I = a = 0 obtained numeri
cally and from Eq. (4. lli. 

N=l N=2 
11 l\'umerical Eq. (4.11) Numerical Eq. (4.11) 

5.62(i() 5.5279 7.644 7.727 
2 14.:lGZ8 14.2849 17. :38 17.457 
" ,) 25.4522 25.3820 29.17 29.285 
4 :18.4622 :18.3970 42.7:, 42.912 
5 5:1.145:1 5:1.0798 57.85 58.1:3:3 

The accuracy of our analytic expression (4.11) for 
AnZ can be further improved if we make use of the exact 
numerical data obtained by other methods. One pro
cedure for such improvement was given in Refs, 17 and 
18. 

Our formula (4, 11) can also be readily adapted for the 
N independent one-mode case specified by (2.38), De
noting the Ai in (4.12) more specifically by Ai(N,a), 
and the 11 in (4,10) by 11 (11, 7, ,V), then the eigenvalues 
for the i'v' independent one-mode case can be approxi
mated by 

AnlZl' .. nNls(al> ••• ,aN) 

= t {a" +4. 5301811(n",7" 1)3/2 
1>=1 

X [1 + ~l rI i (1, (( p) 11 (n", lp,lri/Z] T (4.13) 

The spherical case and the S independent one-mode case 
are two extreme cases of the general situation in which 
the sets of (/ i and eij lie between these two extreme 
cases, The study of the more general cases will involve 
the study of multidimensional differential equations, 
This will be taken up in another paper in which we shall 
approach the problem with techniques similar to those 
used in Ref. 19. 

The ei?:enfunctions XnZ (r) of Eq. (3,21) can also be 
analytically represented quite accurately if we combine 
the WKB type analysis with the exact numerical data, 
For example, by observing the numerical data, we have 
found that the normalized eigenfunctions XnZ (1') for II * ° 
[the ground state eigenfunction 

XDO(1') = [21T'/r(;V) 11/2~-1/2r(2N-1l/2 exp({ar2 _ {lA) 

exactly from (3.20), (3.23), (2.24), and (3.25) for any 
Nl can be quite accurately represented by the following 
simple form: 

(,) _{enz cos (BA~(21'_ }JT[l+ N- ~]), Y~iln)"; y '" 1'~"}), 
Xnl 1 - 0, otherwise, 

(4.14) 

where 

1'~niln)=(1T/2BA;(2) (l+N-~), (4.15) 

r~n,:)= (1T/2BA~{2)(1 + N + 2n + t), (4.16) 

cnl=[2BA~(2/(n+1)1Tll/2, (4.17) 

AnZ is the eigenvalue [approximately given by Eq. (4. 11) 1 
and B is found numerically to be '" 1. The actual eigen
functions XnZ (1') rise slowly from zero at r = ° and de-
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crease exponentially to zero at the tail (after cutting the 
l' axis n times), rather than becoming zero abruptly 
outside the range r~"f~ ,,; 1'''; 1'~"}) as given by (4,14). The 
error introduced for any practical purpose is, how
ever, very small. Notice that n is the "principal 
quantum number" which gives the number zeros of the 
eigenfunction XnZ (1') between 1'~i~) and 1'~n;,/. Further 
improvements of this approximation can be made. De
tails of this investigation of the analytic representations 
of the eigenfunctions will again be left to the next paper. 

Formula (4.11), by the restriction (4.7), does not 
cover the case when the va.lue of the eigenvalue is very 
small. As pointed out in the previous section, aside 
from Aoo = 0, Aoz for I > 0, has been found to approach 
zero for large positive values of pump parameter ((, 
This can be seen as follows: 

For very large a, the minimum of the potential 

V(1') = (l+N-~)~+,\'- ~) +Na- (N+1)1'2+{r2(a_r2)2 
)' 

(4.18) 

in Eq, (3.21) can be verified to occur at r2 = a. The 
eigenfunction XOI (1'), since n = 0, is a bell- shaped func
tion having only one peak which should occur at approxi
mately 1'2 = 0, For 1=0, we know that Xoo(y) is exactly 
given by 

Xoo(r)=cr(2N-l>/2 exp ({ay2_ bAl. (4.19) 

For 1", 0 it can be verified that 

(4.20) 

satisfies exactly the differential equation (3,21) with 
AOI = ° at 1'2 = a, although only approximately elsewhere. 
Since the most important feature of the eigenfunction is 
around 1'2 = ((, it is understandable, as the numerical 
result shOWS, that, for large ((, Aoz '" 0 with the corre
sponding eigenfunction given approximately by (4020). 

5. SUMMARY 

We have presented some analytic results for an N
mode laser, among them the steady state probability 
density (2.17) for a rather general case, and in the 
special case which we called the spherical case, the 
steady state correlations (2.35)- (2. 37), and the time 
dependent correlations (3.24), (3.34), and (3.38). The 
eigenvalue equation, the solution of which the time-de
pendent correlations depend on, is expressed in a com
pact form by Eq. (3,21). The N= 1 and 2 results re
duce to those obtained previously by other authors, We 
have also presented a simple and useful analytic rep
resentation of the eigenvalues (4011) which has been 
found to be reasonably accurate for a wide range of 
parameters. 
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published in Opt. Lett.) agreed well with the theoretical 
calculations given by us. 

APPENDIX A 

In this appendix, we list some of the useful proper
ties of the confluent hypergeometric function, 14 

lFI (a, c ;x) '" <l> (a, c;x): 

~ (! 1.. 2 '~)_ 2 
1/2 <l> 2, 2,-X )=erf"" =-:T72 

IT IT 

<l>(a,c;x)=eX<l>(c-a,c,-x), 

d a 
~ <l>(a,c;x)= ~ <l>(a + 1, c + l;x) 

r 2 In e-t d/=l- erfc(x), 
o 

(AI) 

(A2) 

=~{<l>(a+1,c;x)-<l>(a,c;x)}, (A3) 
x 

APPENDIX B 

In this appendix, we list some of the useful proper-
ties of the Gegenbauer polynomialI6C:(x): 

f l (1- x 2) "'-1/ 2C"'(x)C"'(x) dx = 0 IT2
1
-
2
"'r(n + 2~ 

-1 m n mn n ! (n + a)[r(a)]2 , 

a *0, a> - t, 
(B1) 

1 ['!L.2 ) (_ 1 m r(O' + n - 111) C '" (x) L.;) (2x)n-2m, 
n = r(a) m=O 1II!(n-2111)! 

Q> - t, a *0, 

(B2) 

['!L.2) ( 1) I 
C~O)(x)= L.; (_l)m n-I11-. (2x)n-2m. (B3) 

m=O rn!(n-2m)! 
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On the generation of new solutions of the 
Einstein-Maxwell field equations from electrovac spacetimes 
with isometriesa) 

Isidore Hauser and Frederick J. Ernst 

Department of Physics. Illinois Institute of Technology. Chicago. Illinois 60616 
(Received 18 November 1977) 

We present transformation formulas which facilitate the determination of the metrics, electromagnetic 
fields, connections and Weyl tensors of those electrovac spacetimes which result when a given solution of 
the Einstein-Maxwell equations with an isometry is subjected to the transformations of the Kinnersley 
group. Several applications of our calculational procedures are given as illustrations, and a number of 
general theorems are presented. In particular, we infer that when we apply such techniques to the only 
known solution of Petrov type ,'II with twisting principal null rays, the new solutions which result will be 
algebraically general. 

This paper is an exposition concerning teclmiqllc; 
specifically, technique for constructing new solutions 
of the Einstein-Maxwell field equations from old "seed 
solutions. " The theory underlying this technique was 
developed by Geroch' for the vacuum case, and later 
by Kinnersley2 for the electrovac case, although the 
discovery of the actual transformations dates back to 
the pioneer work of Ehlers" and Harrison .. , 

The calculational technique which we shall present, 
and which we shall illustrate with several concrete ex
amples, can best be described as based upon an amal
gamation of Geroch's and Kinnersley's formulations of 
the transformation theory. Thus, on the one hand, we 
utilize a set of complex vector potentials which reduces 
in the vacuum case to Geroch's {Cl' i> P J On the othe l' 
hand, we also employ the complex scalar potentials 
( and <I> introduced by Ernst" and utilized by Kinnersley 
in his development of the transformation theory. 

We shall provide formulas for the construction of 
the transformed connections and Weyl conform tensor 
as well as the metric and electromagnetic field For
mulas for the Weyl tensor were first developed by 
Ernst" in terms of a specific choice of tetrad, but later 
it was shown by Ernst and Plebanski 7 that such formulas 
can be derived directly from the Killing vector structur
al equations and that it is unnecessary to restrict the 
choice of tetrad in any way. The formulas which we 
shall present in this paper for the first time are /vans
fOr/llaliml formlllas, i. e., they relate the new Weyl 
tensor to the old Weyl tensor. Furthermore, our 
transformation formulas for the connections are the 
first such formulas which are valid for an arbitrary 
tetrad. We believe all these formulas will be found 
easy to use. 

In the last section of this paper several theorems 
will be given and several observations made concerning 
the effect of Kinnersley transformations upon seed 
solutions of certain types. 

.lnesearch supported in part by National Science Foundation 
Grant PHY75-08750. 

1. THE KINNERSLEY GROUP 

The discovery of the Kinnersley group, first intro
duced in Ref. 2, did much to unify various transforma
tions which had been developed over a period of many 
years in order to generate new solutions of the Ein
stein-Maxwell field equations from old ones. The group 
can be regarded as a group of nonlinear transforma
tions of certain complex potentials 

(1. 1) 

where the indices E and Al should suggest "Einstein" 
and "Maxwell," respectively, and the trivial potential 
Co is introduced for purely formal reasons. In terms 
of these potentials the Kinnersley transformations as
sume the form 

(1. 2) 

where the indices r, s, t assume values 0, E, and AL 
The parameters Brs are constants governed by the 
conditions 

(1. 3) 

where 

[
0 1, 0] 

{G rs }= ~ ~ ~ . 
(L 4) 

Any two matrices {BTs} which differ only by a phase 
factor will be regarded as equivalent. Thus, the group 
with which we are concerned is U(2, 1 )/U(l), which is 
isomorphic to SU(2, 1). The transformed gravitational 
field will be seen to depend only on the parameters 

(1 5) 

which therefore play an especially important role. 

In Ref. 2 the parametrization of the group was based 
upon five particular transformations, which correspond 
to the following matrices. 

° ° J 1 -2a* (gauge transformation), 

° 1 
(I)~ [+ 
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o OJ 1 0 (gauge transformation), 
o 1 

[

ex 

(III) = ~ OJ ° (uniform conformal 
e i ' mapping; duality rotation), 

(IV) ~ ~ i{3 ° ] 1 ° (Ehlers transformation), 

° 1 

(V) = ° 1 0 (Harrison transformation), 
[

1 -cc* -2C*J 
o c 1 

An alternative parametrization was developed re
cently by Tanabe,8 who utilized two special matrices. 
His matrix U, corresponds to the Harrison transforma
tion (V) with 1 c 1 = 1, while his Uo corresponds to 

Uo=[~ ~ -;~;:;:~J' 
-c c ll. 

where a=t(ei~+ll.e·i~), b=t(ei~-ll.e-i~), and ll.2=1 

+ 41 c 12
, It should be noted in passing that when eia = 1 

the transformation Uo reduces to the one which was 
used by Ernst to generate the Kerr-Newman solution 
from the Kerr solution9 and the charged version of the 
Tomimatsu-Sato solution from the uncharged version. 10 

2. TRANSFORMATION OF THE METRIC 

The general procedure for deriving the transformed 
metric will be illustrated using the Reissner-Nord
strom (RN) solution of the Einstein-Maxwell field 
equations. This seed solution is conveniently described 
in terms of the orthonormal tetrad 

e'=rde, e2 =rsinedct>, e3 =S·I/ 2dr, e4 =S'/2dT, 

where S = S( r) = 1 - 2m r-' + 1 e 12 r-2
, and in terms of the 

electromagnetic 2-form 

F = (er-2)drdT = (er-2)e 3e4 • 

The first step of our calculational procedure is to 
identify the "self-dual part" of the electromagnetic 
2-form F. Specifically, we evaluate 

WM
: =21PF, (2. 1) 

where 1P is the projection operator which extracts a 
self-dual part of the 2-form upon which it operates. In 
terms of the duality operator employed in the previous 
work of both authors" this projection operator 1P is 
defined so that 

Thus, for RN one obtains 

WM = (er-2)(e3e4 _ ie ' e2). 

(2.2) 

By the source-free Maxwell equations WM is always 
an exact differential. Hence there exists a I-form AM 
such that 

(2.3) 
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For RN we easily cast WM into the form 

WM = d[ - (e/r)dT + ie cose dct> J. 
In order to apply the transformation (1. 2) of the 

Kinnersley group, one must select a specific nonnull 
Killing vector field K with respect to which the Lie 
derivative of the 2-form F vanishes. Then it follows 
immediately that the I-form 

KiWM = d[M (2.4) 

is an exact differential of a complex scalar potential 
[M. (In previous papers [M was denoted by <P. ) In Eq. 
(2.4) K denotes the covector of K while i denotes the 
Grassmann inner produce! of the 2-form WM and the 
I-form K. If for RN we select our Killing vector to be 
given by 

K·a.=a~, 

then the I-form K is given by 

K =rsine e2, 

Thus, for RN Eq. (2.4) yields 

d[M = _i(er-1 ) sine e' = d(ie cose). 

Therefore, 
<p=[M=iecoseo 

We adopt a gauge for the vector potential A M such that 

KrAM=[M. 

Hence, for RN we may readily identify 

AM = [Mdct> - (e/r)dT. 

Turning now to the evaluation of the gravitational 
potentials, we begin by constructing the 2-form 

(2.5) 

w: = tdK. (2,6) 

In particular, for RN we obtain the result 

w = - S(r)I/2 sine e2e3 + c ose e' e2• 

Now, in general the self-dual part of w is not an exact 
differential. Nevertheless, it can be shown from the 
field equations that 

(2.7) 

is always an exact differential. Hence, there exists a 
1-form A E such that 

WE=dA E• 

In the case of RN one finds 

WE = 2iS(r)'/2 sine (e 1e4 _ ie2e3 ) 

-2i(1 -I e 12 r-2
) cose (e 3 e4 

_ ie'e2), 

and this may be cast into the form 

WE = d[ -2iS(r)r cose dT + (I e 12 - r 2) sin2 e dct> J. 
By assumption the 2-form F has vanishing Lie de

rivative with respect to the Killing vector K. One con
cludes that the I-form 

(2 0 9) 

is an exact differential of a complex scalar potential 
[E. (In previous papers [E was denoted by [)o We al
ways choose the additive constant in [ so that 
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(2.10) 

where 

f; =-KiK. (2.11) 

In the case of RN one has 

j= _1'2 sin2 e, 

and consequently the complex potential is given by 

{={E=_1'2 sinze_lcI 2 cos2 e. 

Finally, we adopt a gauge for the vector potential 
AE such that 

KiAE={E. (2.12) 

Thus, for RN 

AE = {Ed¢ -2iS(Y)Y cose dT. 

As a purely formal device we shall introduce an ad
ditional trivial 2-form TV" = 0 and an additional trivial 
complex scalar potential {O = 1. It is also convenient 
to introduce the symbol A 0 for the differential of an 
affine parameter for the Killing vector field K. For 
example, in the case RN we have AO=drj). In terms of 
this notation all the following formulas are valid for 
1'=0, E, and;1]: 

f wr = 0 (from the basic assumption that tF = 0), 
K K 

dwr = 0 (from the field equations l. 
Wr=!iAT 

d(KfW)=O [from (2.13a) and (2_13b)J, 

Kiwr=d{T, 

KiA T={' (gauge condition)c 

(2. 13a) 

(2. 13b) 

(2_ 13c) 

(2. 13d) 

(2. 13e) 

(2.130 

The norm of the Killing vector in the transformed 
spacetime is easily determinedo Noting that Eq. (2.10) 
can be written in the form 

(2.14) 

the transformation formula (10 2) immediately yields 
the result 

(2.15) 

For RN 

A = ho - bE (r2 sin2 e + I c 12 cos2 e) + ihMc cose. 

The determination of the transformed metric is very 
simple once the covector K' of the Killing vector K has 
been identified. Consider the self-dual 2-form 

w: = -4IPw = 2G rs Vr )* W S 

and the associated I-form 

G: =KiW= 2G rs ({r)*d{s. 

(2.16) 

(2.17) 

Comparing Eqs. (2.14) and (2.17), it is immediately 
clear that 

(2.18) 

Furthermore, for (lilY self-dual 2-form W one has the 
identity 

W=2r'IP[K(KiW)] (2.19) 
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Therefore, one has the result 

dK = -2jIRe[IP(KG)], 

which may be written in the useful form 

(2.20) 

Substituting the transformation (1. 2) into Eq. (2. 17), 
one finds that 

rIG _(,-IG' =jlG _ 2A"ldA. 

Hence, Eq. (2.20) yields 

where we have taken advantage of the relation 

b,Ws= 2jIIP(KdA) , 

(2.21) 

(2.22) 

(2.23) 

which results from another application of the theorem 
of Eq. (2.19). 

Now, since (W)*ws=O, it can be shown that ({r)*ws 
+ (W)*{S is an exact differential. Thus, there exists 
a Hermitian matrix of I-forms Mrs such that 

({r)*ws + (wr)*{s =dM". (2.24) 

We choose the gauge of these vector potentials AIrs so 
that 

KiM" = ({')*{'. 

Thus, quite generally we have 

,\IOr =Ar (r=O, E,1',1). 

In the case of RN we have A 0 = d¢ and 

M EE = I{EI%p, 

MEM =({E)* {Md¢ 

-c[2(1'-2m)+ leI 2/r- S(r)rsin2e]dT, 

MMM =1 (M 12d c/J. 

(2.26) 

In terms of the vector potentials AIrs it is possible to 
write the integral of Eq. (2.22) in the form 

{,-W' = (br)*bs[MTS + ({r)*{SrIK]_Ao. (2.27) 

It should be noted that in the vacuum case MOE and J'vI EE 

reduce essentially to the 1-forms corresponding to 
Geroch's fields Qli and f3 i , respectively. 

For RN Eq. (2.27) yields 

K' = - f'(dc;'l - Z/ dT), 

where 

w' = (b o * bE - bE *bolf -2iS(r)r cose 1 
+ (bo*b M + bM*bo)[ _er-l ] 

+ (bE*b M + bM*b E)(-e)[2(r - 2111) + 1('1 2 /1' 

-S(r)1'sin2 e). 

This result constitutes a slight generalization of the 
result which was obtained earlier by Ernstl2 using 
bo=l, bE=Un, and bM=Bo' where Bo=real constanL 

Finally, one obtains the transformed metric tensor, 
or, as was suggested in Ref. 7, one specifies a con
venient tetrad for the transformed spacetime con
structed from the tetrad which was used to describe the 
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original spacetime. In terms of our present notation 
such a tetrad is provided by 

eaf:=IAI[ea+rK(Krea)]-IAI-lp-W'(Kie"). (2,28) 

In the case of RN this yields 
ea'=IAlea (a=1,3,4), 

e 2
' = I A 1-' r sine(d¢-w' dT), 

which agrees with the result given in Ref. 11. 

Before we conclude this section, we should like to 
emphasize that {ea} need not be an orthonormal tetrad. 
It might be, for example, a null tetrad {k, m, t, t*} sub
ject to our convention '3 that the only nonvanishing inner 
products are given by 

kim = t I t* = + 1. (2.29) 

As a concrete example consider the null tetrad 

k = dp, III = ell!, t = (2)-'/2p(d~ + idlJ), 

which describes Minkowski space (MS) in terms of 
coordinates {p, v, ~,1)} such that 

p = (2t1/2(Z _ T), U = (2)-1/ 2(Z + T), 

~ = p-'X , 1) = p-ly. 

From among all the Killing vectors which Minkowski 
space possesses let us select 

Kada=dry. 

Then the methods which we have described in this sec
tion can be invoked in order to show that the new tetrad 
given by Eq. (2.28) has the form 

k'= IAldp, m'= IAldv, 

t' = (2)-1/2{1 A Id~ +il AI-' 

x [(1) + 2i(bo *b E - b E *bo)~pdp ]}, 

where 

A =bo - bE P2. 

In the MS example 

WM = 0, WE = _ 4IPw = 2(2)' /2ikt, 

and the complex scalar potentials are given by 

[M =0, [E =f= _ p2. 

3. TRANSFORMATION OF THE ELECTROMAGNETIC 
FIELD 

Now we shall consider the effect of the transformation 
(1. 2) upon the Cartan components of the electric and 
magnetic fields. For this purpose we construct from 
the tetrad {ea} a basis {B A} for self-dual 2-forms. If 
{ea} is an orthonormal tetrad, then a convenient basis 
{B A} is defined by 

B, = e' e 4 
- ie2e3, 

B2 = e2e 4 
- ie3e' , 

B3 = e 3e 4 
- ie ' e2. 

(3.1) 

With this choice of basis the components FA: = FIB A 
of the electromagnetic 2-form F are related to the 
Cartan components of the electric field EA and the 
magnetic field HA by 
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(3.2) 

In the case RN the components of the electromagnetic 
2-form F are given by 

F , =F2=0, F 3=-er-2, 

while the components wA:=wiBA of the Killing 2-form 
ware given by 

w
1
=-iS(r)1/2 s ine, w2 =0, w3=icose. 

We shall demonstrate later that the latter quantities 
playa key role in the determination of the transformed 
Weyl conform tensor. 

From the tetrad (2.28) describing the transformed 
metric we can construct a basis {BA '} with respect to 
which we can define components FA' and wA' of the 
transformed 2-forms F' and w'. As a result of the 
transformation (1. 2) the components of F and w trans
form as follows: 

FA' =A-2(detB)[A*(1- 2bd"A-')*FA 

+ (bA/ - 2b E[M*)*WA]' 

WA' = I AI 0

2 [(1_ 2bEf A -1 )wA 

+ fA -1 (b\J - 2b E[M*)FA 1. 

(3,3) 

(3.4) 

These relations are derived by observing that according 
to Eq. (2.19) 

W = 2j'IPK(K iW)] 

for any self-dual 2-form W, and in particular for IPF 
and IPw. This implies, however, that 

(3. 5) 

On the other hand, careful consideration of the trans
formation (2.28) reveals that 

(3.6) 

where (KIW)'=[CI'W',i' being the Grassmann inner 
product with respect to the transformed metric. We 
then use the transformation properties of 

KIIPF = 'zd[M 

and 

KrIPw=-tG. 

which are already known, in order to infer relations 
(3.3) and (3.4). However, it should be noted that the 
identity 

B r sB W

t - B'tBW s = (detB)I5~;~v G""G x)BY J* (3.7) 

has been used to simplify Eq. (3.3). 

The parameters bo' bE and b M are not independent 
complex parameters, but rather they are subject to the 
constraint 

(3.8) 

Furthermore, detB is necessarily of modulus unity. 

In the RN case Eq. (3.3) yields a generalization of 
the results obtained in Ref. 12, where the particular 
valuesbo=l, bE=:l:Bo". bM=Bo, and detB=l were 
selected in order to end up with a solution with certain 
desired properties. (Due to different conventions the 
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sign of our potential eM = <I> differs from that of the 
q, found in Ref. 12, but both the metric and the electric 
and magnetic fields agree. ) 

If {ea} is a null tetrad {k, m, t, t*} then a convenient 
basis {BA } for self-dual 2-forms is provided by 

B+I=kt, Bo=km+tt*, B_1=mt*. 

In the Minkowski space example the initial electro
magnetic field vanishes, while 

W+I =wo =0, W~I:= _(2)-1I2i. 

Furthermore, Eqs. (3.3) and (3.4) reduce to 

F A ':= A -2(detB)b
M 

*WA 

and 

respectively. 

4. TRANSFORMATION OF THE CONNECTIONS 

We shall now introduce a triplet of connection 1-
forms 

where 

(3.9) 

(4.1) 

(4.2) 

The components of u_~ with respect to the tetrad {eb } 

will be denoted by 

In the particular case of a null tetrad both of the 
authors have used the special symbols 

(4.3) 

(4.4) 

in their previous publications. The components of these 
three I-forms they have designated by Uk' V"" V t , v t*, 
etc. We shall continue to employ this specialized nota
tion wherever it seems appropriate. The reader is 
advised to consult Ref. 13 for correspondences with 
other notations. 

In the Minkowski space example considered in the 
previous sections the connection forms v and u vanish, 
while 

w= V_I =p-1t*. 

Thus, 11 of the 12 components of v, It, and w vanish, 
the only nonvanishing component being 

Since we have already constructed the transformed 
metric, we could evaluate the transformed connections 
directly. However, there are several advantages to be 
gained by developing a transformation formula for the 
connections. If the evaluation of the connection 1-forms 
was difficult for the seed metriC, the evaluation for 
the transformed metric is not likely to be easier. 
Furthermore, there may be instances where the de
termination of the transformed metric is difficult, 
while the determination of the transformed connections 
is relatively simple. Bearing this in mind, we now 
present a formula for transforming the components of 
the connection I-forms; namely, 
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VAb ' = I A 1-I[vAb + A -ldAi(eb r B A) 

-KbA-Ibs~J, 
(4.5) 

where Kb: =Kieb. This has been proved only for tetrads 
such that tea = O. 

K 

In the MS example onlyw t = I' -I t * 0 and only WE -I oF O. 
Furthermore, 

so 

Kk=Krn=O, K t =(2)-l/2ip, K t*=-(2)-l/2ip. 

Since A = bo - iJ Ep2, we see that 

Thus, no term in Eq. (4.5) contributes to V+lb' =l'b', 
while only the dA term contributes to l'Ob' = lib" and 
then only for eb = m. The values of the transformed 
connections are given by 

, .' , 0 ' 2b I A I-I A-I It" = llt = U t* = , Urn = E H H p, 

It is already apparent that the transformed metrics 
are at most of Petrov type N, since v'=O, while 

u' = 2b E J\"lpdp 

is an exact differential. The solutions which the Kin
nersley group has generated here are in fact Petrov 
type N plane fronted waves. 14 

Sometimes it may be convenient to employ a tetrad 
{ea} which does not satisfy the criterion s.t ea = O. While 
Eq. (4.5) may not be valid, one may use instead the 
following generally valid transformation law for the 
connection 1-forms VA themselves: 

( V + rlKw )' 
A - A (4.6) 

=(vA +rwWA) - J\"1{dAiBA -rK[dAi(KiBAm. 

The transformed quantities f' -IK' and wA ' were evaluated 
in Secs. 2 and 3 of this paper. 

In addition to being useful when Eq. (4. 5) does not 
hold, Eq. (4.6) facilitates the derivation of the trans
formation law for the Weyl conform tensor, which we 
consider in the next section. 

5. TRANSFORMATION OF THE WEYL CONFORM 
TENSOR 

In Ref. 6 formulas for null tetrad components of the 
Weyl conform tensor were given. However, these 
formulas involved a special choice for the null tetrad, 
and in Ref. 7 it was shown that such formulas follow 
directly from the Killing vector structural equations, 
with no restriction upon the null tetrad being necessary. 
We shall develop here analogous formulas for an arbi
trary tetrad, employing the language of differential 
forms rather than that of spinors. From these for
mulas we shall derive the transformation properties 
of the Weyl tensor components under the Kinnersley 
group. The resulting transformation law will be suf
fiCiently simple that one may infer from that law some 
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important attributes of the transformed spacetime even 
before the metrics are evaluated, 

If w denotes the covector of the differential form 
w = tdK, the Killing vector structural equations can be 
written in the form 

dK=will, 

dw =K rE, 

where 1 : = eaea is the unit (1, 1)-form and 

E: = ~ea 1\ rPea = tRab Ctleaebec 1\ ed 

is the invariant Riemann (2, 2)-form. 

(5.1a) 

(5.1b) 

(5.2) 

The irreducible parts of the Riemann tensor corre
spond to the quantities 

where 

CAB:=BAr BB, 

and BA is the covector of BA. 

We evaluate the Weyl tensor components CAB by 
using the theorem of Eq. (2.19) once again. Thus, 

CAB + ...lRCAB = _ U-1(KiBA)I[Ki(WE)lBB] 
12 • 

(5.3a) 

(5.3b) 

(5.3c) 

(5.4) 

= - 2r(K iBA) r[Kr(E - W *E)iBB I. 
From Eqs. (5.1b) and (5. 3c) we conclude that 

CAB + .!...RCAB = _ 2 r-1(KiBA )I[dwi BB 
12 . 

_Kr(Bc)*RCBj. 

However, using the relation 

dwi BB = d(Wi BB) - widBB= dw B + EBCD1'cW Dl 

we obtain 

CAB + 2...RCAB 
12 (5.5) 

= - 2Fl(KiBA )i[dwB + EBCD1'cW D- KnB cl*RCBj. 

It should be noted that whenever the authors have used 
a null tetrad, they have denoted CAB by C_A_B, e, g., 
C ll by C -2' The reader should consult Ref. 13 for the 
correspondences with other notations in common use. 

In the electrovac case, where the transformations of 
the Kinnersley group apply, we have 

RAB = _ 2(FA)*FB, R =0, 

and Eq. (5.5) reduces to 

CAB = _ 2FI(KiBA)i[dwB + EBCDVCWD 

+ 2(KiBc *)(FC)*F B J. 

(5.6) 

(5.7) 

Careful consideration of the transformation (2028) re
veals that the Weyl tensor components of the trans
formed metric are given by 

CAB' = _ 2FI(Ki BA )i[dwB' + EBCDl'C' W D' 

+ 2(KiB c *)(FC' )*FB'j. (5.8) 

The substitution of Eqs. (3.4) and (4.6) into this ex-
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pression for CAB' yields the transformation law for the 
Weyl tensor components, 

At the present time we shall present only the form of 
the transformation law that is obtained wlien llie inilial 

melric is a l'aClium spacetime; namely, 

CAB' = IAI-z(1-2bE /X 1){CAB + 12b E A-'lwAw B 

_ t(WCwc )CAB n. (5.9) 

If the initial spacetime is Minkowski space, i. e., if 
CAB=O, then Eq. (5.9) tells us that the transformed 
space can be at most of type N or type D regardless of 
u'liicli Kinillg l'eclO1' K of ;11 illfw1!'s!?i spllce is selec/ed. 
This conclusion generalizes our findings concerning the 
particular MS example we considered earlier. In the 
next section we shall describe several other simple 
theorems that may be of considerable practical use. 

6. RECAPITULATION AND CONCLUSION 

We have provided here a systematic calculational 
procedure for the generation of solutions of the Ein
stein-Maxwell field equations. The section titles should 
facilitate the location of any desired formula. 

One begins, of course, by chOOSing any convenient 
tetrad, e. g., an orthonormal tetrad or a null tetrad. 
The self-dual 2-forms wr are determined by Eqs. (2.1) 
and (2.7), and then Eqs. (2. 13a)-(2. 130 are employed 
to identify the I-forms.A. r and the O-forms c'r Finally, 
the I-forms Mrs are determined using Eqs (2.24)
(2.26). 

The effect of the Kinnersley transformations upon 
/ and K is ascertained using Eqs. (2.15) and (2.27), 
respectively. Then the tetrad for the transformed 
spacetime is constructed using Eq, (2,28L This is 
equivalent to specifying the transformed metric tensor. 

The transformed electromagnetic field is ascertained 
using Eq. (3.3) after a convenient basis for self-dual 
2-forms has been selected. Simultaneously one may 
work out the transformed Killing 2-form components 
using Eq. (3,4), noting that these quantities play an 
important role in the determination of the Weyl tensor. 

If the tetrad ie": satisfies the condition Ktc a = 0, 
then the components of the connection I-forms trans
form according to Eq. (4.5). Otherwise, one can al
ways employ Eq. (4.6) to determine the transformed 
connection I-forms. Sometimes the Petrov type of the 
transformed spacetime is immediately obvious from 
the transformed connections. In any event the com
ponents of the Weyl tensor can be evaluated using Eq., 
(5.8), or one may use Eq. (5.9) if the secd solution is 
a vacuum field. 

The effort which we have devoted to the development 
of an efficient calculational technique for generating 
new solutions of the Einstein-Maxwell field equations 
from old ones was in large part motivated by our deter
mination to see what new solutions would be spawned 
by Hauser's first TNT solution. IS We have in fact ini
tiated such an endeavor by identifying the complex po
tential ( of this seed solution. 'fi 

Although we have only just begun applying the techni-
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ques of this paper to the TNT solution, we can already 
infer that the solutions we shall generate will be of 
Petrov type I (i. e., algebraically general), for con
sideration of Eq. (5.9) shows that the following theorem 
holds: 

Theorem 1: From a Petrov type N vacuum field other 
than a plane fronted gravitational wave only Petrov 
type I fields are generated (except for the special case 
bE==bM = 0, where a type N field differing trivially from 
the seed solution is generated). 

It will be particulary interesting to see if any of the 
solutions generated from Hauser's TNT solution pos
sesses more than one Killing vector, for such a solu
tion with multiple Killing vectors would serve as a 
seed solution for the generation of yet other solutions 
of the Einstein-Maxwell field equations. On the other 
hand, if there exists no such solution with multiple 
Killing vectors, this would constitute the first proof 
that there exist solutions which cannot ultimately be 
connected to Minkowski space by a sequence of Kin
nersley transformations. 

It should be clear that further consideration of Eqs, 
(5,8) and (5.9) should yield theorems concerning seed 
solutions of other Petrov types. It is also possible to 
infer useful theorems from Eqs. (4.5) and (4.6). Thus, 
for example, we have the following: 

Theorem 2: Suppose k is a null geodesic vector field 
in the original spacetime, and Ktl=O, Krk=O. Then 
k' = I A I k is a null geodesic field in the transformed 
spacetime. 

Theorem 3: Suppose k is a shear-free null geodesic 
field in the original spacetime, and k is an eigenvector 
of both wand F. Then 

is a shear-free null geodesic field in the transformed 
spacetime, and k' is an eigenvector of both w' and F' . 

Corollary: Suppose k and m are the principal null 
vector fields of a type D seed solUtion, and k and mare 
eigenvectors of both wand F. Then the transformed 
spacetime is also type D, and k' and m' are eigenvec
tors of both w' and F' . 

APPENDIX: GRASSMANN INNER PRODUCTS 

The tangent manifold at a point of a spacetime is a 
four-dimensional linear vector space with an inner 
product. If four linearly independent vectors are de
noted bye", ((\1=1,2,3,4), then the matrixgOil=e",' ea 
is nonsingular and has signature +2. 

Any tangent vector can be expanded in terms of the 
basis e",. The covector u of u=u"'e", is the differential 
form u=u"'e"" where e", is a linear functional on tan
gent vectors which has the value g Oil when it acts upon 

ea· 

A basis for p-vectors is provided by 

e(PI",)=e", /Ie" /I" '/le" ((\11 <0'2<' "<O'p) 
1 2 P 

and a basis for p-forms is provided by 
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e(PI "') = e ale"'2'" e",p (0'1 < 0'2 < '" < O'p), 

where we suppress the wedge symbol between differen
tial forms when an exterior product is to be understood. 

The ordinary inner product of a p-vector 

1 
u==- ual''''''pe " ••• 11, e = u(PI "')e p! "'1· a p (PI a) 

and a p-vector 

is defined by 

u·V·=-.lU"'l···"'Pi' =u(PI",)V . p! "'l"''''P (Pia)' 

where scripts are lowered using the metric g aa 
= e", . ea, and where (p 10') is a shorthand notation for 
the row of scripts au 0'2' . , . , 0' P subject to the con
dition (\11 < 0'2 < ..• < O'p. The Grassmann inner product 
u1v of a p-vector u and a q-vector v is defined by 

UIV=O if p< q, 

u I v = u . v if 1) = q, 

and if p> q it is the (p-q)-vector such that 

(u1v) 'w==u'(V/l w) 

for all (p-q)-vectors w. 

The following properties of the Grassmann inner 
product can be derived: 

(1) u...,v is bilinear in u and v. 

(2) (U...,V)iW=u""(V.'I w) for all vectors u, v, w. 

(3) (U'l v)-]W=(uiW)V-UII, (ViW) for any p-vector 
v and any I-vectors u and w. 

These properties permit the simple evaluation of the 
Grassmann inner products encountered in practice. 

The Grassmann inner product 11 r l' of a p-form It and 
a q-form l' is defined by 

It ii' = ° if p> q, 

/I I v = Ii' /' = U . v if P = q, 

and if p < q it is the (q-p)-form such that 

w, (U,V)=( wu) '1' 

for all (q-p)-forms 11'. 

The following properties of this Grassmann inner 
products can be derived: 

(1) 1/ ,V is bilinear in !l and v. 

(2) WI(U rv) = (wu) IV for all forms 11, 1', W, . 

(3) WI (ltv) = U(WI v) - (w IU)V for any p-forms U and 
any I-forms V and w, 

Again these properties permit the simple evaluation 
of the Grassmann inner products encountered in prac
tice. 

A (p, q)-form 
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If A is a (p, q)-form and 13 is an (Y, s)-form, then we 
shall define 

.,,, ID-A (oIB)B (s16 )[e(PIl»e(rln][e I\e ] 
~\ - (Pia) (~Ir) (418) (sI6) , 

A -'IB =A(pi a) (oIB) B (rl r) (sI6) [e(Pla) e(rl r)][ e(ql B)I e (SI6)]' 

A 'ID-A (.,IB)B (SI6)[e(Pla)re(rlr)][e l\e(16)]' 
I - (pi a) (rlr) (oIB) s 

The general definitions of the Grassmann inner pro
ducts are set up so that 

(A-'IDn 0; = A-'(BI\ 0;), 

AI( lB ro;) = (AI\ 13) r 0;), 

regardless of the degrees of A, 13, and 0;. 

The Grassmann inner products17 are useful in con
nection with the evaluation of the duals of forms and 
vectors. If u is a p-vector, then 

*u = - e1234
., u, 

and if u is a p-form, then 

*u = -( - 1 )Pu r e1234
• 

Here e1Z34
: = e1e2 e3e4 is the volume element constructed 

from an orthonormal basis {ea}. 
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By definition. an N-dimensional positive-definite inhomogeneous metric is not invariant under any N
parameter. simply-transitive continuous group of motions. Nonetheless. it is possible to construct a group 
(simply-transitive and of N parameters) that comes closest to leaving the given metric invariant. We call 
this group the approximate symmetry group of the metric. In an earlier paper, we described a technique 
for constructing the approximate symmetry group of a given metric. Here, we briefly review that 
technique and then present some examples of its application. All two-dimensional metrics are analyzed, 
and simple criteria are given for determining their approximate symmetry groups. Three three-dimensional 
metrics are investigated: the invariant hypersurfaces of the Kantowski-Sachs space-times and two 
families of hypersurfaces in the Gowdy T 3 space-times. The approximate symmetry group of the former 
is found to be of Bianchi Type I and those of the latter may be I or VIo. Defining, via our technique, a 
measure I of the magnitude of a metric's inhomogeneity, we study the time dependence of I for the 
hypersurfaces in the Gowdy metric. We find it is possible in some cases for these hypersurfaces to 
approach homogeneity (/-->0) both in the asymptotic future and near the initial singularity. Finally, we 
constant a homogeneous background metric for these hypersurfaces. 

I. INTRODUCTION 

In a previous paper, 1 we proposed a precise definition 
for the notion of an approximate symmetry of an 
inhomogeneous, positive -definite, Riemannian metric, 
together with a technique for determining the simply
transitive Lie group describing such an approximate 
symmetry. Succinctly, given a metric we use the 
calculus of variations to search for a complete set of 
orthonormal vector fields whose commutation coefficents 
cients differ as little as possible from some set of 
structure constants. These vectors then approximate 

Finally, in Appendix A we analyze the metrics 
belonging to a family of spacelike hypersurfaces in the 
Kantowski-Sachs spacetimeso 4 This example is 
included, in part, for completeness; The Kantowski
Sachs spacetimes are the only ones which may be con
sidered spatially homogeneous, but do not meet our 
technical definition of homogeneity, 

the vector generators of a simply-transitive Lie 
group. The group reCiprocal to this group may be 
considered to be the approximate symmetry group of 
the metric. The metric can be classified according to 
its approximate symmetry group by using the Bianchi 
classification of Lie algebras 0

2 

Herein, we present examples of the technique's 
application" After reviewing the essential details of our 
technique (Sec, II), we apply it to two-dimensional 
spaces (Sec, III). There, the computational difficulties 
disappear, and we are able to give criteria permitting 
easy classification of all two-dimensional spaces. Two 
families of inhomogeneous spacelike hypersurfaces in 
the Gowdy T3 spacetimes 3 are studied in Sec. IV, 
These enable us to examine the behavior of our 
classification system in an evolving spacetime, In Sec. 
V, we construct a spatially homogeneous background 
metric for the Gowdy hypersurfaceso This background 
metric is invariant under motions induced by the 
approximate symmetry group of certain spacelike 
hyper surfaces in the Gowdy metric. In Sec. VI, we 
discus s the results. 

a)Present address. 

II. APPROXIMATE SYMMETRY GROUPS 

Given a subset U of an N-dimensional surface 5 with 
positive-definite metric g, we wish to find a set of 
N orthonormal vectors5 {eA }, A=l, ... ,N, in U such 
that their commutation coefficients 

Y~B =g.b[eA , eB j
4 eCb 

= 2efA V' ae~lef (2.1) 

are as close as possible to some set of structure 
constants C~B' To do this, we require that {eA} and C~B 
give a global minimum of 

h ~;: A~BA;B dV + 8AAnAB a B + A[ABI(nAB - nEA
), (2.2) 

where 

A;B"'Y~B-C.fB 

=Y~ B - {cABDn DC + 2a[A 6~ I} (2.3) 

and 

(2A) 

The Lagrange multipliers AA and iI'lABI are included 
to insure that C~B (or, equivalently, nAB and 0A) satisfy 
the Jacobi condition: 

(2.5a) 

and 
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(2.5b) 

For a homogeneous metric, that is, and N-dimen
sional, positive -definite metric invariant under a 
simply-transitive, N-parameter Lie group, there will 
be a set of vectors (invariant under the group) whose 
Y~B are exactly structure constants. For these metrics, 
1=0 at its minimum. For all other metrics, I> 0 at 
its minimum o We may consider I to be a measure of the 
metric's inhomogeneity. 

The nessary condition for a minimum is 

(2.6) 

where the variation is with respect to the eA (subject to 
the orthonormality constraint), nAB, aA , AM and AIAB)' 
After one performs the variation, a bit of algebra leads 
to three sets of equations: 

(a) a set of N coupled parital differential equations, 

(2.7) 

where 

i\.~:=i\.fA\lB) 

=0 ~[C~BEDCM + C~DEDBM _ C~D€DAMl: (2.8) 

(b) the Jacobi conditions (205), together with a set 
of algebraic equations connecting nAB and a A with the 
average of Y~B: 

nAB =;;:jAB _ (AAaB +aAAB), 

aA =-aA -nABAB; 

here, 1jAB and a A are defined by 

Y~B =EABD1JDC + 20!(A o~), 

/jAB =0 ~ Iv 1JAB dV, 

- 1 ( 
O!A =v JUO!A dV; 

(c) a boundary condition 

~f t:..~B~BCM08MeA 'dS=O 
aU 

(2.9) 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 

(2.13) 

for arbitrary 08.1/, where oe.l1 represents a small 
rotation of the {eAr through an angle (6e Moe

M
)1/2 about 

the axis eMoeM, and 2U is the boundary of U. 
Given a metric, we solve (2.7) for the vectors {eAr, 

the "best-fit" vectors, as functions of the spatial 
coordinates and the unknown C~B' Then r)AB and aA, 
which will have a parametric dependence on the C~B or, 
equivalently, on the nAB and a A' are calculated and 
equations (2.9) and (2010) are solved for nAB and a

A
• 

The simply-transitive group to which these structure 
constants correspond is said to be the approximate 
symmetry group of the metric 0 This group may be 
classified using the Bianchi scheme. 2 The metric is 
said to belong to a generalized Bianchi type (GBT). 

Once the approximate symmetry group of g is known, 
we may construct a homogeneous approximant to g, 
that is, a homogeneous metric ghomo whose symmetry 
group is the same as the apprOximate symmetry group 
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of g. We choose to do this as follows. Let {eAt be the 
best-fit vectors and C~B be the corresponding structure 
constants for g, found via the approximate symmetry 
technique. Also, let {E A} be a set of invariant (under 
the approximate symmetry group) vector fields in U 
such that 

(2.14) 

Once one of the many possible sets of {EAr is chosen, 
we may define (ghomo)ab as the matrix inverse of 

,.,ab =0 OAB E" Eb 
5 homo A BO (2.15) 

The vectors {EAr will then be orthonormal basis vectors 
for ghomo and will generate the group reciprocal to the 
symmetry group of ghomo' 

To fix the {E A}' we require that they differ as little 
as possible from {eAr, that is, that they minimize 

K=o-.!.fu- (Ea _(,a)(Eb _eb)oABdV (2.16) 
V bab A "A B B • 

U 

While restricting ourselves to {EAr that satisfy (2. 14), 
we varyG K with respect to the {EAr and set the first 
variation equal to zero. This yields the differential 
equation 

V' • {E B[ (E B - eB) • E A]} 

+ C~BEc' (EB - eB) = 0, 

which must be satisfied by {E A}' 

III. TWO-DIMENSIONAL SPACES 

(2.17) 

Two-dimensional spaces provide the simplest 
examples of our technique, for in two dimensions many 
computational difficulties disappear> along with, 
unfortunately, some of the technique's interesting 
aspects. Nonetheless, we include these examples 
because it is possible to give criteria permitting easy 
classification of all two-dimensional spaces, which is 
done in the two theorems below. Additionally, the two
dimensional spaces nicely illustrate some difficulties 
that can arise when the technique is applied globally, 
that is, when U = 5. 

In two dimensions (N = 2), there are only two vectors 
in {eAr and therefore only one commutator: 

(3.1) 

Only two types of groups are possible; their Lie alge
bras have the canonical forms 7 

(3.2) 

and 

(3.3) 

(When both structure constants are nonzero, a constant 
rotation transforms the commutator into the second 
form above). Further, there are no Jacobi conditions 
in two dimensions; any two constants can be the 
structure constants of a group. There is, therefore, 
no need for Lagrange multipliers. 

Since all two-dimensional metrics are conformally 
flat, 8 we may take the metric to be 

ds 2 =A-2 (x,y)(dx 2 +dy 2). (3.4) 
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In terms of the Euler angle e, we choose as orthonor
mal vectors 

e1 = (A cosB, A sine) 

e2 = (- A sine, A cose), 

whose commutation coefficients are 

= -eA' (ve +N), 

where 

N=(A aA -A ilA). 
oy' ax 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 

Substituting (3.5) and (3.6) into (202) and performing 
the variations yields the two -dimensional versions of 
the differential and algebraic equations: 

'\l2e = - V'N , 

or equivalently 

and 

C{2=~ tY12dV, 

together with the boundary condition 

-v1 (oe[Ve+N+Ci2el+c~2e2]·dS=0. J au 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

That the structure constants are just averages of the 
commutation coefficients was to be expected from the 
absence of Lagrange multipliers 0 More surprising is 
the absence, in (3.9), of any dependence on the Ct2 or 
the metric. This is the principal degeneracy in two 
dimensions. 

We wish to make our results here globally valid, so 
in what follows we shall set U = 5 or, when appropriate, 
take a limit as U - 5 in some suitable fashion. 

Weare now able to obtain two very strong results, 
due to the simple form of 1'12' 

Theorem 1: In a noncompact, tWO-dimensional, 
Riemannian manifold N, if the geometry is such that 

lim [surface area of aU J= 0, 
U • A' volume of 0 

where the limit is taken such that aU is always convex, 
then Ct2= O. 

Proof: For noncompact spaces we use 

C12 = lim ~ ( yt2 dV 
Ii· N Ju 

which, after using (3,8), becomes 

EAB1!u 
C12= lim -V uVoeB dV 

U ~N 

fABlf 
lim V eB ·ndS. 
u· .\' au 

NoW eB and n (the unit normal to aU) are unit vectors 
and must then satisfy 
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leB'nl""1. 
This implies that 

[surface area of aU] = J dS/ I j' e Bon dS I 
all a:. 

and therefore 

surface area of aU =~f dS? ~ IfyAOdV I. 
volnme of D v au V I) ,. I • 

hence the result stated. QED 

Convincing oneself that there exist two-dimensional 
spaces in which the ratio in Theorem 1 has a nonzero 
limit is not difficult. One example is the Poincare 
half-plane,9 which is a homogeneous space of constant 
negative curvature, Small perturbations of this space 
must yield inhomogeneous spaces which also have a 
nonzero limit for (3.12). 

An even stronger result is possible when considering 
compact spaces: 

Theo ye nz 2: If the manifold is compact and orientable, 
then C12 = O. 

Proof: USing Green's theorem, 10 

Ct2=~ id2dV 

=_E_ V'e dV AB3i 
V 1\' B 

since the boundary of a boundary is zero. QED 
Theorem 2 shows that, with this scheme, all compact 
orientable 2-spaces have the same approximate sym
metry group, regardless of their geometry: the topology 
determines the classification. 

What are the homogeneous approximants for two
dimensional spaces? If the approximant is required 
to be orientable and have a simply transitive, two
parameter group defined globally, there are only four 
admissible approximants ll (aside from scale changes): 
(i) the noncompact space of constant negative curvature, 
(ii) the flat Euclidean plane, (iii) the cylinder, and (iv) 
the flat 2 -torus. The other possible spaces are either 
not orientable or have no globally defined two-parameter 
group. For example, the 2-sphere with constant positive 
curvature is invariant under a multiply transitive, 
three-parameter group which has no simply tranSitive, 
two-parameter subgroups. Often, then, it will be 
impossible to find a global approximant for an inhomo
geneous two-dimensional space 0 

Though mathematically simple, the two-dimensional 
version of our technique is really too simple to yield 
much insight into the method. Also, the nonparalleliz
ability of some compact 2 -spaces gives rise to 
problems which do not occur when dealing with 3 -spaces 0 

We therefore turn to three-dimensional spaces. 

IV. THE GOWDY T3 METRIC: A SPACETIME EXAMPLE 

The Gowdy T3 spacetimesl2
,13 are solutions to the 

vacuum Einstein equations with inhomogeneous space
like sections that are topologically 3-torL These 
spacetimes contain no preferred family of spacelike 
hyper surfaces. Hence, the choice of hypersurfaces to 
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be analyzed by the approximate symmetry technique 
is somewhat arbitrary. We investigate here two 
possible families and, within each family, study the 
dependence of I and nAB and a A as the hypersurfaces 
evolve o The inhomogeneity in these spacetimes 
arises from the presence of gravitational waves, which 
circumnavigate the torus in one direction; members of 
this family of solutions differ in the waveforms they 
contain o Although inhomogeneous, they possess some 
symmetry; a two-parameter, Abelian group acts in the 
(spacelike) planes perpendicular to the direction of 
wave propagation. In addition to the compactness 
of the spacelike sections and the presence of a two
parameter symmetry group, one other property makes 
them convenient for our purposes: They may be covered 
by a single set of coordinates. (In a strict sense, more 
than one coordinate patch is needed, because of identi
fications made in the covering manifold). This permits 
us to avoid many inessential-but troublesome-coor
dinate problems and devote our efforts to applying the 
approximate symmetry technique. 

The spacetime metric is 

dS~4) =A2(t, e)[ - dt2 + de2] + 2t[D2(t, e)da2 

+D-2 (t,e)d6 2
], (4.1) 

where 0 ~ () ~ 2rr and # d (J d 6 = 16lT. T he metric coeffi
cients are periodic in e with a period of 2Jf, permitting 
identification of points at (e, (J, 6) = (0, a, 6) and (2rr, a , I)). 
Identifications in a and 6 are made in a similar way, 
The absence of any metric dependence upon a and 6 
is due to the two-parameter symmetry group, whose 
orbits are the tori given by: t=const, e=const', 
Following Berger, 14 we may write 

A = (2tt 1 /4 exp( - 3B.(t, e)/2, 

D=exp(Y3Bjt,e), (4,2) 

The function B_ can be expressed as a sum of standing 
gravitational waves. The resulting expression for B_ 
is given in Appendix B, wherein we summarize many 
of the detailed expressions concerning this metric, The 
nonlinearities in the solution have been lumped into the 
other metric function, B., which depends, in part, upon 

TABLE I. Summary of the properties of SG and S~. 

sums and differences of the modes in B _, Inspection 
of the limiting forms for the metric coefficients in 
Appendix B shows that, when considered as evolving 
3-spaces, the Gowdy models have a Singular (zero 
volume) beginning at t = 0 and expand indefinitely 
thereafter 0 

We will focus attention on two families of spacelike 
hypersurfaceso The first family, Sc(t), will be that 
picked out by the coordinates in which the metric is 
expressed, that is, the family given by t == const. These 
hyper surfaces allow analytical calculation of most of 
the quantities of interest. The normals to 5 G are not, 
however, geodesic. The acceleration of the unit normal 

e~ ==A -lli~ (4.3) 

[in the coordinates of (4. 1)] is found to be 

, 3 aA 
e"'=e"V' e"'==A- _6'" o <}" <} ae 1, 

(4.4) 

which is in general a nonzero vector in the () direction. 
The acceleration is zero only: (i) at isolated values 
of 8, (ii) in the limit as t - 00, and (iii) in the limit as 
t - 0 for those metrics which satisfy 1 - 3a2 > 0, where 
a(e) is defined in (B7). Because of their obvious geo
metrical significance, families of geodesic-normal 
hypersurfaces are more natural than an arbitrarily 
chosen family such as SG(t). Therefore, we shall also 
want to use a geodesic-normal family Sb(J), when one 
eXists,15 for some calculations. The details of how 
this family is obtained have been put in Appendix C; 
here we will just give enough of these calculations so 
that the results, summarized in Table I, can be under 
understoodo 

At any given space-time point, the normal e~ to the 
member of 5 b paSSing through that point will be 
related to eo at that pOint by a Lorentz transformation 
in the t-e plane. Thus we may express e~ as 

e~== (coshi/J, sinhi/J, 0, OJ/A, (4.5) 

where the boost angle Ij! is a function of t and (). The 
equation for the hypersurface t == j(() ,J), is then deter
mined through 

Coordinate-determined hypersurfaces SG Geodesic-normal hypersurfaces 5; 
Normal vectors 

Equation of 
hypersurfaces 

Are the hypersurfaces 
geodesic-normal? 

Metric on the 
hypersurfaces 

Differential, 
proper-volume 
scalar 

eo=(l, 0, 0, O)/A 

t = const 
t parametrizes family 

Only in the limit as t- 00 and, if 
1 - 3a2 (e) > 0, in the limit t- 0. 

ds2 = A 2 (f, e) de 2 + 2t!D2 (t, e) du2 

+ D-2 (t, e) do2] 

dV= 2fA de dado 
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eo = (coshI/!, sinhI/!, 0, 0)/ A, where if = zfJ(t, e) 
satisfies 

ft (A sinhzfJ) = - ;0 (A coshzfJ) 

t =/<0, J), where 8//ae=tan4,(f(e, J), e) 
J parametrizes family 

Yes, always. They are chosen to coincide with 
SG(t) in the limit t- 00 and, if 1 - 3a2 > 0, in the 
limit f- 0. 

ds'=A 2(j, e)[1-(8f/ae)2]de2+2.!1D2(j, e)da2 

+ D-2 (j, e) do 2 ) 

dV' = 2/ A (j, 0)[1- (af/ae)2]1 /2 dO dado 
= [2t A (j, e)/coshl/!{f, e)] de dudo 
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oj 
oe =tanh</!(j, e). 

We ensure that e~ is tangent to geodesic curves by 
choosing </! to satisfy the geodesic equation: 

(4.6) 

:t[Asinh</!]+a~[ACOSh</!l=O. (4.7) 

For definiteness, we henceforth consider only those 
solutions to (4. 7) which have the asymptotic behavior 
</!-O as t- oo , so eo and e6(and, therefore, SG and Sb) 
coincide in that limit. For those metrics which satisfy 
I - 3a2(8) > 0, we will require, in addition, that </! - 0 
as t - 0; thus eo and e6 coincide in that limit also, 

We shall begin by applying the approximate symmetry 
technique to the hyper surfaces 5 G' Rather than solve 
the differential equation by systematic integration, we 
simply guess a form for the triad and see whether it 
solves the equations. 

On the 5 G hyper surfaces , the obvious triad of 
orthonormal vectors to try is one which incorporates 
the extant symmetry group; thus we pick 

e~=A-16~, e~=(2tD)"16~, e~=(D/2t)6~. 

The only nonzero commutation coefficient is 

For this triad we obviously have i7 . a = 0; thus the 
algebraic equations must yield n 23 = Tj23, nAB = 0 = a A 

otherwise. In fact, even n23 is zero, since 

(4.8) 

(4.9) 

7/23 = _ 321Tt (2< ~ (InD) de = 0 
v J o (Ie (4.10) 

due to the periodicity of the metric, The differential 
equation, which now reduces to 

is identically satisfied, as is the boundary condition, 
(2,13), since the hypersurfaces are compact. Therefore 
(4,8), together with the structure constants C~B = 0, 
gives an extremum of the variational integraL 16 We 
conclude that the approximate symmetry group of these 
hypersurfaces is of GBT L 

Does (4.8) yield a minimum for I, rather than a 
maximum or inflection point? The question is a knotty 
one due to the complexity of the expression for the 
second variation of I. No decisive general answer has 
emerged, despite a number of attacks on the problem. 
The restricted problem, in which only those Gowdy 
metrics that are almost homogeneous (i. e., the wave 
amplitudes are small) are considered, admits an 
easy solution, though, In this case, results l concerning 
the linearized variational problem may be applied; we 
find that, indeed, (4.8) gives a minimum. 

We now turn to the temporal behavior of I at its 
minimum, In terms of (7/, (\I) and (n, a), the val'le of I 
at a minimum is 

(4.12) 

which reduces to 
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8t{2< 1 (a )2 1~,161T- - -lnD de v 0 A 38 . 
(4.13) 

It is revealing to examine the behavior of 1 in both the 
asymptotic future and near the initial singularity. The 
asymptotic expressions (B9) and (BIO) for the metric 
coefficients show that A and D are independent of e 
asymptotically; therefore, 

limI=O. (4.14) 

Intrinsically, the 5 G (t) become more homogeneous as 
t gets large. This accords with our intuition about this 
metric; the hypersurface volume monotonically 
increases with time, so the energy density of the 
gravitational waves, which (asymptotically) behaves17 

as 

[energy density]- V-4 /
3

, (4.15) 

decreases with time; hence the inhomogeneity-producing 
waves become less effective and the metric more 
homogeneous. 

The behavior near the singularity is surprising. 
When the limiting expressions (B6)-(B8) for this regime 
are substituted into (4.13), we get 

(4 16) 

so 

j 00 if 1 - 3a2 < 0 

~~~I=tO ifl-3a2 >0: (4.17) 

The 5 G for those metrics having 1 - 3a 2 > 0 become 
intrinsically homogeneous as the singularity is 
approached,18 (This is the same criterion that must be 
satisfied if 5 G is to be geodesic-normal in that limit). 
The condition is sufficient but not necessary. It was 
obtained assuming the metric coefficients contained 
both Bessel and Neumann functions. If only Bessel 
functions appear, lim t _ 01 = 0 regardless of the sign of 
1 - 3a 2

• U sing a computer, we have calculated I(t) for 
three sample metrics with two wave modes excited. 
The results are given in Fig. 1. 

"" O.s I \ 
I \ 
I ,(6,.4) 0.6 I 
I \ 

!(t) 

I \ 
0.4 

I \ u,o.} ..\. I ",-' 
" '\ " .... 0.2 I. .... 

I \ .... , 

~ ' ......... 

0 
'"::":::--

1.0 2.0 3.0 4.0 

FIG. 1. The values of I(t), when the gravitational wave modes 
n = 1 and In = 2 have been excited, are plotted, For all three 
cases we have assumed that Z! contains no Neumann function 
and at = 0' and e2 = 40°. The numbers in parentheses are 
(cto e2)' 
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How is this strange behavior explained? The hyper
surfaces in 5 G contract to zero volume as t - 0; Thus 
an explanation similar to that given for the limit as 
t - GO seems to be impossible. Indeed, that argument 
in reverse seems to imply that I must become infinite 
as t - 0 0 On closer examination, we find that the 
behavior as t - ° has an explanation similar to that for 
t - GO. Note the "shape" of the singularity; in all cases 
a small spherical volume is stretched into a cigar at 
t goes to zero. If 1- 3a2 < 0, the cigar's long axis is 
in the (; direction; if 1 - 3a2 > 0, the long axis points 
along the (} direction. Recalling that the graVitational 
waves travel in the e direction only, we see that 
stretching in this direction would tend to wash out the 
inhomogeneous ripples in the geometry, thus making 
the space more homogeneous. 

The 5c have been found to be GBT I, but is that typical 
of families of hypersurfaces in the Gowdy metrics? 
What would the approximate symmetry technique yield 
if another family of hypersurfaces were used? To 
partially answer that question, we turn to the second 
family mentioned, 56' 

Again we pick the simplest triad incorporating 
the symmetry group and find that it solves the 
differential equation and boundary condition. That triad 
{e~}is: 

e~=(sinh1/', cosh<]J, 0, O,)/A, 

e~=(O, 0,1, 0)/2tD, 

e; = (0, 0, 0, 1)D/2t. 

The nonzero commutation coefficients are 

7],23 = - (0:: sinM + ~~ coshlJ! )fAD, 

a,l = __ 1_ sinh'" 
2tA ",. 

On each hypersurface, t = j(8 ,J), 

71'23 = 71,23(j(e ,J), e) 

(4. 18a) 

(4. 18b) 

(4. 18c) 

(4.19) 

(4.20) 

(4.21) 

and Similarly for a,l. Using (4.6), we may rewrite 
(4.19) as 

,23 1 dD « ) ) 
1] =-AD de jB,J ,8 cosh1/'. (4.22) 

The structure constants are again simply equal to the 
averages of 7],A B and a~. We find that they are all 
zero19 except for n 123 , which is 

2 J:' (V'/16Jr) 0 delnD(j,e)tanh<]J(j,e). (4.23) 

To evaluate (4.23), we must know the dependence of 
j upon e; this entails integration of the geodesic equa
tion. As noted in Appendix C, a complete integral for 
the geodesic equation cannot be found in general. Conse
quently, further restrictions are required before de
tailed knowledge of n,23 can be obtained. For these met
rics satisfying 1 - 3a2 > ° and containing weak gravita
tional waves, 5 G and 5 G will differ only slightly and will 
coincide in the limits as t - ° and GO. A restriction to 
sllch metrics would allow linearization of the geodesic 
equation for 1/1; the exact solution for 1/1 could be 
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approximated by the solution of the linearized equation. 
Henceforth, we will limit our considerations to such 
metrics and do all calculations to first order in 1/10 

With these provisos, the previous statements concern
int I and n23 for 5 G in the limits as t - ° and GO hold 
qualitatively for 5 G also. 

Under the above assumptions, the solutions for 1/1 

andj are (from Appendix C): 

I/I(j,e) '" - A-l(t, Bit dt' a:e (t', 8), (4,24) 

and 

j(t,e)=J+ JasdB<]J(t,e)+O(<!h (4.25) 

Even with (4.24) and (4.25) in hand, we find the 
integral in (4.23) still cannot be done analytically, 
except for those metrics with only one gravitational 
wave mode excited. In that case, the integrand can be 
expressed as perfect differential, whose integral 
vanishes due to the periodicity of the metric coefficients: 
again we get GBT I. 

Nevertheless, we expect n,23 to be nonzero in general, 
giving GBT VIa; for to first order in Ij:, the parameter 
n,23 essentially gives the inner product between the 
"vectors" B_ and lJ! in Fourier transform space, Using 
InD = !3 B _, (B4), and the Fourier expansion of <]J, i, e. , 

(4.26) 

(4.23) becomes 

,23 2..f3JT ~ () () O( 2) n =(V'/16JT)~CnZomtCPmt + W. (4.27) 

Hence, I.jJ and B _ mllst be orthogonal for n!23 to be zero, 
a situation unlikely in generaL 

Using (4.24) and (4.25), we have evaluated (4,23) 
numerically (to first order in w) when one and two modes 
are excited. The results, shown in Figs. 2 and 3, 
indicate that n,23 oscillates between positive and negative 
values, the oscillations damping out in the asymptotic 
future 0 

10 

0 
1.0 

....................... 
-- --

'" \ UB •. 12) 

--
". 

--:? -10 .... __ .... '-
\ !.3 •. 2) 

'" '" 'c -20 \ 
-30 \ ;(6 .. 4) 
-40 \-/ 

FIG. 2. Plotted are the results of a computer calculation of 
n'23 to first order in 1j; for various wave amplitudes. We have 
assumed that only the modes n=l and n=2 are excited and that 
the coefficients of the NeumalUl functions are zero. The values 
of ()t are 9t = 0" and ()2 = 40". The numbers in parentheses give 
(ell cz). The case where either Ct = 0 or c2 = 0 yields n'23 = O. 
Note the earlier peaking of plots with larger values of cl and 
C2_ 

'J 
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'" o 

5. 

x O. 

-5 

-/0 

-----~ ~--------4.,,- ......... , 
1.0 3.0 4.0 d 

FIG. 3. Here we have made the same assumptions as in the 
previous figure but have varied O2 instead of Cj and c2' The 
values chosen for the nonzero cn are Cj = O. 3 and c 2 = O. 2. 
Cases with e1 ={10 and 90° given n.23 = 0 to within the accuracy of 
the calculations. 

Vie return to the question of the generic classification 
of spacelike hypersurfaces in the Gowdy metric. Note 
that the triad {e~} in (4.18) solves the differential equa
tion for arbitrary 1];; we did not have to require that If,i 
solve the geodesic equation. The crucial condition was 
that </J (and, hence, the equation for the hypersurface, 
t = f) was independent of (J and O. Therefore, we may 
say that, for any spacelike hypersurface whose metric 
is independent of (J and 0, the triad (4. 18 ) solves (2. 7) 
and (2.13), and therefore the hypersurface can be 
classified GBT lor VIo, depending upon whether n'2S, 
as given in (4.23) is zero or nonzero. 

As an addendum to studying the approximate sym
metries of the intrinsic geometry of the hypersurfaces 
in S c and S b, we wish to turn our attention briefly to 
the extrinsic geometry of these hypersurfaces. We 
ask the question: To what extent is the extrinsic 
geometry invariant under the approximate symmetry 
group? Here we will restrict our consideration to the 
limits where t - 0 or 00. 

The extrinsic curvature of a hypersurface tells one 
how the hyper surface is embedded in the space-time 
and can be represented as a tensor defined on the 
hypersurface itself. For a family of hypersurfaces, 
it specifies the differential change in a spherical 
volume from one hypersurface to the next. The 
triad components of the extrinsic curvature tensor are 
given by2 

(4.28) 

where eo is the unit normal to the hypersurface. For 
S c, this is explicitly 

e AB = diag (A-2 a~ ,A-l eat [lnffiD], _A-l :t [In(DI{2t)l). 

(4.29) 

If the space-time were spatially homogeneous and the 
hypersurfaces were the group orbits, e AB would be a 
function of time alone and 

(4.30) 

Thus we might require that the normalized derivative 
satisfy 20 
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ILOL eABI~ I 
e AB 

(4.31) 

if e AB is to be approximately invariant to the same 
extent as g. In the limit, we will want 

lim [L "L 8 AB] = 0 
t-~ e AB 

(4.32) 

since I becomes zero in this limiL If (4.32) obtains, 
we may say that the space-time is spatially homo
geneous in this limit. A similar requirement is made in 
the limit as t - 0 for those metrics having limt_OI = O. 
Using the asymptotic expressions we find, indeed, that 
(4.32) is satisfied. Thus we may say that the Gowdy 
space-times become spatially homogeneous in the 
asymptotic future. (This is true for both families of 
hypersurfaces previously considered, since S b coincides 
with S c in this limit). 

Near the singularity2l 

limLoLeAB=O, (4.33) 
t-o e

AB 

for those metrics satisfying 1- 3a2 > O. Therefore, 
these metrics become spatially homogeneous near the 
singularity. For the metrics with 1 - 3a 2 < O. 

lim Ii "LeAS 1= 00, 
toO e AB 

(4.34) 

again mimicking the behavior of the intrinsic geometry, 
As before, the behavior of the two families S G and S b 
is the same when 1 - 3a 2 > 0 obtains. When 1 - 3a 2 < 0, 
it is likely that the family S b cannot be defined 
arbitrarily close to the singula~ity. To avoid this 
(inessential) difficulty, we shall not consider S b in this 
limit when 1 - 3a2 < O. Results concerning S G and .Ib 
are summarized in Table II. 

V. HOMOGENEOUS APPROXIMANTS FOR S G and S G 

We begin with the homogeneous approximant for .5" G • 

The hyper surfaces in SG are GBT I; so we want to 
form an approximant whose symmetry group has the 
Lie algebra 

(5.1) 

TABLE II. The extent to which the intrinsic and extrinsic ge
ometries of Sc and j~ are invariant under the approximate 
symmetry groups is indicated here. In those cases marked by 
an asterisk, the surfaces S~ arc not considered 

Bianchi type of the 
approximate symmetry 
group 

l' I t- 0 
1m t- 00 

singularity 

Metric satisfies: 
1 - :3a~ > 0 1 - :)a~ < 0 

I for ,Sc, , 
VIo for jc (locally) 

zero 
zero 

zero 

cigar along 0 

same as for 
1_:>a2 >O 

infinite' 
zero 

infinite* 
zero 

Cigar along 0 
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In terms of the matrix inverses E:, this equation is 

and has the solution 

EA _ ouA 

• - ax' ' 

(5.2) 

(5.3) 

where uA are arbitrary functions of the coordinates 
(x") == (8, a, 6). Making the reasonable assumption that 
the vectors {E A} lie along the coordinate lines, so that E: is diagonal, gives 

auA 
"A -Ccv ox" a • 

We conclude that E1 is of the form 

E~ ={A(XA)O~ (no sum). 

(5.4) 

(5.5) 

The differential equation (2.17) connecting {E A} with {e Ai 
becomes 

For B = 2, this reduces further to 

r-( { 2){ oC2 g 22 Y g 3 2 - 2e 2 2 au = 0, 

requiring 

{2=const 

Similarly, letting B = 3 in (5.6) gives 

{3 =const' 

The integral of Eq. (5.6) for B = 1 is 

({1)2({1-eil=const"/gllYg· 

(5,6) 

(5.7) 

(5.8) 

(5,9) 

(5.10) 

This can have up to three real roots, depending upon 
const" and gll,;g. The vallle of the constants in (5.8), 
(5.9), and (5.10) are fixed by returning to the integral 
K which was varied and requiring oK = O. We find 

{l=ei=l/A 

(i. e., const" = 0), 

{2=fdvg22ei =fdvf2t~, 
1 dV g22 1 av 2tD-

and 

{ _ lav g33e~ _ f dV f2t /D . 
3- JdVg

33 
- JdV2t/D2 

The apprOximant is therefore 

dS~omo=A2dB2 + ({2)"2da2 + ({3 t2 do 2. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

It is instructive to consider this expression in the 
limit as t - 00. Using the asymptotic expressions in 
Appendix B, one finds that (5.14) reduces to 

ds;omo. = (2tt 1
/

2 exp(- 3BJ de 2 + y2(t)(2t)(1+fja o)daZ 

where 
+y2(t)(2t)(1-.f3ao)d6\ (5.15) 

1331 

2v 

(t)= fo dB exp(2v'3 q(t,e» 
y - J;" dB exp(13q (t,B) , 
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(5.16) 

=2(1T2tt1
/

2 t(nt 1
/

2 cos[n(B - en)]' 
n=l 

(5.17) 

If the factors of r2 were set equal to 1, (5.15) would 
be identical to the spatial part of the (homogeneous) 
background metric Berger found for the Gowdy space
time in this limiL Because of the y2 in (5. 15), our 
approximant is not a solution to the Einstein equations. 
This is not surprising; Nothing in our averaging 
scheme guarantees that a solution results. 

We encounter difficulties when we try to construct an 
approximant for the 5 ~ hypersurfaces, The Lie algebra 
for that approximant is 

[E{*, E~*J=O. 

(5.18a) 

(5. 18b) 

(5.18c) 

These equations could be solved in much the same 
fashion as was done for (5,1); but we would find it 
impossible to require simultaneously that the solutions 
be periodic in B and vanish nowhere, It seems that one 
cannot impose a 3-torus topology upon a homogeneous 
metric of BT VIoo This is confirmed by Theorem 2.10 
of Yano and Bochner, 10 which states that, in a compact 
Riemannian manifold, there exists no nonzero Killing 
vector field satisfying 

(5.19) 

The triad components of the Ricci tensor for our 
approximant must be22 

R1B=diag(-2(1l,23j2, 0, 0): (5.20) 

therefore, at least one member of a triplet of linearly 
independent Killing vector fields must obey (5.19). 
The conditions of Theorem 2,10 are satisfied: We must 
conclude that the type Via approximate symmetry group 
can only be a local group; a global approximant is 
impossible. 

VI. DISCUSSION 

In our previous paper, 1 we noted that the magnitude 
of I at its minimum may be used as a measure of a 
given 3-metric's inhomogeneity: The greater I, the 
more in,lOmogeneous is g, and vice-versa. (one has 
1=0 if and only if the metric is homogeneous.) Roughly, 
I may be thought of as measuring the "perpendicular 
distance" in superspace from the 3-metric in question 
to the nearest submanifold of homogeneous metrics. 
Further, we can distinguish between two types of 
inhomogeneity: those in which AA -;:.c 0 and those with 

AA * O. 

In light of these remarks, two comments come to 
mind concerning the preceding examples, First, we 
have not yet found an inhomogeneous solution to the 
Einstein equations in which AA * o. It is tempting to 
conjecture that the symmetries of the metrics studied 
preclude AA f. 0, but whatever its explanation, this fact 
highlights the specialized nature of the two inhomogeneous 
solutions investigated. 

The second comment relates to the asymptotic 
behavior of I in the Gowdy example, We found that, 

A. Spero and R. Baierlein 1331 



                                                                                                                                    

as t ~ cO, I ~ 0; that is, the intrinsic geometry of the 
hypersurfaces became more homogeneous as t - 00. 

One wonders whether this behavior is typical of cos
mological solutions that do not collapse or whether it 
is peculiar to the Gowdy modeL If the behavior is 
atypical, what characterizes those solutions displaying 
asymptotic intrinsic homogeneity? 

In the Gowdy example, the extrinsic geometry also 
became more homogeneous as t ~ 00. We suspect that 
this is not characteristic of more general solutions, 
for there exists a class of Szekeres solutions23 which 
are, intrinsically, exactly homogeneous but are 
extrinsically inhomogeneous. 

Finally, we remark that one may wish to extend our 
scheme to include a slicing algorithm for spacetimes. 
For example, the chOice of hypersurfaces may be 
incorporated into the variational principle by requiring 
that the sliCing minimize the integral of lover the 
spacetime. In this way we may obtain a measure of the 
total inhomogeneity of the spacetime. 

APPENDIX A: KANTOWSKI-SACHS SPACES 

The Kantowski-Sachs spacetimes4 admit a multiply
transitive, four-parameter Lie group acting on space
like hypersurfaces. The group has no three-parameter, 
simply-transitive subgroups; so, although the hyper
surfaces are homogeneous in a physical sense, they do 
not satisfy the stricter definition given in Sec, II, and 
an invariant triad cannot be found, Therefore, it is of 
some interest to analyze these hypersurfaces with the 
appproximate symmetry technique: They could provide 
a useful testpiece for questions on the behavior of our 
scheme in the presence of metric symmetries, 

In the coordinates of Kantowski and Sachs, the metric 
of the hyper surfaces on which the group acts is 

(At) 

where X and Y may depend upon the hypersurface in 
question, but are independent of pye, and ¢. The 
topology of these hypersnrfaces is R XS2; the coordinate 
p, with (- oo<p< +00), labels the 2-spheres; e and ¢, 
with (0", e '" IT, 0", ¢ '" 2IT), label points on the 2-spheres. 
The metric resembles that of Euclidean 3-space in 
spherical-polar coordinates, but instead of scaling 
the geometry on each 2-sphere according to its distance 
from the origin, each 2-sphere is given the same 
geometry. 

C artesian coordinates will facilitate our analysis; 
we transform to them in two steps. The half-space 
consisting of 2-spheres with p ~ 0 may be mapped into 
R1 from which points within a sphere of radius 1 about 
the origin have beem removed, If the spherical-polar 
coordinates (r, 6', ¢') are used in R 3

, the mapping is 
given by 

r=exp(XpjY), 0' =0, ¢' = ¢. (A2) 

The metric now becomes 

(A3) 

where 1 '" r '" 00 and the primes have been dropped. The 
spherical-polar coordinates may be related to Cartesian 
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FIG. 4. The embedding of the Kantowski-Sachs space into two 
R 5 spaces is shown (with one dimension suppressed). The 
shaded areas have been deleted and the indicated identification 
made. The set U is given by U ~Ul +U2• The metric on each 
sheet is (A4). 

coordinates in the standard way to give 

ds 2 = (y2 /r2) (dx2 + dy2 + dz2). (A4) 

The other half-space, with p,,; 0, may be embedded in 
an identical R3 in a similar way. The two R3 sheets are 
then identified on their r = 1 surfaces to give the 
complete Kantowski-Sachs 3-spaces (see Fig. 4). 

To solve the variational principle, we note that (A4) 
is spherically symmetric-there is no essential 
distinction between the three coordinate directions" 
This leads us to choose (in the x ,\', and z coordinates) 

e~ = (r/ Y)o~, (A5) 

as a possible triad of orthonormal vectors. 

In practice, it proves useful to find those commutation 
coefficients whose averages may be nonzero, thus 
permitting at least a partial solution to the algebraiC 
equations before one turns to the differential equations. 
For the triad of (4.5), we find 

Yc _ 2 "C! ,v 
AB- X{AuBl:)l. (A6) 

USing as our set U the union of the two spherical 
regions on each sheet given by 1 ~ r~ ro (see Fig. 4), 
we find that Y~B and, therefore, C~B are zero. The 
differential equation now reduces to 

or 

The boundary condition becomes 

~f (XAO~ -XBo~)fBCM1)eMo~gabdSb =0, 
aU 

where 

(A7) 

(AB) 

(A9) 

gab dS b = X. (y3j r2) sinO dO d ¢. (AIO) 

Both (AS) and (A9) are identically satisfied. Thus the 
space can be classified GBT I with the triad in (A5). 

Concern about the continuity of the triad vectors at 
the surface where the two sheets have been identified 
may be removed by transforming the triad back to the 
Kantowski-Sachs coordinates and confirming that the 
triad is well-behaved at p = O. 

We may also calculate the value of I for this solution. 
Since 
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(A11) 

we find that 

1= 2 lim (1/V)j (4/f"2)dV 
TO-.o 

= 8/y2. (A12) 

It seems likely that the symmetry group is respon.
sible for <12 being constant. Nevertheless, I is nonzero 
because the group is not simply transitive. 

APPENDIX B: A COMPENDIUM OF THE GOWDY 
SOLUTION 24 

The metric is 

ds 2 =N(- dt 2 + dB 2
) + 2t(D2rlrT + D-2 d[/), 

where 

A = (2t)-1/2 exp(- 3B+/2), D = exp(v3 BJ, 

and 

0"" B "" 21T, 1f! da do = 161T . 

The metric variables are of the form 

B_ = ~ao ln2t +:t e nZa(nt) cos[n(8 - Bn)], 

B.= - ~11~ln2t - ~t~~n1t dl' 
n=l 

(B1) 

(B2) 

(B3) 

(B4) 

X 2t'lZ~(l1t') + Zi(nl')]- 2aJi C nZa(nt) cos[n(e - Bn)] 

+;C B2tmnenc mZ O(mtlZ 1 (nf) 
n=l m=l 

nd'n 

x{cos[n(e - 8n) + 111(8 - 8m)] _ cos[n(8 - en) - m(e - em)]} 
n+m n-m 

(B5) 

where 110 , c n ' and Bn are constants, and Z, is any real 
solution to the lth order Bessel equation. As t- 0, 

where 11 is defined by 
~ 

ate) '" a o + 2~e cos[II(R - 8 )], 
n::: 1 n n 

so the metric behaves as 

A- (2t)(3a 2
-1)/4, D- (2t)/3a/4. 

In the other limit, as t - 00, we have 

A - (2t)-1/4 exp( - 3Bj2), D - (2t)"3ao/ 2, 

2l ~ 
B. - -ta;ln2t -- ~n(e2 +d2

), 
7T n=1 n n 

B_ - ~ao In2l + 2(1T2t)-1/2 

x;C n-' /2 cos[Jl(B - en) ][e cos(nl -1T /4) 
n=l n 

(B6) 

(B7) 

(B8) 

(B9) 

(BIO) 

+dn sin(nf-If/4)], (Bll) 

where dn "" cn • (ratio of regular to irregular Bessel 
functions) . 
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APPENDIX C: GEODESIC-NORMAL HYPERSURFACES 
IN THE GOWDY METRIC 

We wish to find a timelike unit vector e&, tangent to 
geodesic curves. This vector is related to eo and e1 of 
Sec. N by a Lorentz transformation: 

The requirement that e~ be geodesic reduces to a 
differential equation for Ill: 

(Cl) 

(C2) 

which cannot, in general, be integrated analytically" 

Assume that the hypersurfaces 5 b, to which e~ is 
normal, are given by 

l=/(e,J). 

The unit normals, n, to S~ are then of the form 

n = [eo + e, 2//aB]/ A[l - (2//ae)2]1/2, 

which, when identified with (Cl), gives 

cosh</! =[1 - (2//2B)2]-1/2 

or, after solving for a//ae, and using (C3), 

a//aB=tanhlj,!(j(8,J),8L 

Once <J; is known, this equation determines /. 

The metric in these hypersurfaces is 

ds ,2 = [A 2( - dt2 + d82
) + 2t(D2rIif + D-2do 2)] I t=t 

=A2(jj e)[l - (2//ae?]rIB2 + 2} [D2(j, e) rifT 

(C3) 

(C4) 

(C5) 

(C6) 

+D-2 (f, e)d6 2 j. (C7) 

Finally, the differential volume element is 

dV'=A(f, 8)2t[1- (a//ae)2Y/2rI8dado. (C8) 

when ~! and its derivatives are small, (C2) may be 
linearized and integrated to yield 

( ) A(tg,e) ( ) 
</! t, 8 ::; A (t, 8) 4' to, 8 

- A(: 8)ft dl' a~ A(f', 8). 
, to 

(C9) 

In Sec. N we consider metrics satisfying 1 - 3a 2 > 0, 
so that 5 ~ may be chosen to coincide with 5 G as t ~ O. 
This necessitates choosing ta = 0 and i./i(to, 8) = O. 
Therefore, to first order in ~:, 5 b in Sec. N is given 
by t=/(8,J), where 

2/ ~J(t 8) 
il8 ' 

~ -A-'(t 8/t 
rIl' ~A(t' e) ''.1

0 
ae ,. (ClO) 
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In this paper, we present a study of exact, infinitesimal, nonlinear realizations of the direct product 
(L 1 X L,) of two Lorentz groups on an antisymmetric tensor space 1'/. Included in this study is a detailed 
discussion of the second order (L J X L,)/ L + coset realizations where L + is the symmetric Lorentz 
subgroup. Invariant metric forms defined on 1'/ are exhibited and compared with invariant metric forms 
obtained in some previous studies of coset realizations. 

I. INTRODUCTION 

Direct product of homogeneous Lorentz groups (or 
their covering groups) have been studied previously in 
conjunction with analyticity problems of scattering 
amplitudes! and in composite particle models involving 
relativistic internal symmetry, 2,3 

In the present work we study the direct product 
(L! x L 2 ) of two Lorentz groups realized as a transfor
mation group on a space (1) of six antisymmetric tensor 
components. We also discuss the second order (L j xL2)/ 

L + coset realizations and show that these are contained 
in the above- mentioned realizations. In these realiza
tions the transformations on Tf from the complement of 
L + in L! x Lz are nonlinear. 

The particular realizations of L j x L2 studied here 
have possible uses within the context of Refs. 1, 2, and 
3. In addition, there is the interesting possibility that 
physical fields might exist which transform nonlinearly 
under the Lorentz group. 4,5 In the particular realiza
tions considered here, both Lorentz subgroups L! and 
L z act separately as nonlinear transformation groups 
on 1]. Lagrangians constructed from the L! x L2 invari
ant metrics defined on 1] are invariant under the sepa
rate action of L j and L 2• The development in this paper 
is limited to discussion of the forms for these non
linear realizations and to construction of the invariant 
metrics. 

In Sec. II we shall establish the notation to be used 
and define the group generators. These are used in 
Sec. III where we give exact infinitesimal realizations 
of the group. In Sec. IV we compare these with coset 
realizations and, finally, in Sec. V we shall discuss 
several invariant metric forms. 

II. NOTATION AND THE GROUP ALGEBRA 

Here, the notation used in this paper is established, 
and a generator basis that will be convenient for the 
algebraic operations to follow is described. For further 
convenience in manipulation, the Pauli metric conven
tion of letting the fourth space-time component be 
imaginary is used (that is, x 4 == ict), together with the 
convention of summing from 1 to 4 (from 1 to 3) over 
repeated·Greek (Latin) indices. 

The following generator basis is first introduced 

Here, the juv (1) and juv (2) are generators for the Lie 
algebras 4:1 and 4:2 of the respective Lorentz groups 
L j and L 2• Operators with index (1) commute with 
operators with index (2). The operators t;" satisfy the 
following commutation relations: 

(t~", t;,,] = (t~", t;,,] 

=i(OlLpt~",- olJ.o:t~p+ o"",t~p-l5vpt~o), 

(t~", t;",] = i(O"pt~", - olJ<Xt~p + o""t~p - 0,,/;;"'). 

From these relations, it is obvious that the set k+ 

(2.2) 

'" {t~v} generates a Lorentz subalgebra. The set k+, to
gether with its complement part, k- '" {t~vr comprise 
a generator basis for the Lie algebra of L j x L 2• It 
should be noted that k- itself is not a subalgebra. 

For the manipulation to follow, it is convenient to 
use a vector form for the operators. The vector opera
tors corresponding to the above tensor operators are 
defined as follows: 

(2.3) 

where fiJk is the usual totally antisymmetric tensor 
with normalization E123 == + 1. These vector operators, 
as defined here for these finite nonunitary realizations, 
are real and satisfy the following commutation 
relations: 

(Ji-, Kj] == [Jt, Kj] == - Eilk K;" 

[Ki, Kj) == [K;, 10] == + fiJk J;, 
[J,-, Jj] == [Jt,~] == - Eijk.r,., 

[Ji, K;J ==- 'ilk K;, [Ki, Ki] == + Eijk J;, 

[Ji, Jj] = - fijkJ;. 

(2.4) 

In terms of these operators, a second set of basis 
operators is defined as follows: 

The commutation relations for these operators are 
given by 

[T;, Ti] == (Ti, Tjl == - EijkT;, 

[Ti,T;]==-EijkTi;, [rr,(Tj)*]==O 

(2.5) 

(2.6) 

with similar relations holding for the complex conjugate 
components. The sets T == {T;, Ti} and T* == {(T;>*, 
(Tj)*} together form a generator basis for the algebra 
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of L j XL 2• Furthermore, since the operators in T 
commute with those in T*, the above basis corresponds 
to an alternate direct product decomposition {indicated 
by T j x T 2) of the general group L j x L 2• One convenient 
feature of the latter basis is that the generators 
{r+, (r+)*} generate the subgroup L +. 

The connections between the infinitesimal group 
parameters corresponding to the above operator sets 
are established by the following relations: 

ii[w"v(1)j"v(1) + w")2)j,,v(2)] = ·h(w~vt:v + w~v/~v) 

From these relations and the previous relations between 
the different sets of generators, the explicit connec
tions between infinitesimal parameters are determined 
as follows: 

W"v(l)=W~v+w~v} ± _ w"v(1)±w"v(2) 

(2) - + -, w"v - 2 ' 
W~V - w/.l lJ - w/.LV 

{3t = 0'1 + i VI, aT = l{3t + (f:lt)*]l2, 

({3[)* = 0'1- iv[, V[ = [f:li- (f:lt)*J!2. 

III. EXACT INFINITESIMAL REALIZATIONS 

(2.8) 

(2.9) 

(2.10) 

Here, a general infinitesimal L j x L2 group action on 
the six components (1)"vl of an anti symmetric tensor is 
considered. In this group action, the subgroup (L +) is 
assumed to act on the space/") in a linear way. To ob
tain the infinitesimal realizations of the L - part of the 
group action on this space, a procedure used by 
Weinberg6 in his analysis of the nonlinear realizations 
of the chiral group SU(2) x SU(2) is followed. This 
procedure involves the assumption of a general form 
for the L - action, and then the restriction of this form 
by imposition of the commutation relations of the Lie 
algebra. 

The linear action of the subgroup L + on the field ten
sors T)ilV is given by the following expression: 

T)ilV = (A" p)+(N GtT)PG (3.1) 

with A" v = IS" v + w" v; the infinitesimal realizations of L + 

are given by 

(3.2) 

With the TX T* decomposition it is more convenient 
to work with two complex field vectors defined as 
follows: 

S=M+iV, M=(S+S*)/2, 

S*=M+zY, V=(S-S*)/2i, 

where 

LVI' = EiJkT)lk/2, 
. . 4i 

V' = - 1.1) • 

(3.3) 

(3.4) 

The group realizations on M and V can be found from 
the group action on Sand S* by using (3.3). From (3.2), 
the L· group action on S* and S is given by the follow
ing equations: 
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(3.5) 

From this point on, it is necessary to w rite only the 
group action on the complex vector S. The group action 
on S* is obtained simply by complex conjugation of the 
relations (including the group parameters) for the 
group action on S. 

For the parameter (3;, the action of the group algebra 
is given by the relation 

as( 
[Tj, 5 i 1 = - -(3! = + Eijk5k = - Ejik5k • 

() j 
(3.6) 

Here 5~ =5 i + ISS i _ For the action of T- we assume the 
following form involving two undetermined functions 
G and F. 

[Tj, Si] = - ~~; = ClSij + FS i 5j =Ai}' 
J 

In the operations to follow, it is assumed that the non
invariant dependence of the functions G and F upon 
the field arises only through the function 52 =5i5

i which 
is invariant under the subgroup L + (notice that 52 
= ~ - V2 + 2iV 'M). These two functions (G and F) may 
also depend upon any other L j x L2 invariant function, 
say D, where [Tt,D]=O. This latter dependence is dis
cussed in Sec. V in terms of invariant forms, but 
because [T±,D]=O, it will not be involved in the com
mutation condition considered below. 

The above infinitesimal group action on the complex 
3-vector S is next required to satisfy the following 
commutation relation: 

[T;, [Ti, Sj J) - [Ti, [Ti, 5 j J) = [[ Ti, Ti 1, SI]' (3.8) 

Using the explicit commutation relations (2.6), this 
requirement, together with the following formula, 

[T-z,C]=2C'lc+FS2]SI' C' dG = d(S2) , (3.9) 

which follows from (3,7), leads directly to the follow
ing first-order differential equation 

GF - 2C'(G + FS2) = 1. (3.10) 

The functions F and G are arbitrary subject to this 
equation. Under a redefinition of the space of the form 

(3.11) 

one realization may be transformed into another if the 
function 1/>, F and G satisfy the following conditions 

C = cpG, (3.12) 

(3.13) 

For use in Sec. V, the following realization form is 
discussed here: 

Here, D is any L j x L2 invariant. With (3.14), Eq. 
(3.10) reduces to 

(3.14) 

(G+S2/C)F=0. (3.15) 

One has two possible cases which satisfy the zero 
product. 

D*O, G=(D2_S2)1/2, F=O, (3.16) 
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D = 0, G = (- 52)j/2, F = arbitrary function. (3. 17) 

The L j x L2 invariant forms for these two realizations 
are discussed in Sec. V with a particular choice for F 
in the second case. 

U sing the relations between the group parameters, 
the nonlinear group action on the Mi and Vi vector 
components may be expressed in the following form: 

[ _ ] a Vf i (A * ) Jk , VI == - -~- = - -2 kl - Akl , 
{} 0' k 

[ - 1 0111; i (A * ) Kk,Al z =+ aV
k 

=- 2" kl-Akl' 

(3. 18) 

(3. 19) 

(3.20) 

(3.21) 

In the above realizations of L j x L 2, both L j and L2 
act as nonlinear transformation groups on 1). Consider 
the following basis for L j and L 2 : 

Tk (i) = j[Jk(i) + iKk(i)], T/ (i) = l[Jk(i) - iKk(i)], 

i= 1, 2, (3.22) 

where Jk(i) and Kk(i) are defined as in (2.3). From 
(2.1), (2.3), and (2.5) one has the following relations: 

T ( .) - T k• +AiTk - T *(.) _ (T/)* +Ai(Tk")* 
kl- 2 k l- 2 

(3.23) 

where Ai = - (- l)i, i =-= 1, 2,. Equations (3.6) and (3.7) 
then give the following expressions for T j (l) of L j : 

[Tj (1), 5 i ] = - ~EiikSk + tGoij + tF5i5 j • (3.24) 

With (3.24) and its complex conjugation one has a well
defined nonlinear infinitisimal realization of L j on the 
space 1). For L2 one has the following relation and its 
complex conjugate. 

[Tj (2), 5 i ] =- jEjik5k - ±GoiJ - ±F5i 5j • (3.25) 

It is clear from (3.24) and (3.25) that the realizations 
of L j and L2 on 1) can be obtained one from the other 
by the inversion G - - G and F - - F. 

IV. COMPARISON WITH COSET REALIZATIONS 

In this section, the infinitesimal group realizations 
on the coset space of (TX T*)/T· are considered, where 
T x T* is the alternate direct product decomposition of 
L j x L2 mentioned in Sec. II. These coset realizations 
through second order are compared with corresponding 
second order expansions of the above exact realizations 
for a particular choice of the classifying function G. 

Following the work of earlier authors, 4,5, 7-~ the ex
ponential map is used to express a general group ele
ment of T x T*, that is, 

g= exp[S' T- + S*, (T-)*l exp[h' T+ + h*' (T+)*l. (4.1) 

Since the generators {7f, (Tj)*} generate the subgroup 
L +, the particular factoring in (4.1) corresponds to the 
coset space (L j XL2)/ L + which can be parameterized by 
six antisymmetric tensors. Since the T and T* parts 
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commute with each other, Eq. (4.1) may be rewritten 
in the following form: 

g= exp[8' T-l exp[h' T·l exp[S* . (T-)*l exp[h*' (T+)*]. 

(4.2) 

From this form it can be seen that it is necessary to 
consider only the T group action since the T* group 
action follows as in Sec. III by complex conjugation. 
The action of an arbitrary group element go = exp[j3"' T"] 
xexp[i3+' T+J on this coset space is given as follows: 

(4.3) 

The following expansions are for terms in u and 
oS= S' - S through second order in 5 and through first 
order in the parameters of go. The explicit second
order realizations are found by using the following 
Baker-Campbell-Hausdorff (BCH)10 expansion formula: 

exp(a) exp(b) = exp(a + b + Ha, b 1 + -&[[a, b l, b] 

- A([a,b],a]++---). (4.4) 

Setting go == exp(,s"· Ti, both sides of (4.3) are expand
ed by (4.4) giving the following relation; 

~". T- + S • T" + H.a"' T", S 'T"] + j~ ([13-' T-, S· T-], s· T-] 

=S" T-+u' T+ + Ms'· T-, U 'T+] 

- -b [[S' • T-, U' T+l, S' • T-]. (4.5) 

Since the generators of T+ and r are linearly indepen
dent, this relation reduces to the following two 
equations: 

U • T+ = M 13- • T-, S • r] 

+ j~ [[8 'T-, U' T+], S' T"], (4.6) 

oS, T=j3-' T-- Hs· T", U' T·] +*([~. T-, S 'T"l, s' T"]. 

(4.7) 

Iterating (4.6) and using the result in (4.7), the second
order solutions become 

U· T+ = Hw' T-, S· r] + 0(s3), (4.8) 

oS, T-=~"' r + Hrj3-' T", s· T-], s, T-] + 0(53). (4.9) 

The above method for obtaining these expansion formu
las was outlined in the recent work of Machacek and 
McCliment.l1 The form of formula (4. 9) was also ob
tained by Hopkinson and Reya5 for the 0(3,1) realiza
tions on the coset space of 0(3,1)/0(3) via an alternate 
techniqueo 

For go = exp(j3+ • T+), a repeat of the steps in the above 
procedure gives the following expressions: 

(4.10) 

(4. 11) 

As can be seen the subgroup r acts linearly on the 
coset coordinates with u=~" 

Using the explicit commutation relations described 
in Sec. II, the expressions in (4.9) and (4011) take on 
the following form: 
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(4.12) 

Equation (4.13) is exact and corresponds to the linear 
action described by Eqo (3.6). To compare the second
order coset realizations in (4.12) with the exact reali
zations discussed in Sec. lIT, it is nec essary to find an 
appropriate form for the classifying function G and then 
make second-order expansions of Eq. (3.7). 

To describe (4.12) by (3.7), G must reduce to a sec
ond order polynomial and F to a constant in the second 
order expansion, It is possible to satisfy (3.10) with 
G=aS2 + band F=!\ =const if a =- [{/2 and B = 1/2K. 
This realization, however, will not satisfy the coset 
realizations given in (4012) since K = 1/3 will give co
efficients of oiJ which do not agree with the corre
sponding turn in (4012), However, it is possible to 
transform, as in (3_ 11), to a new set of variables for 
which these L - realizations reduce, in second order 
expansions, to the coset realizations, With the above 
mentioned choice of G and F consider the variable 
transformation 

Si=h(P)Pi, h(P2)=1 + {/02, (4,14) 

The realization of the P space has the form 

_ M = 1: (_1 __ [{1z2p2) .. 
oW 12 2K 2 0" , 

(4,15) 

This realization reduces in second order expansions to 
the coset realizations in (4.12) if a and J( satisfy the 
conditions 

1 = - 2K, and 31(2 +]( - 3a = O. (4.16) 

These equations are satisfied for K = - 1/2 and a = 1/12. 
The above realizations on the S space with I( = - 1/2 
have the form 

asc (52) 1 -* = 4" - 1 0ii - "SiS,. (4.17) 

This particular realization is interesting because, as 
shown in the following section, it leaves invariant the 
diagonal conformally flat de Sitter metric defined on the 
S space. The transformation Si = (1 + p2/12) Pi is then 
just the change of variables needed to diagonalize the 
invariant metric on the coset space. 

With the above comparison, it is clear that for at 
least one choice of the function G the exact realizations 
of Sec. ITI have the same form as the above coset reali
zations, at least through second order, It should be 
clear that realizations with choices for G and F other 
than in (4,15) may exist which reduce upon second order 
expansions to the second order coset realizations, 

V. INVARIANT FORMS AND LAGRANGIANS 

In this section, several invariant forms defined. on 
the vector components which span the tensor space are 
discussed. The invariance under L j XLz of the L+ in-
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variant forms Ml- V2 and M' V is first discussed. It is 
shown that the invariance of these expressions requires 
a particular realization, that is, a particular choice for 
the function G. Invariant Riemann metrics on the tensor 
space are constructed and compared with invariant 
forms constructed for coset spaces in previous 
studies. 5, j2 

U sing the equation S = M + iV the usual L + - invariant 
forms Ml- V2 and M' V can be rewritten as follows: 

(5.1) 

From the general L - action defined in (3 0 7), one can ob
tain the following relations: 

- o(M'V) c=(1/2i){[(G+F52)S'j3-1-

[(G + FS2) S' j3-1*}0 

Both of these forms are obviously invariant under the 
L - action if S' W = O. However, this condition does not 
hold for an arbitrary element of L -, given an arbitrary 
point in the 1] space, Both quantities are invariant under 
L - (and thus under L j x L 2) if the following condition 
holds true~ 

This equation must be considered simultaneously with 
Eq. (3.10) which together require the following forms 
for G and F; 

This realization corresponds to the second realization 
[see Eq. (3.17)1 mentioned in Seco III with a specific 
choice for the function G. With these relations, the 
group action (3.7) takes on the form 

r - 1 a5~ . ( !?L&) Tit Si = - Bi3; = 'f Z °ijS - S • (5.6) 

The above realization is obviously not valid for S= O. 
This means that if Ml- V2 and M' V are to be L j x L2 

invariants, then at least one of these expressions must 
differ from zero since S2=W_V2+2iM'V. 

Next, consider the realization given by (3.16) where 
F = 0 and G = (D2 - ,s-2) 1/2, where D is some invariant 
function under L j x L 2• The realizations (3.7) take on 
the form 

[Tj,S;l=- ~=(Jj2_S2)j/20ij' 
crJ, 

Setting S4 = G, one obtains the following relations: 

These relations correspond to an infinitesimal rotation 
in planes which leaves the quantity D2 invariant where 
D2 satisfies 

(5.9) 

It should be clear here that S4 is a scalar under L' and 
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should not be confused with the fourth component of an 
L+ 4-vector. 

The complex conjugate of D is also invariant under 
Ll x L 2, With this, one can set 54 = q; + iiJ; and obtain the 
following two finite invariant forms corresponding to 
the real and imaginary parts of D: 

Dl = M2 _ V2 + q;2 _ ~12, 

D2 = 2 M ' V + 2 rb J'o 

(5. 10) 

(5 0 11) 

The functions rb and if! are L + scalars, The invariance 
of the forms (5.10) and (5.11) depends upon the use of 
the realizations as given in (5.7). 

In addition to the above forms, it is possible to con
struct an infinitesimal invariant form on the field. For 
the realization given in (5.7), the following Riemann 
metric form is invariant under LI xL2: 

(5.12) 

For the particular realization where the invariant 
function D is constant, it is possible to construct an 
infinitesimal metric form that does not involve the 
scalar field components. This case corresponds to 
the realization for which G= (1- sZ)1!2, where for con
venience D has been normalized to one. From the 
geometric point of view, the constant D is just the 
radius of curvature, With D constant (D= 1), the dif
ferential of both sides of Eq. (5. 9) gives S 'dS + 54d54 
= 0 from which one can obtain the relation 

dS4 = (S 'dS)/ (1 _ 52)1/2 (5.13) 

The use of (5.13) in (5.12) gives the metric form 

(5.14) 

This particular metric form does not involve the scalar 
field components ¢ and ~I. It is by now a standard form 
appearing in several publications on coset realizations 
(see for instance, the work by Meetz12 and references 
quoted therein) and in textbooks on general relativity 
(see for instance, Alder, Bazin, and Schiffer, 13 p. 348, 
from which the above procedure for deriving this metric 
form was obtained). 

A worthwhile comparison can be made between the 
form in (5.14) with a particular metric form obtained 
by Hopkinson and Reya 5 in their study of the coset reali
zations of the Poincare group. To make this compari
son, first consider the following change of variables: 

Qj=25/(1+54), 54=(1_52)1/2, (5
0

15) 

In terms of these new variables, the metric in (5.14) 
takes on the following diagonal form: 

(5,16) 

This diagonal form is just the form of the well-known 
conformally flat de Sitter metric 14 defined here on a 
space of three complex variables. With the above varia
ble relations, the L - action in (5.7), expressed on the 
q space, is given by the following equation: 

oq( (q2) 1 -*= "4- 1 Ojj-"2Qjqjo (5,17) 

This equation is just the realization given in (4,17) with 
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the substitution 5j -q;. Making the variable change ql 
= [1 + 52/12] Pi discussed in Sec. III and then carrying 
out the second order expansion, the metric in (5,16) 
reduces to the form 

(5.18) 

This latter form is identical to that obtained by 
Hopkinson and Reya5 [see Eq, (20) of this reference] 
in their study of the Poincare group realizations on 
the coset space 0(3,1)/0(3), 

In the above study we have discussed in some detail 
the mathematics of the L t xL2 group realizations on an 
antisymmetric tensor space, Several invariant metric 
forms and Lagrangians on this space were also dis
cussed. The group Ll xL2 is not a physical invariance 
group for a system of two interacting particles, How
ever, by studying these coset type realizations we 
have obtained, although indirectly, nonlinear realiza
tions of the Lorentz group (considered as L j or L 2) on 
a skew-symmetric tensor space 1). The demonstrated 
fact that nonlinear realizations of the Lorentz group 
[or its SL(2, C) covering group 1 exist strongly suggests 
that such realizations might be constructed by a more 
direct method, n remains yet to be seen whether non
linear realizations obtained by a more direct method 
will be limited to, differ from, or be more general 
than the ones obtained here, In any case the present 
work will be a worthwhile guide for future studies in 
this area. 

ACKNOWLEDGMENTS 

The author is grateful to Dr, E, Reya for checking 
a number of the mathematical results of this paper and 
for several helpful discussions on non-linear realiza
tions, Dr. S. Williams and Dr, D, Pursey are acknowl
edged for making a critical reading of this manuscript. 

lThis problem is discussed by M. Toller and G. Domokos, 
in Proceedings of the Eighth Nobel Symposium, edited by 
N. Savartholm (Wiley, New York, 1968), pp. 15 and 33, 
respectively. 

2T. Takabayasi, in Proceedings of the 1967 International 
Conference on Particles and Fields, edited by C. R. Hagen, 
G. Guralnik, and V. S. Mathur (Wiley, New York, 1967), 
p. 413. 

ST. Takabayasi, in Ref. I, p. 157, and references quoted 
therein. 

4J.D. Hind, Nuovo Cimento A 4, 71 (1971). 
5J. F. L. Hopkinson and E. Reya, Phys. Rev. D 10, 342 (1972). 
6S. Weinberg, Phys. Rev. 166, 1568 (1968). 
78. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 229 
(1969). 

BC. G. Collan, Jr. and S. Coleman, Phys. Rev. 177, 2247 
(1969). 

9C.J. Isham, Nuovo Cimento A 59, 356 (1969). 
laThe Baker-Campbell-Hausdorff (BCH) expansion formula 

is discussed in several textbooks on Lie algebras. See, for 
instance, N. Jacobson, Lie Algebras (Interscience, New 
York, 1966). 

11M. E. Machacek and E. R. McCliment, Phys. Rev. D 10. 
1962 (1974). 

12K. Meetz, J. Math. Phys. 10, 589 (1969). 
13K. Adler, M. Bazin, and M. Schiffer, Introduction to General 

RelatiVity (McGraw-Hill, New York, 1965), p. 348. 
14F. Glirsey, in Group Theoretical Concepts and Methods in 

Elementary Particle Physics, edited by F. Glirsey (Gordon 
and Breach, New York, 1962), p. 365. 

B.J. Dalton 1339 



                                                                                                                                    

The distribution function for stretched dipoles in an applied 
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An expression is derived for the distribution function of an assemblage of ion pairs in the presence of a 
uniform applied electric field, for the most interesting and important case, namely when the interaction 
force between the components of such stretched dipoles is unshielded Coulombic. Our derivation makes 
use of results obtained previously when determining, by means of a perturbation technique, the relative 
increase in the dissociation constant of a weak electrolyte due to an applied electric field. The expression 
we obtain for the ion-pair distribution function agrees with that given previously by Onsager [1. Chem. 
Phys. 2, 599 (J 934)], whose derivation has never been published in full 

1. INTRODUCTION 

The distribution function for an assemblage of rigid 
dipoles in a uniform applied electric field X is well 
known,1 being simply the Maxwell-Boltzmann distribu
tion. The determination of the distribution function 
f(r, e) for an assemblage of associated ion pairs under 
Coulombic interaction in a uniform applied electric 
field where, of course, the distance r separating the 
ions is not constant (i. e., the problem of the stretched 
dipole) is a much more difficult problem, because, 
unlike the rigicl dipole case, it involves nonequilibrium 
physics. 

Onsager2 has actually given a solution to this problem 
where it appears in consideration of the theory of Wi en 
dissociation of weak3 electrolytes. He found that 

f(r, e) = (l/r)exp[l/r + Er(cOSe - 1)] 

(1. 1) 

where J o denotes the ordinary Bessel function of order 
zero and e is the angle4 an ion pair makes with the 
electric field X. The variable r has been made dimen
sionless on division by the characteristic length 2q, 
where 

q = - ete ;/21JkT > 0 (1.2) 

is the Bjerrum association distanceS; D is the dielectric 
constant of the solution, T its absolute temperature, 
k is Boltzmann's constant, and e t and ej are the 
charges of the ions. The distribution function has been 
renormalized by dividing by ninj , where the constants 
n; and H j denote the probability densities of the "free" 
ions. Also E = 2{3q, where 

(3 = IX(eiw i - ejwj ) 1/2kT(w j + Wj) 

and Wi and Wj are the mobility coefficients of the ions. 
Onsager stated that the derivation of this important 
result "involves elaborate analysis, " but did not publish 
his derivation in full. 

Recently,6 we gave a perturbation solution to the re
lated problem of Wien dissociation in a weak electrolyte, 
using as perturbation parameter the dimensionless 
quantity E = 2{3q. To calculate the relative increase in 
the dissociation constant K(X)jK(O) due to the applied 

electric field X, we found that only the Legendre trans
form of the ion-pair distribution function, and not the 
distribution function itself, was required. In this 
paper we will show how our analysis can be extended 
to actually obtain an expression for the ion-pair distri
bution function. The result we obtain agrees with 
Eq. (10 1) given by Onsager. 

It is possible that modifications of our perturbation 
technique may be used to determine the ion-pair distri
bution function in other problems in this and related 
fields. One generalization of interest would be to non
isotropic media which Onsager7 states would be desir
able but would lead to a more formidable partial dif
ferential equation for f. The experience gained here 
should help in the solution of these more general 
problems. 

2. PARTIAL DIFFERENTIAL EQUATION AND 
BOUNDARY CONDITIONS FOR THE DISTRIBUTION 
FUNCTION 

In this section we will give a brief outline of the 
derivation of the partial differential equation for the 
ion-pair distribution function f(r, e) and we will also 
discuss briefly the boundary conditions on f. A back
ground to the theory of dissociation of a weak electro
lyte in an applied electric field has been given by 
Onsager and Fuoss, 8 Onsager2,7 and Harned and Owen." 

Consider an electrolytic solution containing ions of 
species i and j and let r 2 and r 1 be two position vectors 
with respect to an arbitrary origin. Then the distribu
tion function fji is defined as the probability of finding 
simultaneously an i ion in a unit volume at r2 and a j 
ion in a unit volume at r1' As we will be concerned with 
the case when an applied electric field acts on the ions, 
a particular direction in space will be specified and fji 
will depend on the direction of r 21 = r 2 - r 1 as well as on 
its magnitude. The electrolytic solution as a whole can 
have a nonzero velocity U, but for simplicity we will 
assume that there is no velOCity gradient applied to the 
solution as a whole (as in the theory of viscosity8) so 
that U is constant, Thus fji depends only on the relative 
position vector r 21 and not explicitly on the location r 2 

of the i ion; hence fii = fji(r 21 ). In the same way we can 
define the reciprocal function!ij(r 12). Clearly f j ;(r21 ) 

= fij(r 12 )· 
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The fundamental equation is the continuity equation 
for ionic motion, which for the case under consideration 
can be written as 

(2.1) 

where v is the velocity of the i ion relative to the j ion 
and the subscript 2 denotes differentiation with respect 
to the components of r 2 • For a steady state, which we 
will be concerned with here, 2fji/al =0, and Eq. (2.1) 
reduces to 

(2.2) 

Consider next the velocity v. Denote by Vii =vji(r21 ) 
the velocity of an i ion in the neighborhood of a j ion and 
by vii =vij(r I2 ) the velocity of aj ion in the neighborhood 
of an i ion; then v = Vii - Vii' The factors which cause 
the ions to move are (i) the applied electric field X, 
(ii) interionic forces, (iii) concentration gradients, 
(iv) the flow of the solution as a whole. Now if the mo
bility of the i ion is wi' then a force Ki acting on it will 
produce a velocity wiKi . The force acting on the i ion 
due to the applied electric field is eiX and this produces 
a velocity wieiX. Denote by kii (r21 ) the force acting on 
the i ion due to its own "atmosphere" and due to the j 
ion and its "atmosphere"; this will produce a velocity 
wikji' To determine the diffusion velocity due to a con
centration gradient, we will take the diffusion constantlO 
of the i ion to be kTw i , and so the concentration grad
ient gradJji will produce a current of strength - kTwi 
gradJji' Since this current is the product of fji with 
the diffusion velocity, it follows that the diffusion velo
city is -kTwi grad2(10gfji)' Thus, if the velocity of the 
solution as a whole is U (assumed independent of posi
tion), then 

vji(rZI ) 

= U + wi[eiX + kji(r21 ) - hTgrad2(10gfji(r21 »)] (2.3) 

and 

v ij(rI2) 

= U + W iejX + k ij(rI2) - hTgradl (logfij(rI2»)], (2.4) 

where the subscript 1 denotes differentiation with re
spect to the components of rl' Now the interesting and 
important case of an assemblage of stretched dipoles 
occurs when the Debye length K-I of the assemblage is 
such that 

(2.5) 

where K2=4rr(Nie~+Nje;)/DkT and Ni and N
j 

denote 
the concentrations of "free" ions. Therefore, we will 
assume that these concentrations are sufficiently small 
to ensure that the inequality (2.5) is satisfied. By this 
assumption the effects of the ionic "atmospheres" are 
negligible. This is particularly applicable when a strong 
electric field is present, because the field tends to 
sweep the "atmosphere" away from the ion. In this 
case, kji is given by the Coulomb potential eie/Dr, 
where r= I rzll; we have 

kji(rZI )= - grad2 (ei e/Dr) , 

kij(rI2 ) = - gradl(eie /Dr) = + grad 2 (ej e/Dr). 
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(2.6) 

(2.7) 

On substituting these expressions into Eqs. (2.3) and 
(2.4), noting thatfij(rI2)=fji(r2J and gradl '" - grad2 , 

and subtracting Eq. (2.4) from Eq. (2.3), we obtain 

V=Vii -vij (2.8) 

= (w i + W j )1zT[2!3n + grad 2(2q/r) - grad2( logfii) ], 

where q and (3 are defined by Eqs. (1. 2) and (1. 3) and 

n = sgn(wiei - wjej)X/X, (209) 

where sgn(wie i - W /.) = + 1 if wie i - W je j > ° and - 1 if 
wiei - W je j < 0. We will assume that e i > ° and eJ < 0, 
so that sgn(wie i - W je i) = + 1, and n is a unit vector 
parallel to the electric field vector X. 

Now multiply Eq. (2,8) by fii' substitute the resulting 
expression into Eq. (2.2), and suppress the indices 
i, j and the suffix 2; we find that 

\72f= 2E div(ftt) + div(fgrad ~), (2.10) 

where r has been made nondimensional on division by 
the characteristic length 2q and E=2(3q. As div n=O, 
asnis a constant vector, and \72(I/r) =0, Eq. (2.10) 
can be rewritten as 

\72f = (2m + grad ~ ) • gradf. (2.11) 

Finally we rewrite Eq. (2.11) in terms of spherical 
polar coordinates (r, 8, 1J), where 8 is the angle the 
ion pair makes with the electric field direction n. Due 
to symmetry about n, there is no dependence of f on 1J; 
Eq. (2.11) becomes 

. 'Of 
(2.12) 

+ (coW + 20' sm8) '08 = 0. 

This is the required partial differential equation for 
f(r, 8). 

The distribution function is the sum of two parts, both 
of which satisfy Eq. (2.12): the part nin j describing 
the "free" ions and corresponding to complete dis
sociation,2 and the part describing associated ions. 
We will only be concerned here with the later part. 
This satisfies the boundary conditions 

limf(r, 8)=0 
r-® 

(2.13) 

corresponding to the state of complete dissociation at 
infinity, and 

lim e~1 Ir fer, 8) = 1 0 

r-O 
(2.14) 

The boundary condition (2.14) can be justified as fol
lowso Due to the local equilibrium ll in the region r"" a, 
where a is the distance of closest approach of the ions 
in an ion pair, the total distribution function must cor
respond to a Maxwell-Boltzmann distribution in the 
combined Coulomb and external field for this r. Thus 
for r "" a, we must have 

f(r, 8) - exp (; + 20' COS8). (2.15) 

For the ideal case a = 0, this condition reduces to the 
boundary condition (2014). The limit in (2.14) is unity 
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due to the normalization condition imposed on fin 
Sec, 1. 

To summarize, the mathematical problem is to solve 
the partial differential equation (2,12) for f(r, e) sub
ject to the boundary conditions (2.13) and (2.14). 

3. SUMMARY OF RESULTS 

In this section we summarize briefly previously ob
tained 6 results which we require to determine the ion
pair distribution function. 

In solving the related problem of Wien dissociation 
in a weak electrolyte, we used a perturbation technique, 
the perturbation parameter being ~ = 2(3q. Now, if 
cose * 1, fry, e) does not possess a perturbation ex
pansion in powers of ~ which is valid for large r. For 
it can be shown6 by considering the asymptotic solution 
of Eq. (2.12) that, for large Y, 

f(r, e) -.!. exp[a(cose - 1)J. (3,1) 
l' 

If we expand the right-hand side of (3.1) in powers of 
E, we see that the individual terms of this expansion do 
not satisfy the boundary condition (2.13) for large r. 

Further, from the boundary condition (2. 14), it fol
lows thatf(r, e) diverges exponentially to infinity as 
l' tends to zero. We therefore introduced the function 
h(r, e) defined by 

fer, e)= her, e) exp[l/r + a(cose - 1)]; (3.2) 

unlike f(r, e), the function h(r, e) has a perturbation ex
pansion in E which is valid for 0'" l' '" "". 

It proves convenient to define x = cose. In our pre
vious paper, 6 we let Ii = 1/1', but no advantage is gained 
by making that change of variable in the present dis
cussion. Our method of solution consisted in taking 
the Legendre transform of the partial differential 
equation for h(r, x) by operating on it with f\ Ib;P n(x), 
where Pn(x) is the Legendre polynomial of degree n; 
this replaced the partial differential equation by an in
finite system of ordinary differential equations, We 
expanded h(r, x) in the form 

h(r, x) =.t EmhCm)(r, x), (3.3) 
m=Q 

and defined the Legendre transform 

H~"')(r)= r Pn(x)fzCm)(r,x)dx. 
. -1 

(3.4) 

The ordinary differential equation which we obtained 
in this way for H~m)(r) was solved by looking for a 
solution in which hCm)(r, x) is separable in rand x. It 
is not necessary for the problem to admit such a solu
tion for the perturbation technique to work, but it 
simplifies the analysis if it does. Suppose 

hCm)(r, x) =FCm)(r)ZCm)(x) 

and expand ZCm)(x): 

ZCm)(x)= t c~m)Ps(x), 
5:;0 

(3.5) 

(3.6) 

where c~m) are constants. Then it follows from the 
orthogonality property12 of Legendre polynomials that 

(3.7) 
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It is considerably easier to solve for FCm)(r) and the 
constants c~m) than for H~m)(y). Using induction, we 
found that 

(3.8) 

1
(211+ 1)1I1!(1I1 +1)! ° 
( )I( )1 ' <CII"JII /11-n. 111+ n+l . ' 

ccm) = 
n 

° lI?m+l 

(3.9a) 

(3.9b) 

In the calculation of K(X)/K(O) in our previous paper, 
all that was required was a knowledge of F(m)(1') and 
c~m). We will now show how the above results can be 
used to determine the ion-pair distribution function 
itself. 

4. SOLUTION FOR h(r,x) 

It follows from Eqs. (3.6) and (3.9) that 

ZCm)(x) = t (211 + 1)111! (111 + 1)! P (x) 
n=O (III - 11) ! (111 + n + I)! n , 

and hence, using Eq. (3.5) and (3.8), we have 

~ m e-1/r) 
!zim)(r,x)=2 mm!ym l-~-I-p 

P=O p. l' 

xt (2n+ I)PaCl() 
n=0(11I-17)!(111+n+1)! 

(4.1) 

The summation involving Legendre polynomials in 
Eq, (4.2) can be evaluated using induction, We will 
make the following induction assumption: We will as
sume that for some integer 111 > 0, 

t (2n+l)P n(x) _ (l+x)m 
n=o (111 - II) ! (111 + 11 + 1)!- 2m( III !)2 . 

(4.3) 

Clearly the induction assumption is satisfied for m =0, 
for then both sides equal unity. To show the result is 
valid for III + 1, assuming it to be true for some integer 
III? 0, multiply Eq, (4.3) by (1 +x): then 

t (21l + 1)(1 + x)Pn(x) _ (1 + x)m+1 
n=O (m_n)!(m+n+l)!-2 m(m!)2 

(4.4) 

But we can replace xPn(x) in (4.4) by12 

(/I + 1) 11 
xP n(x) = (211 + 1) P n+1(x) + (2n + 1/0-1(x); (4.5) 

we also have 

f (2n+l)Pn(x) _I;1(2n+1)(H1+1-n)Pn(x) 
n=o(m-n)!(m+n+1)! -n=o (111+1-11)!(I11+n+1)! 

(4.6) 

f; (It + l)P n+1(X) _ r .,..-_n_P::-"n,"-(x-,-')-:-:-: __ ,-, 
n=o(m-n)!(m+n+1)! -n=o (111+1-n)!(m+I1)!' 

(4.7) 

£; nP n_1(x) _ r (il + 1 )(/11 - n)(/11 + 1 - n)P "(x) 
n=l (m-n)!(m+Jl+l)! -n=o (111+1-1I)!(m+n+2)! 

(4.8) 

Thus adding together Eqso (4.6), (4.7), and (4.8), we 
find, after some further algebra, that 
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f (2n+ 1)(1 +x)P/x:) 
n=O (lII-Il)!(m+I1+1)! 

m.l (211 + I)P (x) 
- 2 (/11 + 1)2 L: ~,---:---,-~n '-,-'----::7"7 
- n=O (m+l-n)!(m+I1+2)!' 

Substituting this result into Eq. (4.4), we obtain 

m+l (211 + I)P nix) _ (1 + x)m.l 

~o (ill + 1 - n) ! (111 + 1 + 11 + 1)! - 2m
+! [( 111 + I)! ]2 0 

«4.9) 

(4.10) 

Thus, by induction, identity (4.3) is valid for all inte
gers 117 '> O. 

To complete the solution for h(r, x), we see from 
Eqs. (4.2) and (4.3) that 

I<m)(, ,)_ .\ v 1-.L:--(1 + ,)m m ( m e-1
/

T
) 

1 ) ,.\ - III ! 1>=0 p! r P , 

and hence from Eq. (3.3), we obtain 

5. ION-PAIR DISTRIBUTION FUNCTION AND 
COMPARISON WITH ONSAGER'S RESULT 

It follows from Eqs. (3.2) and (4.12) that 

1(1', x) = exp (~ + a(x - 1)) 

(4.11) 

(4.12) 

(5.1) 

On expanding the exponential in Eq. (5.1), we obtain 

and if we write 
~ 

j(r, x) = .L: E"/(n)(r,x), 
".0 

then we find that 

~ ~ rn-p(x + 1)m(x _1)n-m 
fn) (r,x) = LJ LJ 

. m=O p=m.l 111! (n - m)!p! 

(5.2) 

(5.3) 

(5.4) 

Expression (5.1) is valid for all 0", r'; YO; in par
ticular it satisfies the boundary conditions (2.13) and 
(2.14). As stated previously, (5.3) is not a valid per
turbation expansion in E when r is large. For, if x * 1 
and 11,2, fn) - 00 like rn- 1 as r - co and therefore does 
not satisfy the boundary condition (2.13) for r = 00. 

There are some applications, however, in which the 
perturbation expansion of I in powers of E need not be 
valid for all r. For example, X(Xl/K(O) depends on 
I(r, e), but is independent of r. Hence we can use (5.3) 
to evaluate K(X)/K(O) as a perturbation expansion in 
powers of (, by choosing an v, say of order unity, for 
which expans ion (5.3) is valid. 

Finally, to compare Onsager's solution (1.1) with 
Eq. (5.1). we first note that 

'f (-Om (v)2m 
Joe,,) = L..J -( ,)2 ~2 ; 

m=O rJ1· 
(5.5) 

thus 
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[ 1 J [(-8Es)1!2cos~Je-S!TdS 
. 0 0 2 

(5.6) 

_ ~ Em(1 +X)m [1 m -S/Td 
-LJ (,)2 .o,e s. 

m=O 111 • 

But, using induction, or otherwise, it can be shown that 

.J 1 sme-S!Tds =111! vm • 1 (1 -f; e~I/:). 
o p=o p. r 

(5.7) 

On substituting Eq. (5.7) into Eq (5.6) and then the 
resulting expression into Eq. (1.1), we see that On
sager's solution (1. 1) and our solution (5. 1) are the 
same. 

6. CONCLUDING REMARKS 

We have given the remaining details in the derivation 
of the distribution function of an assemblage of ion pairs 
where the main interaction is electrostatic. Such a re
sult has applicability in the theory of weak electrolytes 
and in theories of the propagation of the nerve im
pulse. 13.14 Generalization of this result to nonisotropic 
media and to the case of ion-exchange resins and 
soluble polyelectrolytes may also be useful. 

In the above analysis, it turned out that, to obtain 
~(r, x), it was not necessary to use the formula for 
the inverse Legendre transform. This was because the 
problem admitted a separable solution of the form (3.5), 
and hence we merely had to evaluate the summation 
(3.6). For similar problems in this and related fields, 
it is possible that a separable solution will not exisL 
In such cases Itrro(r, x) can be obtained by evaluating the 
inverse transform15 

00 

T~(r, x)= tL(21l + I)H~(r)Pn(x). 
n=O 

(6.1) 

It is not difficult to check that for the problem con
sidered in this paper, Eq. (6.1) leads to the same re
sult. 

Identity (4.3) is of interest in its own right, as it 
provides an expansion of (1 + x)m in Legendre polynomi
als. By giving x particular values, it can be used to 
evaluate certain summations. For example, on setting 
x = + 1 and x = - 1 and noting thae2 Pn(l) = 1 and Pn( - 1) 
= (- 1)n, Eq. (4.3) yields respectively 

;., (2n + 1) 1 
fi=6 (m - n) ! (m + 11 + 1) ! (m!)2' 

(6.2) 

t (-1)n(2n+1) 0 
n=O (m. -n)! (111 +11 + 1)! . (6.3) 

Similar summations can be evaluated with the aid of the 
results12 P~(l)= tn(n + 1) and P~(-l) = (_l)ntn(n + 1), 
where the prime denotes differentiation with respect 
to x. 
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A critical discussion of linear response theory is given. It is argued that in the formalism as it stands no 
dissipation is manifest. A physical reinterpretation for the case of a system in weak interaction with a 
reservoir is given. Mathematically this means that the van Hove limit, as well as the large system limit, is 
applied to the time·dependent Heisenberg operators of the Kubo formalism. The reduced operators can be 
put in a very compact form, viz.,B! (t) = [exp( -Adt)]Ba' where Ba is a Schrodinger operator and Ad is 
the Liouville space superoperator corresponding to the transition operator of the master equation. In this 
form the relaxation character of the transport expressions, and the approach to equilibrium is at once 
evident. New expressions for the generalized susceptibility and conductivity in this limit are presented. 
Also, the Onsager relations and other symmetry properties are confirmed. 

1. INTRODUCTION 

Some twenty years ago Kubo published his now clas
sic papers on linear response theory. 1,2 In these papers, 
he developed a general many-body formalism for ex
pressing transport coefficients in terms of correlation 
functions of the transport quantities involved, His ex
pressions generalized earlier results by Green, 3 

Kirkwood,4 and others. Solving von Neumann's equa
tions, the response (AB(t) of some operator B due to 
a field or other ponderomotive force is found to be ex
pressible in terms of a response function, relaxation 
function, or correlation function of the spontaneous 
fluctuations (AB(t)AB(O) in the system, The latter can 
in principle be determined as an ensemble average in 
a canonical ensemble, for which the density operator 
is known if the Hamiltonian is known. In this manner 
very general microscopic expressions can be given for 
the transport coefficients. 

The correlation expressions can also be Fourier an
alyzed; the results can then be shown to be equivalent 
with the fluctuation-dissipation theorem which gives 
the connection between the dissipative generalized con
ductance of a proceSs and the spectral denSity of the 
spontaneous fluctuations of the system. Thus, the Kubo 
relations do in the time domain what the fluctuation
diSSipation theorem does in the frequency domain. The 
fluctuation-dissipation theorem in its general form is 
due to Callen and Welton5 and Greene and Callen6

; deal
ing only with electrical conduction, it goes back to 
Nyquist,7 and even to Einstein and de Haas-Lorentz, 8 

Yet, the Kubo relations have a special appeal since 
they deal directly with the microscopic quantum mech
anical motion of a process. Moreover, the derivation 
is by many believed to be exact, except for the lineari
zation in the applied field, which, a prima vista looks 
no worse than the similar procedure followed in the 
usual perturbation solution of the Boltzmann equation. 
Strong interactions can in principle be included in the 
computations of the transport coeffiCients, cf. 
Verboven9 and Fujita and Abe. 10 

However, it is precisely the generality of the expres
sions, which has invited criticism. Van Kampenll has 
emphasized that there is a vast difference between mi
croscopic linearity and macroscopic linearity of the 

responses. Also, for applications it is usually found 
that Kubo's expressions are too general, so that some
where in the application a randomness assumption must 
be made. In this respect the various attempts to com
pare Kubo's formulas with Boltzmann-type results are 
illuminating, cf. Refs. 9,10,12-15. Kubo's formulas 
are then first reduced to the corresponding one-particle 
expressions, in which subsequently various randomizing 
effects are incorporated, see especially Chester and 
Thellung. 12 

In this paper we will set forth a new perspective of 
linear response theory. We believe that the formalism 
in its generality can probably not be justified; however, 
the framework can be maintained, but is in need of a 
reinterpretation. In particular, we introduce a random
ness assumption on the many-body level, by consider
ing weak interaction with a reservoir. It turns out that 
van Hove's formalism16 developed in connection with 
his derivation of the Pauli master equation, is all but 
tailored for this purpose. We will show that there is 
a drastic change in the time dependence of the operators 
(reduced Heisenberg operators) after the application 
of the van Hove weak coupling limit. The ensuing trans
port formulas now clearly show the effects of dissipa
tion and relaxation. The results can, if one so wishes, 
be applied to one-particle cases. No new stosszahlansatz 
is then necessary, the reduction going similarly as the 
derivation of the Boltzmann equation from the master 
equation by van Hove; 17 this is planned for future work. 

In this paper Kubo's expression, rather than the 
master equation, is employed as the point of departure; 
nevertheless, the connection with the master equation 
formalism is very close. Indeed, in a subsequent pa
per, 18 we will obtain almost the same results, by not 
using von Neumann's equation, which was the basis of 
Kubo's theory, but a new inhomogeneous master equa
tion (i. e., containing streaming terms) as the point of 
departUre. Thus, our assertion is that linear response 
theory should be put on a master equation level, there
by acquiring stochastic content, prior to its application 
for the calculation of transport coefficients. 

Finally, a note on extensions. In case the interactions 
with the reservoir are strong, a generalized master 
equation approach, using proj ection operator and resol-
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vent techniques appears promising. However, such re
sults do not show the clear irreversible behavior and 
stochastic character of the present theory. In terms of 
physical understanding, these extensions are therefore 
much less fundamental. 

This article is divided into three main parts. In part 
A we consider the original Kubo theory adapted to our 
present needs and insights. In Part B we voice various 
criticisms on the formalism and we undertake to give 
a reinterpretation; the reduction of the Heisenberg op
erators is carried out, and the new, dissipative beha
vior and the approach to equilibrium are explicitly 
shown. In Part C, finally, revised response formulas 
are established in two forms, indicated as the interac
tion form and the Schrodinger form. In the latter form 
the stochastic nature of the expressions is most clearly 
revealed. We also show that the new formalism, being 
a synthesis of Kubo's and van Hove's pioneering work, 
gives a fully microscopic basis for Onsager's relations. 
In the appendices we retrace and extend van Hove's ori
ginal paper in support of the derivations of Part B. 

A. ELEMENTS OF KUBO THEORY 

2. THE RESPONSE FUNCTION AND THE 
RELAXATION FUNCTION 

Prior to our reinterpretation, we will summarize 
the main aspects of the formalism as it stands, cf. 
Kubo, 1,2,19 Mazo, 20 and Montroll. 21 

Kubo considers systems with a Hamiltonian 

H totaJ =H - AF(t), (2.1) 

where H is the Hamiltonian of the system proper and 
AF(t) is the coupling with the external field; A is an 
operator corresponding to some observableA and F(t) 
a (complex) time function (c-number). In certain situa
tions A and F are vectors. For example, for a system 
in an electric field we have A . F(t) = :z iq i r i • E (t) in 
which r i is the position of charge qi and E(t) is the time
dependent field, Another example is that of magnetic 
dipoles in a magnetic field, A· F(t) = I dJ. i . B(t). 

In Kubo's papers, as well as other treatments we 
know of, the field is assumed to be turned on at { = - 00. 

The response of an observable B, represented by an 
operator B, at time ( is then sought for. However, 
these treatments seem to be unaware of standard re
sponse theory as developed for networks in electrical 
engineering, see, e. g., van Valkenburg. 22 It is com
mon practice to turn on the disturbance at t = O. The 
transient response which follows is best approached 
with Laplace transforms. 

Thus, following these ideas, we seek the solution of 
the von Neumann equation for the Hamiltonian (2.1) 

2p (i\ (i\ T/+ IilH, p]= Ii r(t)F(t)[A, p], 

where p(t) is the density operator and u(t) is the unit 
step function or Heaviside function, being zero for t < 0 
and unity for t ~ O. A formal equivalent of (2,2) is the 
Volterra integral equation 
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P = PaU) + (~)u(t) ;:t exp[ - iH(t - t')ln] 

XF(t')[A, p(t')] exp[iH(t - t')/n]dt', (2,3) 

where PaU) is the solution of the homogeneous equation, 
i. e., when the rhs of (2 0 2) is zero. Equation (2 0 3) is 
solved by iterating once. Thus, the linearized solution 
is found by substituting p(t) '" PoU) in the right-hand side. 

As to Po(t), it is assumed that at t = 0 - the system 
has thermalized a long time so that Po(t) is the equili
brium density operator Peo' A problem with the (time
reversible) von Neumann equation is that there is no 
approach to equilibrium. Basically, however, we be
lieve that the von Neumann equation applies to a closed 
system, thus indicating the need for a microcanonical 
ensemble (a closed system in the terminology of Gibbs23 

may still include energies which are mutual to the sys
tem and external bodies, such as energies due to ex
ternal fields). The fact that Kubo instead employs a 
canonical ensemble for the unperturbed density opera
tor, can only be justified in the thermodynamic limit; 
see also Sec. 4.2. 

With these cautionings, we then find for the response 
of B caused by the switched on field for t c· 0, 

(t:.B(t)) = Tr(p(t)B) - Tr(PeoB ) 

with 

= (i/fll Tr it dt'B exp[- iH(t -I')/n] 

x F(t')[A, Peo ] exp[iH(t - t')/n], 

Peo = exp(- !3H)/Tr[exp(-!3H)], 13 = l/kT. 

(2.4) 

We now use the fact that the trace is invariant under 
cyclic permutation, TrABC ..• =TrBC·· ·A, etc. We 
then find 

(t:.B(t)) = (i/fl)Tr Jot dT B(t - T)[A, Peo]F(T) 

= (l/fli)Tr r t dT[A, B(t - T) ]PeoF(T), (2.6) • a 

where B(t) is the Heisenberg operator24 

B(t) = exp(iHt;n) B exp(- iHi In), (2.7) 

Kubo refers to B(t) as the "natural motion" of the ob
servable B. 

For later reference we also indicate the Liouville 
solution. The lhs of (2.2) can also be written as aplat 
+ iLp, where L is the Liouville operator, defined by 

iL C ={H, q (classical) or = (l/n)[H, C] 
(quantum mechanical), 

where C is an arbitrary operator. For the quantum 
mechanical case one finds 

(t:.B(t)) = (i In) Tr Jot ril' B exp[ - i(t - t ')L ] 

(2.8) 

X[A,Peo]F(t'). (2.9) 

Comparison with (2.4) shows the operator identity 
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exp(- iL t)C = exp(- iHt/11)C exp(iHt!11), 

so that in particular we have 

B(l) = exp(iL t)B. 

(2.10) 

(2.11) 

We note that L is a superoperator, acting on operators 
of the Liouville space H@ R, with H being the Hilbert 
space spanned by the Hamiltonian and with R being the 
dual space. The properties of L in the Liouville space 
have been well studied by Fano. 25 Since L is Hermitian, 
exp(iL t) is unitary. The eigenvalues of L are the 
eigenfrequencies 

(2.12) 

where ( k are the energies of H. The eigenvalues of 
exp(iL t) are imaginary with modulus one, so that B(t) 
has conserved norm. Kubo's "natural motion" thus con
stitutes a rotation in the Liouville space. 

Returning to (2.6), we introduce the response 
function 

so we have the convolution integral 

(2.13) 

(2,14) 

Clearly ¢BA is a memory function, With F(s), b(s), and 
XBA(S) being the Laplace transforms of F(t), AB(t), and 
<PBA (t), respectively, (2.14) yields 

Thus, for the generalized susceptibility XBA' we have 

XBA (8) = 10"" dt exp(- st)¢BA (t) 

= (1/11i) 10 00 

dt exp(- sf) Tr{[A, B(t) ]Peq}. (2,16) 

We note that we did not do much phYSiCS, since we 
said nothing about the processes which caused or 
sustained the response; we found, however, a general 
result in terms of a commutator of a correlation 
expression. 

Kubo also introduces the relaxation function. If a 
constant perturbation acts from t = - 00 to t = 0, at which 
moment the perturbation is switched off, we have F(t) 
=Fo[l-u(tl]; the response is given by 

(AB(t» = r~ dT <PBA (t - T)Fo[l- U(T)] 

=Fo 1 0 <PBA (I - t') dt' =Fo 1 00 

<PBA(T) dT 
-"" t 

(2,17) 

where we set T =t - t'. The function l}1BA is the relaxa
tion function. With (2013) one finds 

l}1BA(t) = j"" dt' ¢BA(t') = ;.1"" dt'Tr{[A, B(t')]p.J, 
t fil t 

(2.18) 

or also 
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(2.19) 

Often one seeks the response of a flux or current 
d/J / dt represented26 by an operator B. Then, analogous 
to (2,14) 

(AB(t» = Jot dT¢fJ A (t - T)F(T), (2.20) 

with the response function 

(2.21) 

For this case it is more physical (though not necessary) 
to describe the response by a generalized conductance 
L BA , rather than by X. Thus, making a Laplace trans
formation of (2.20), we have 

, ~ 

b(s) = LEA (s)F(s), (2,21a) 

with 

LB A (s) = 10 00 

dt exp(- st)¢Ii A (t) 

= (l;ni) f"" dt exp(- sf) Tr{[A, B(t)]Peq}. (2,22) 
o 

We have the following identical functions, 
, " 

¢BA = <PBA = -l}1BA' (2.23) 

These identities are evident. We can further transform 
as follows, 

We introduce the function 

<PRA (t) '= (1/110 Tr{[A, n(t) ]P.J. (2.25) 

This definition is motivated by (2.13), Notice that this 
is a "would-be" function: It does not pertain to the pro
cess itself, b.ut would arise if there were an external 
Hamiltonian AF(t). In the various transitions of (2.24) 
we used the following two properties: 

(1) Stationarity: As for any two-point correlation, we 
have for two operators C and D 

(2.26) 

The proof follows immediately from the definition of the 
Heisenberg operators (207) and from cyclic permutivity. 
In particular (2.26) indicates 

(2.27) 

(ii) A form of the mixing property: It is assumed that 

lim Tr{peqC(t 1)D(t2)} = (C)(D); (2.28) 

II 1-121 ~ ro 

in particular this indicates that the limit of a commuta
tor vanishes, 

limTr{Peq[A(-tl,B(O)]}=O. (2.29) 
t ~ 00 
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This mixing property is much discussed by Kubo (Ref. 
1, p. 577). In its generality this property has not been 
proven as yet. A proof for harmonic crystals is given 
by Lanford and Lebowitz. 27 We come back to this prop
erty in Sec. 8. 

We substitute the last line of (2.24) into (2.23). We 
then obtain for the generalized conductance 

== ,!. (00 df' rtf dl exp(- st)Tr{[A, B(t')]Peq} 
,11 io io 

__ 100 dt exp(- sf) - 1 Tr{[A B(tll } 
- 0 s Iii ,P •• 

== _100 dl exp(- st) - 1 ¢BA(t), 
o 8 

(2.30) 

where we changed the order of integrations in the second 
step. 

This result applies to. the electri<;al conductivity, in 
which case A=='i;qjr j, A ==!:;qjV i ==B. The current den
sity for a crystal of volume Vo containing N electrons is 

1 " N A 
J==NUj(jjVj Vo == Vo' (2.31) 

Since L is defined by JVo = L AA . E (where L is a tensor) 
while also J=a· E, we see that 0"= LAAiVo' Hence from 
(2.30), 

100 exp(- st) - 1 r{[ ()] 1 cr"J,) == - Vo df Ii' T J v , J" / p •• r, 
o s 11 

(2.32) 

where Greek subscripts refer to tensor components. 

3. THE FREQUENCY DOMAIN; VARIOUS FORMS 

We give a variety of expressions for X and L. We 
will emphasize the generic relationship of the various 
results; the reason for giving several is that some of 
these expressions are suitable for carry- over in the 
new results (Sec. 9), whereas others are necessary 
for the statement of the fluctuation-dissipation theorem. 

3.1. The commutator form 

For sinusoidal excitation we have F(t) == u(t)Fo,w 
x exp(iwl). For f- 00 the response is also sinusoidal, 
<f1B(I)) =Bo,w exp(iwt), with 

BII,w = x(iw)Fu,w, (3.1) 

where x(iw) is the same function as X(s). This result is 
of course well known from electrical network theory. 

For a direct proof we compute b(s) for the above ex
citation. Thus, with 

Fes) = roo df exp(- st)u(tlFo wexp(iwt) 
• 0 ' 

(3.2) 

we have b(s) =x(s)Fo,w/(s - iw), and for the response 
we obtain 
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(f1B(t)) =~ jY+i 00 ds exp(sl)~(s)Fo.w 
21T1 Y_;'" S-lW 

==--.l [dw exp(iwl)X(iw)Fo•w 

2m J c U' - W ' 
(3.3) 

where C is a contour which encircles all poles counter
clockwise. For a passive system X(8) has no poles ill 
the right half of Ihe complex s-plane, or X(iw) has no 
poles below the real axis of the complex frequency 
plane (causality principle). Thus, letting Wk == wk + ill k 

denote the poles, we have 

(3.4) 

(for simplicity we assume single poles). From Cauchy' s 
theorem we find 

The summand damps out for Ilk> O. (If Ilk = 0, we con
sider an excitation limE.o+Fo w exp(iwl- El). We thus 
arrive at (3.1). ' 

The results of the s-plane of the previous section are 
now carried over in the frequency domain. The complex 
susceptance becomes the Fourier- Laplace transform 
(or one-sided Fourier transform) of the response 
function, 

XBA(iw) == .f
o
" ell exp(- iWl)¢BA(t). (3.6) 

With ¢ BA given by (2. 13) this yields the commutator 
form 

XBA(iw) == (l/lii).fo 00 df exp(- iwt) Tr{[A, B(t)]p •• }. (3.7) 

Generally we write x(iw) =X'(W) +iXI/(w). From the 
causality principle one easily shows the Kramers
Kronig relations28 

(3.8a) 

"() 1/) iOOX'(WI) d I X W ==-- ~ W, 
17' .. co u.,\ - W 

(3.8b) 

indicating that X' and Xl/ are each other's Hilbert trans
form; here P denotes the principal value. 

For the conductance we obtain likewise 

(3.9) 

or 

LBA(iw) == (l/lii) fo 00 ell exp( - iwl) Tr{[A, B(t) Jpeq}. 

(3.10) 

Again L(iw) =L'(W) +iL"(w), with L' and L" being each 
other's Hilbert transform. 

The generalized susceptance can also be expressed 
in >l'BA- From (2.19) with integration by parts, one 
finds 
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TABLE I. Commutator forms. 

Basic function Commutator form 

1 
"'BA Ifi Tr{lA, B (t) ]Peq} 

rf>BA 
1 • 

ni Tr{[A,BW]Peq} 

WBA it f~ dt' Tr{[A, B({'»)PeJ 

1 •• 
1J l3A IIi Tr{[A, B(t)]PeJ 

XBA(iW) = -l~ dt exp(- iwt) :t >¥BA(t) 

=>¥BA(O)-iw ;:~dteXp(-iwt)>¥BA(t) 

=X~cA - iw I~ dt exp(- iwt)>¥BA(t)· 

(2.13) 

(2.21) 

(2.18) 

(2.25) 

(3.11) 

Finally, the complex conductance is expressible as 
a transform of ¢BA(t). From (2.30) 

LBA(iw) = -1~ dt exp(-.iwt) - 1 ¢BA(t) 
o zw 

= 1~ dt exp(- iwt) - 1 Tr{[A, B(t)]Peq}, (3.12) 
o Ifw 

which is the standard expression (see, e. g., van 
Velsen29)o We give a summary of the various formulas 
in Table L 

3.2. The Kubo form and the Fujita form 

The commutator expressions of the previous sub
section will be converted into correlation expressions. 
There is a difficulty, however, with the correlation 
expressions; these correlations should contain no steady 
state parts, but involve only the fluctuations [otherwise 
the Fourier transforms contain delta functions and the 
Fourier- Laplace transforms contain o.(t) functions]o 
The derivations go smoothly if these parts are separat
ed off in the commutator form, prior to going to Kubo 
expressions. Thus, let 

AA(t) =A(t) - I(A) , t::..B(f) = B(t) - I(B) , (3.13) 

where I is the unit operator and (A) and (B) are the 
equilibrium average values, TrpeqA and TrpeqB. For 
the commutator we have 

[A, BU)] =[AA, t::..B(t)j, (3.14) 

as is easily verified. For the Heisenberg operator we 
have from (2.7), 

t::..B(t) = exp(iHf I If) B exp(- iHt/lf) - I(B) 

= exp(iHt /1f)B exp( - iHt /If) - exp(iHt/If)I(B) 

X exp(- iHt//f) 

= exp(iHt/Ii)t::..B exp(- iHt/If). (3.15) 

Clearly, then, all formulas of Table I can be carried 
over verbatim for the delta operators. These changes 
are not trivial, since the trace of unbounded operators 
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Derived quantity 

XBA (iw) = XrA - iw r. ~ dt exp( - iwt)>fJ BA (t) 
. 0 

(3.6) 

(3.9) 

(3.11) 

(3.12) 

is not unambiguous; in fact, different results are ob
tained if this change in operators is not made here but 
is later incorporated in the Kubo expressions. We be
lieve, however, that the previous results in terms of 
the delta operators give what is really desired, since 
Kubo's "natural motion" does not concern the equili
brium values, but the deviations from equilibrium 
[note in this respect also the definition of the response 
as (t:..B(t» in (2.4)]. Whereas we will carry the t::..'s 
where required, they will be dropped where optional, 
which will turn out to be the case frequently. 30 

We now proceed to obtain the Kubo form. For ¢BA(t) 
of Eq. (2.13) we also write, USing cyclic permutivity, 

1 
¢BA(t) = Iii Tr{[t:..A, t:..B(t) ]POq} 

1 
= - Iii Tr{[t:..A, Poq]t:..B(t)}. (3.16) 

We now use Kubo's identity 

d~' [exp(J3'H)AA exp(- J3'H)] 

= exp(J3' H)[H, t:..A] exp( - J3'H). (3.17) 

From this by integration from 0 to 13 and remultiplica
tion by exp(- [lH), 

[AA, exp(- {3H)] = - iii J: d[l' exp(- [lH) 

x exp(J3'H)[H, AA 1 exp(-J3'H). 

(3. 18) 

From the Heisenberg equation of motion [or from dif
ferentiation of (2. 7)], 

dA 1 
Tt=ili[A(t),H], 

or, since dA/dt=d(AA)/dt, also 

dAA 1 . 
dt = - ilfexp(zHt/Ii)[H, t:..A] exp(- iHt/If). 

(3.19) 

(3.20) 

Taking t = - i1ii3, the rhs of (3.18) and (3.20) are simil
ar; thus (3.18) yields the following lemma. 

Lemma: 

[AA, exp(- J3H)] = - iii J
0
8 

d(3' exp(- [3H) AA(- i1iJ3'); 

(3.21) 
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here M means (d/dt)(Ml. Substitution of (3.21) into 
(3.16) gives the Kubo form 

¢EA(1l = /08 
d{3' Tr[PeQM(- inf3')AB(m. 

Now we have AA =A; thus for the trace we find 

Tr[PeQM(- itr{3 ')A-BUn = Tr[PeQA( - i tif3' )B(!)} 

- (B)Tr[PeQA(- itii3)r 

= Tr[PeQA( - itii3 ')B(t)} 

- (B)(A(- itr[3). 

(3.22) 

(3.23) 

But from the Heisenberg equation of motion we find 

(3.24) 

since [pw H] = 0. 31 Hence, in (3.22) the A's are optional 
and we also have 

For XEA this gives 

~ B • 
AEA(iW) = r exp(-iu)!)rll r d{3'Tr[ PeA (-il1{3')B(t)l. 

'0 ~o ' ( 
(3.25) 

From (3.22') by the change B - B we also have 

(3.26) 

Thus, for LEA one finds the more symmetrical result 

LEA(iW) = r ~ exp(- iwf) dl r 8 d(3' Tr[PenA(- itif3')B(t)i. ~ () • IJ ' ( 

(3.27) 

We now find the Kubo form for >It. From (2.18), 
(3.22), and stationarity, 

(3.28) 

Assuming the validity of the mixing property (2.28), 
we have 

TABLE II. Kubo forms. 

Basic function 

q. SA 

q. •• 
SA 

(3.29) 

Kubo form 

rB 
df3' Tr{PeqA(- ilfJ3')B (t)} (3.22') 

o 

fS d(3' Tr{PeqA(- ilf&rB(tJ} (3.26) 
o 

(8 d(3' Tr{PeQM(- iff(3')b:.B(t)} (3.30) 
o 
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Thus we find 

(3.30) 

In this expression the A-' s must be kept. 32 The suscep
tance is found from >It according to (3.11), 

XEA(iw) = X~cA - iw fo ~ dl exp(- iwt) 

(3.31) 

We will also introduce the function >ItBA , defined by 

(3.32) 

Though in thermal equilibrium >It B A = ¢A A, as is found 
by comparison with (3.26), the introduction of >ItilA is 
justified, since often we deal with a qllasiequiZibrillJll 
state, in which there are mean fluxes, i. e., (A(t)) * 0, 
while the fluctuations still relax by thermal random 
processes. The conductance is now given by 

LFJA (iw) = fo ~ ell exp(- iWt)"iJlBA (t) 

= 10 ~ dl exp(- iwt) f: d[3' TrtPeQM(- il1{3')A-B(nt. 

(3.33) 

In summary, expressions (3.25) and (3.27) are the 
basic Kubo results, valid in thermal equilibrium The 
relations (3. 31) and (3. 33) are also useful in a quasi
equilibrium state. Moreover, these expressions serve 
to obtain the fluctuation-dissipation theorem, since it 
is the relaxation function >It which is most easily linked 
to the fluctuation spectrum. The various results are 
listed in Table II. 

The Kubo form has the advantage that the classical 
frequency limit is easily found. By this we mean the 
following. The rhs in (3.30) depends on It+ilf[3'I, 0~[3' 
~{3, as follows from stationarity, (2.26). We consider 
frequencies for which I itif31 « I - L w, or lfw« Lf3. 
These are called classical frequencies since the the 
quantum correction factor [(w, T) (next subsection) is 
unity in this range. Equation (3. 30) then gives 

>ItiJA(t) = [3 Tr[PeqM(O) A-B(t)} 

={3(D./3(Il4'1 (O)cl =(3<I>ffA' (3.34) 

where <I>~~ is the classical fluctuation-correlation 
function. 

Derived quantity 

XBA(iW) = fOOdtexp(-iwt)¢SA(t) (:).25) 
. 0 

LBA(iw) = J~oo dtexp(- iWt)¢BA(tl (~). 27) 

00 

XBA (iw) = X1fA - iw J dt exp(- iwt)>¥ BA (t) 
o [also quasiequil., (~l. :n) 1 

LBA (iw) = Joodt exp(- iwt)w BA(t) 
o [also quasiequil., (3. 33) I 
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The Kubo form can be further transformed into the 
Fujita forf!1. 33 Introducing the fictitious Hamilto?-ian 
H~ =H - ClA for the scalar case, or H~ =H - Cl 0 A for 
the vectorial case, one easily shows 

all . 1 
-~=~,,~A!I~' 
aClv H - z H - z H - z 

(3.35) 

By Cauchy's theorem, 

a "If ( )a 1 -a - exp(- /3H ) = - ~2' dz exp - /3z -a -H-:;-rr--· 
Clv 1Tl Clv - z 

(3.36) 

Substituting (3.35), we have by convolution 

a ( ") -exp -/3H a Clv 
(a . 

= 10 d{3'exp[-({3-/3')H"]Av exp(-{3H") 

(3 0 37) 

Thus Kubo's expressions transform to 

XBA(iw)=lim~ 1~ dtexp(-iwl) Tr{p"B(t)}, 
,,-0 Cl 0 

(3,38) 

LB",Av(iw) = limf-- (~dt exp(- iwt)Tr{P" B", (t)}, 
'" -0 Clv ) 0 

(3.39) 

where 

p" = exp(- (3H")/Tr exp(- (3H"). (3.40) 

3.3. The correlation form 

We now give the full correlation forms. The quantum 
mechanical fluctuation- correlation function is defined 
as the Hermitized product 

<PBA(t) '" (L¥3 (t)M (0) = iTr{P.q[~B(t), MJ.} 

= H Tr(P.q~B(t)M} + Tr{P.qM~B(t)} J. (3.41) 

Whereas the response function and the relaxation func
tion are commutators, the correlation function is an 
anticommutator. These functions can be expressed into 
each other by the following relations: 

¢BA(t) =(3 1.:dl 'r(t - t')<PBA(t'), 

>V BA (t) ={3 1.: dl' r (t - t')<PB A(t'), 

(3.42) 

(3.43) 

where r(t) is a kernel, even in I (see below). The pos
sibility for the connections (3.42) and (3.43) is based on 
the following lemma. 

Lemma: The two-sided Fourier transforms of the 
expectations (~C(t)~D) and <~D~C(t) for any two opera
tors C and D are related by 

J ~ dt exp(- iwl) Tr{Peq~C(t)~D} _ ... 

The proof goes as follows. 20 We consider the rhs: 
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1.:dt exp(- iwt) Tr{P.q~D~C(t)} Tr[exp(- (3H) 1 

= 1.:dt exp(- iwt) Tr{exp(- /3H)~Dexp(iHt!If) 

x ~c exp(- iHt/If)} 

= r:dt exp(- iwt) Tr{exp(iHI/If) 

x ~ C exp(- iHl)/If) exp(- {3H)~D} 

= exp({3lfw) 1.: dt exp[ - iw(l - i1Zl3) 1 

x Tr{exp(- i3H! exp[iH(t - iffi3l/lfJ 

x ~c exp[ - iH(t - in(3)/nJ~D} 

=exp({3lfw) J.:~::: dz exp(- iwz) Tr(exp(-{3H)~C(z) ~D}. 
(3.45) 

One now assumes analyticity on 0.,,; Imz .,,; IfI3 and one 
performs a contour integration along the real axis - R 
.,,;x.,,;R, the axis z=x-i1Zl3, and the axes z=±R+iy. 
Assuming the mixing property to be valid, the contribu
tion along the latter axes vanishes since (~C) = (~D) = O. 
Thus the result (3.44) follows. 

From (2. 13) and stationarity we have for the response 
function 

d¢BA(t)/df= - (l/lfi) Tr{Peq[~, ~B(t)J}. (3.46) 

Let ¢ denote the two-sided Fourier transform; then 

- 1 f~ [r{' ¢BA(W) = Ifw _00 dl exp(- iwt) T Peq~A~B(t)} 

- Tr(Peq~B(l)~} J. (3.47) 

Also let <P be the two-sided Fourier transform of the 
correlation function, 

~BA (w) = i 1.: dl exp(- iwt) [Tr{PeqAA~B(t)} 

+ Tr{ Peq~B(t)AA} J. 

Then by the Lemma (3.44), 

¢BA(Wl=[[(w, TJJ-1,pBA(W), 

where 

[(w T)=lfw 1 +exp(-i3nw) =nw coth ({3nw) 
, 2 1 - exp( - 13 Ifw) 2 2 

(3.48) 

(3.49) 

(3.50) 

is the quantum noise correction factor (average energy 
of an harmonic oscillator at temperature T). By the 
convolution theorem of Fourier transforms, the inverse 
of (3.49) yields (3.42), with 

r(t) _2 f'" d (. t) tanh({3nw/2) 
- 271 _~ wexp lW· (3fiw/2 

= ~71 log coth(2~fi I t I) . (3.51) 

For the relaxation function the derivation goes simil
arly. Fourier transforming (2.19) one finds 

A 1 f'" >VBA(W) = Ifw _~ dl exp(- iwt) 
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TABLE III. Correlation forms. 

Correlation functions Relation to ¢ or 'IF 

1> BA = !Tr{Peq[D.B(t), Alil.} 

<P BA = !Tr{Peq[D.B(t), MI.} 

<P BA = !Tr{P.q[~B(t), ~lJ 

'IF BA (0 = fJ 1.: dt' r(t - t')<I>BA (t') 

'IF U(t) '" e f.:dt' r(t - t')<PBA (t') 

whence by the lemma (3.44), 

~BA(W)=[[(w, T)}-l.f,BA(W). (3.53) 

The inverse Fourier transform yields immediately 
(3,43). We still note that for classical frequencies 

11" r (t) - 27T _'" dw exp(iwt) = OU), (3.54) 

so that (3.43) goes over into (3.34). 

We can now express the transport coefficients in 
<1>(t) , by combining (3.6), (3. 9), (3. 11), or (3.33) with 
the relations (3.42) and (3.43). E.g., (3.6) leads to 

XBA (iw) =(3 fo'" dt exp(- iwt) r:dt'r(t - t')<I>B"'\ (t'). 

(3.55) 

The various expressions are summarized in Table III. 

The fluctuation-dissipation theorems are the Fourier 
transforms of the last relations in the table. For com
pleteness, we briefly indicate the results. To obtain 
the transforms, it is most easy to go back to (3.53). 
By the Wiener-Khintchine theorem:4 the spectral den
sity of the fluctuations <A8M) is 2<IBA(W)j thus from 
(3.53) 

5BA (w) = 2[(w, T) r: dt exp(- iwt)>¥BA (t). (3.56) 

Employing the transposition property (see Sec. 10), the 
integral on the rhs of (3.56) becomes 

= fo ~ dt exp(- iwt)>¥BA(t) + fo'" dt exp(iwt)>¥AB(t) 

= 2 fo .. dt coswt[ 'liSA (t) lS - 2i fa" dt sinwt[ >¥SA (t) la, 
(3.57) 

where we split into odd and even parts, forming the 
symmetric and antisymmetric expressions 

We now use (3.11), noticing its validity also for quasi
equilibrium. Splitting this expression into real and 
imaginary parts and defining Xa and XS Similarly as in 
(3.58), noting x'!:'s ==~cA' we have 
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[X~A la = - w fa'" dt sinwt[ >¥ BA (t) la, 

[X;A P = - w f o" dt cosw/[ 'liB A (t) ]S. 

(3. 59a) 

Upon substitution of (3.59) into (3.57), the theorem 
follows, 

(3.60) 

Likewise, we consider the spectrum 511;"', expressed 
in >¥B..i. by a result similar to (3.56), and we split into 
even and odd parts. We further find the symmetric and 
antisymmetric tensors of L based on the quasiequili
brium expression (3.33). The result is the theorem 

(3.51) 

B. THE VAN HOVE LIMIT; REINTERPRETATION 
FOR THE CASE OF WEAK INTERACTION WITH A 
RESERVOIR 

4. CRITICISM OF LINEAR RESPONSE THEORY 
4.1. Van Kampen's criticism of the linearization 

A critical discussion of the assumptions involved and 
of the validity of linear response theory has been given 
by van Kampen. 11 ,35 He states his uneasiness in the fol
lowing way: "Linear response theory does provide ex
pressions for the phenomenological coefficients, but I 
assert that it arrit'es at these expressiolls hy a Jlzallze
malical exercise rather than b}' describing Ihe actual 
mechanism which is responsible foy the rcspollse. " 
Indeed, we agree that the physical content of the theory, 
as it stands, is minimal. 

Yan Kampen's frontal assault concerns the lineariza
tion approximation. The two pertinent questions are: 
What does this linearization mean, and, how good is it? 

First, let us return to Eqs. (2. 2}-(2. 6). Suppose 
Eq. (2.3) had not been iterated. It is easily found that 
instead of (2.6) we had then obtained the exact result 

<~B(t}) = (l/ni) Tr fot dT [A, B(I- T})p(T}F(T) 

= (lIlli) TrJ/ dT[A, B(T}]P(I- T)F(t - T). (4.1) 

The linearization amounts to replacing pet - T) - Peq • 

The linearization therefore means that part of the me
mory of the system is erased. Thus, if the linearization 
is prolonged for large times, it has the effect of ran
domizing. As van Kampen states: "The (1fcc/ of ran
domization is simulated bv the liuc(/)- lIj)proxiJlla/ioll." 

The next question is, up to what field and for which time 
intervals the linearization is good, i. e., not subject to 
the above criticisms. Van Kampen makes the following 
estimate. A particle undergoes by the field a shift 
d == ~t2cElm* (E is the electric field, c the electron 
charge, and 111* the effective mass in a solid lattice). 
This shift should be small compared to the diameter of 
the scatterers. Let the latter have a cross section of 
100 A and let 111* = O. Oim, where m is the free electron 
mass; then the above gives t2 E~:::. 1O-18 y s2 / cm. Taking 
for / an observation time of one second, van Kampen 
arrives at the condition E ~ 10-18 V / cm! 
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In the present study we take a less pessimistic view. 
Clearly, the linearization approximation is reasonable, 
if we can greatly reduce the time interval t over which 
the linearization must work. For this reason we started 
the perturbation at t = 0 rather than at t = - QO. If we can 
further argue that a small relaxation time Tr is inherent 
in the response function, then the above estimate is 
good if, say, t=10T r • Letting Tr ": 10-11 s, we find that 
fields up to 100 V /cm are permissible. Thus, the ac
ceptability of the linearization hinges critically on the 
emergence of (a) well-defined relaxation time(s). 

4.2. Our criticism 

In our opinion the main shortcomings of the general 
formalism as described in Sec. 2 and 3 are: (a) absence 
of dissipation; (b) insufficient conditions for relaxation; 
(c) ad hoc introduction of the canonical ensemble. We 
now discuss these points, together with a model that 
alleviates the obj ections. 

(a) Dissipation: Linear response theory speaks of dis
sipation and associated transport coefficients, but 
nowhere is the dynamics commensurate with dissipation 
introduced. This is typical for any treatment based on 
the complete, microscopic motion of particles in the 
system. In a complete description, involving the co
ordinates of all particles and bodies, it is impossible 
to distinguish between "motion" and "scattering" since 
all forces are treated on the same mechanical basis. 
Dissipation, however, involves such a distinction, in 
that it requires that there be an agency which random
izes what is considered to be the motion proper. 

It is also well known that in a microscopically com
plete description no entropy is produced. This is based 
on the fact that the derivative of the Gibbs entropy is 
zero, SG = - l?(d/ dt) Trp logp = 0, as is found by substi
tuting for P from von Neumann's equation. The problem 
of linear response theory is thus directly linked with 
the problem of explaining irreversibility on a mecha
nical basis. It is our opinion that, apart from such 
"tricks" as coarse graining, time smoothing, etc., 
irrcl'crsibilitv stems from the physical stringency 
which calls for a partitioning of the Hamiltonian. Thus 
we write, 

H=HO + AV, (4.2) 

where HO describes the part of interest ("motion 
proper") and AV the interaction causing dissipation, In 
the context of linear response theory AV is most readily 
interpreted as the interaction with a reservoir [see 
part (c) of this subsection], though the framework of 
the mathematics which follows (Secs. 6-8) remains 
the same if AV is an interaction acting within the sys
tem. In practice, we assume that HQ can be diagonalized, 
either by exact separation of variables, or through 
some mean field (Hartree-Fock) procedure. The per
turbation interaction AV then causes transitions among 
the states of HO; or, in more classical terms, the inter
action randomizes the motion contained in HO, thus pro
ducing heal, 36 

Van Hove31 gives several examples. For a lattice 
gas, HO contains the harmonic vibrations and AV the 
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anharmonic forces (imperfect harmonic crystal); for 
a metal or semiconductor, HO contains the electron gas 
(if A and B are operators pertaining to the electrons 
only) and AV is the electron-phonon interaction. We 
note that HQ is still a many-body Hamiltonian, which 
may contain several types of weak or strong interac
tion, such as electron- electron interaction in the sec
ond example cited. 

Another way of looking at irreversibility is given by 
Fano. 25 He observes that the Liouville operator L in 
the complete description causes nothing but norm
conserved rotations of the density operator in Liouville 
space. However, as he states, "the variation of a pro
jection of p within a subspace does not constitute a 
rotation." Thus, irreversibility is evident when the 
motion is viewed within a subspace of the Liouville 
space. 

One may argue that in Kubo's theory there is the 
splitting off of the excitation Hamiltonian - AF(t). How
ever, dissipation is not caused by this excitation 
Hamiltonian, as seems to be implied in Callen and 
Welton's original derivation of the linear response re
sult5 (this derivation is therefore believed to be at 
variance with Kubo' s formulation). 

(b) Relaxation: We noted in subsection 4. 1 that the the
ory in order to be valid must exhibit relaxation, i. e. , 
the existence of characteristic time constants for the 
response and relaxation functions. First of all we ob
serve that no relaxation occurs in a finite system. This 
is so because the Heisenberg operators are harmonic 
in t, d. Eq. (2.11); thus <PBA(t) has finite Fourier 
components for a set of discrete frequenCies, indicat
ing oscillatory behavior. 

For the infinite system, the situation is more com
plex. We note that B(t) is a unitary transformation of 
B, with f as a continuous parameter. According to 
Stone's theorem, 36 there is a spectral decomposition of 
(2.11), viz., 

exp(1L I) = r: exp(iut) dP(u) - r: exp(iuf)p(u) du; 

(4.3) 

hereP(u) are the projectors and p(u) =dP/du. For an 
infinite system u becomes a continuous variable. There 
is of course no guarantee that the Fourier integral ex
ists. If it exists, then the result damps out, for we 
have 

lim J ~ exp(iut) p(u) = 0 
t _ 00 _to 

(4.4) 

according to the Riemann-Lebesgue theorem. 39 How
ever, the time scale involved is hard to estimate; gen
erally, it is doubtful whether the limit (4.4) has any
thing to do with the observable approach towards equili
brium. As we will see in the present paper, the struc
ture of the decomposition (4.3) will be radically altered 
for the partitioned Hamiltonian (Sec. 8.2)" 

(c) The equilibrium densily operator: We noted that 
in the thermodynamic limit the microcanonical denSity 
operator could be replaced by a canonical density oper
ator, resulting in the choice (2.5) for p.

Q
• If this is to 

be more than a mathematical artifice, We must physi-
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cally change the system, so it becomes open and in in
teraction with a heat bath. The von Neumann equation 
and subsequent solution then still applies strictly to the 
closed composite system composed of the system plus 
bath. Thus, let the composite Hamiltonian be 

H"=H+Hb=Ho+W+AV, (4.5) 

where Hb is the bath Hamiltonian. The interaction 
Hamiltonian is as before a perturbation on HO, but, in 
addition, couples to the bath coordinates. The solution 
for the response is again found to be (2.6) with Peq re
placed by the composite system density operator P~Q 
and with the Heisenberg operator 

B(t) = exp(iHCt/tf) B exp(- iH"t/n) 

= exp( iHt /;t) B exp( - iHt / n) ; (4.6) 

B(t) is unaltered since B is an operator of the system 
which commutes with the bath Hamiltonian. For the 
computation of t:;.B(t) we first take the trace over the 
bath states; we may make an adiabatic approximation 
for the bath coordinates still occurring in B(t) through 
AV. Thus the only effect is on the density operator 
Tr(bath)p~ =Peq • It is well known that, if the composite 
system operator P~q is that of a microcanonical en
semble, then Peq for the system proper is the canonical 
density operator, providing the bath reservoir is very 
large. Elimination of the bath variables thus leads to 
the old results (2.6) and (2.7), with H given by (4.2) 
and with PeQ given by (2, 5L The bath can further be dis
carded. The essential point here is that the use of the 
canonical ensemble density operator in Kubo's theory 
already implied that we relinquished a completely de
tailed microscopic description of all coordinates of the 
system, thus leading naturally to the partitioned 
Hamiltonian (4.2). 

5. PRESENT PROCEDURE: LARGE SYSTEMS, 
WEAK INTERACTION 

We will compute the Heisenberg operators in the 
large system and weak interaction limit. The calcula
tion follows the procedure initiated by van Hove in 1955 
in a paper which dealt with the derivation of the Pauli 
master equation. 16 

The large system limit entails the use of continuous 
quantum numbers for the characterization of the eigen
states of HO, denoted by I y). Often it is useful to choose 
the energy E as part of this set of numbers, thus I y) 

'= lEa). 

The weak interaction limit must be taken judiciously 
since as the interaction grows weaker, the time re
quired to reach equilibrium becomes longer 0 Thus let 
T 1, T 2, •. " be the relaxation times which will emerge 
from the weak interaction limit of the Liouville opera
tor iL and let T r be the largest relaxation time; the 
weak interaction or van Hove limit then means 

(5.1) 

It should be understood that in practice it suffices to 
take A small and T r "large." The first statement can 
be taken literally since A is already a dimensionless 
scaling factor. The latter statement means that T, is 
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large when scaled with respect to the time T t it takes 
to effectuate a transition. The time intervals t of inter
est for the process, on the other hand, are to be scaled 
with respect to Tn cf. Sec. 4.1, i. e., we consider in
tervals for which L/T, is bounded. Thus, (5.1) means 
more properly 

(5.2) 

The time scaling implies that we can distinguish between 
two time ranges, viz. 

(5,3) 

these will be referred to as the small time behavior 
and the large time behavior. It should be understood 
that the possibility of these time ranges is an important 
consequence of the condition of weak interaction. (For 
strong interaction, the relaxation times and the transi
tion times can be of the same order of magnitude. ) It 
is this feature which allows us to distinguish between 
hydrodynamic or macroscopic relaxation and micro
scopic motion. See also van Kampen40 for a discussion 
of the underlying physical ideas. 

Another problem concerns the amount of coarse 
graining involved in macroscopic operators. Van 
Kampen40 has indicated that such operators for suffi
ciently large time intervals almost commute with the 
Hamiltonian. In particular, in the interaction picture 
we are dealing with macroscopic operators B which can 
be replaced by mutilated operators which are "smeared 
out" over the energy cells liE of HO, to the extent that 
B - Bd, where Bd is diagonal in the representation of 
HO. The van Hove limit will be carried out for the oper
ators Bd(t). This leads, however, to maj or difficulties 
in the Kubo formalism, which involves the commutators 
of the exact operators, like [B(t), Pe.l. The replacement 
B - Bd and the subsequent van Hove limit must therefore 
be incorporated at the appropriate stage in the theory; 
in this respect we will see that the Kubo form is much 
more useful than the commutator form. In particular 
there will be no problem if, in addition to the large sys
tem and weak interaction limits, we carry through the 
classical frequency limit defined by 

I1w[3 - 0, or L/n[3 - 00 ([3 = 1/1?T). (5.4) 

The word "limit" is again to be taken CUIII ~y(l/IO salis. 
In practice, it means that we take w sufficiently small 
or t sufficiently large, when scaled with respect to 
1/n[3 or 11[3, respectively. 

6. THE REDUCTION OF THE HEISENBERG 
OPERATORS 
6.1. The master operator 

The eigenstates of HO are denoted as I y) = I EO!). Let 
Wyy .. be the transition probability y-y" caused by AV. 
Then, by the "golden rule," 

(6.1) 

The strict conservation of energy expressed by (6.1) 
holds, of course, only in the limit A-O. For finite AV 
the energy will be conserved to within this measure, 
so it is useful to introduce energy cells, Ei cS Ey cS Ei + liE. 

Transitions occur between the states of an energy cell, 
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but different cells are unconnected. As to V, we assume 
that it has no diagonal matrix elements; if (I'I V II') '" 0, 
this part (L e., the diagonal part Vd ) will be incorporat
ed in HO. 

Let f(y) be an arbitrary function labeled by y. We then 
introduce the "master operator" M by 

(6.2) 

Note that a priori we do not assume knowledge of the 
master equation; at this point the above is simply a 
defin~tion. Withf(y) we now associate a diagonal oper
ator f such that 

j=0IY)f(y)(yl or (yljIY)=f(Y). (6.3) , 
Thef's are elements of a subspace of the Liouville 
space referred to as the "diagonal Liouville space." 
We multiply (602) by 11')(1' I and sum over all states. 
The left-hand side will by definition denote the master 
operator ~ acting in the diagonal Liouville space, 

AJ '" E 11')(1' 1 Mf(y) , 
=-6 [ly)(yIWr"r(y"ljly")-ly)(ylwn .. (yljly)]. 

y"!u 

(6.4) 

Let 

(6.5) 

be the definition of the diagonal proj ection value; we 
then have for Ad, 

Ad '" - 6 [11')(1' I Wr"rDr" - I y)(y I Wrr"Dr ]· (6.6) 
yy,.,. 

We also define the unit operator of the diagonal Liou
ville space by IJ =1; clearly, 

(6.7) 

We now claim the following main result. In the van 
Hove limit (5.2), the reduced Heisenberg operators 
take the form 

(6.8) 

Here, Bd is the diagonal operator associated with B as 
described in Sec. 5 and limx is a notation for the van 
Hove limit; as before the unbracketed operator Bd is 
the zero time or Schrooinger operator. We formally 
write B = Bd + B m, where Bm is the nondiagonal part; 
we then have exp(- Adt)Bnd = Bnd as is found by series 
expansion. Thus (6.8) also reads 

(6.8') 

An exact result will be given in Part II. IB 

6.2. Proof for small At 

We first prove (6.8) from straightforward perturba
tion theory for t:.t small in the sense indicated by (5.3), 
caSe (i). Let U(t) be the evolution operator. We must 
then calculate Bd(t:.t) = Ut(t:.t)BdU(t:.t). The evolution 
operator satisfies the integral equation (see, e. g. , 
Messiahil ) 
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f/iaU = (Ho AV)U 
at + , (6. g) 

or in integral form 

U(t, to) == 1- (i/ff) 1 t (HO + AV)U(T, to)dT. 
to 

(6. g') 

This can be solved to all orders of perturbation by iter
ation. Writing U = Z pCi), one obtains the well-known 
results: 

(6. lOa) 

U(I)(t:.t) = (Aliff) J
O
M 

dT 1 exp[ - iHo(LlI - T 1) /ff] 

XVexp(-iHOT 1/ff), (6. lOb) 

U (2 )(t:.t) = (A/ili)2 JO
M dT2 10'2 dTI exp[ - iHO(Llt - T2)/ffJ 

x Vexp[- iHO(T, - TI)/rz]Vexp(- iHOT 1/fi). 

(6.10c) 

Computing now (I'I B(t:.t) II") up to order A\ we have the 
following contributions. 

(i) (y 1 U CO)t BdU CO ) 1 y') = exp[i( Ey - Er , )Ll/lff J(y 1 Bd 11") 

=(yIBd IY)6rr' (6.11) 

(ii) We consider 

(yj UCl)t Bd U(1) I 1") 

X(YI V{exp[iHO(Llf - TJ)/IIJBd 

X exp[ - iHo(Llt - T 1) /Ii~ V I y') exp( - iEr • T till). (6. 12) 

The diagonal operator in { } we call C. We now use van 
Hove's fUllctional yule, 16 L e., we write down a linear 
functional relationship in as yet unknown kernels X and 
Y, 

(I'I VCV 1 1") == (yj (VCV)d I y') + (I' i (VCF)nd I yl) 

= Oyr.6 (i' I C I i' )X(y" , y) 
r" 

+6V' I cj i')Y(y"; y,Y'). 
r" 

(6.13) 

The reason for this splitting is that diagonal and non
diagonal terms behave baslcally very differently: The 
diagonal terms will survive, whereas the nondiagonal 
terms represent interference effects which die out. 42 

We can also write (6.13) differently, 

VCV == (VCV)d + (VCV)nd 

= '01 y)(y 1 (yj (VCV)d I y) + 6 I y)(y' I (I'I (VCV)nd I y') 
r ty' 

='011')(1'1 ('II Cly')X(y', 1') 
rY' 

11')(1" I V' I C I I' ) Y(Y' ; 1', y'). 
'Y'Y'r" 

We use (6.13) to rewrite (6.12), 

(I'I UCl) tB
d 

U(I) I y') 

A2 0:-\ ltl.t 1M 
=~ Oyy. U dT 1 dT1 n- '1" 0 0 

x exp[i(Ey - Er ,,)(T1- T 1)/11]('1' I Bd Ii' )X(y' ,I') 
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In evaluating the first line we use 
(6.14) 

!u M dT1!o6.t dTl exp[i(t, - t,,,)(T1- Tl)/If] 

I (6.t. . /2 
= 1)0 exp[z(t, - ty,,)T1/If]dT t 

_ sin2[(ty - ty,,)Ll.t/21f] 
- [(t, - ty,,)/2lflr-

"'21flfLl./0(E:r - Ey ")' (6.15) 

providing (Ey - Ey,,)Ll.t/n» 1. We will thus identify the 
two limits on Ll.t, foreseen in (5.3) 

(6.16) 

(which time also follows from Heisenberg's uncertainty 
principle O/OE "" If). For the upper limit on Ll.t we have 
the relaxation time 

(6.17) 

Thus Ll./ is "microscopically large" and "mac roscopical
ly small," when the range T t« Ll.t« T r is satisfied. For 
the other part in (6.14) we note 

f
o
6.t dT;' exp[i(ty - ty,,)Tl /If]-21ToJ(Ey - Ey,,)jlf] 

=1fi/O(ty - ty,,) + 1TlfijJi(ty - Ey")' 

and likewise 

(6.18) 

(6.19) 

Since y,* y' in the second part, the delta functions multi
ply to zero, so that we do not have the anomaly of a 
square delta function. The important point is that the 
result of the second part of (6. 14) goes with A2

, while 
the first part goes with >,,2 Ll.t. Thus in the van Hove 
limit the final result is 

lim (y I U(I)tBdU(t) I y') 
A 

= 21T>,,2 Ll.t Ory • .0 (i' I Bd Ii') (X(i' , y)o( t y " - ty). (6.20) 
i/ ,,, 

(iii) Consider 

(y I U(O)t BdU(1) I y') + (y I U(l)t Bd U(O) I y') 

=(y\ U(O)t BdU(l) I y') + (y' \ Utn)t BdU(1) I Y)*. (6.21) 

One easily finds this goes with order >"; hence it vanish
es in the van Hove limit. 

(iv) Consider 

Sry. = (y 1 U(O)t BdU(2) I y') + (y' I U(O)t Bd U(Z) I y)* 

=~6 {6.t dT2 (2 dTI exp(ityLl.t/If)(y\Bd \i") n~ rill J 0 J 0 

X exp[ - ity ... (Ll.t - T2)/If](y" I V exp[- iHo(T2 - T l)/If] 

X Vi y')exp(- iEy.Tt/1fl + hcj, (6.22) 
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where hcj denotes the Hermititian conjugate, i - - i, 
y- y'. Now again use (6.13). This yields (notice there 
is no Y part for this case): 

x exp[ - i(Ey' - Ey )Ll./ /n] exp[i(T 2 - T I)(Ey• - EY" )/n J + hcj 

_ 2>,,2 'I I =--y;r- Ory. Re~ (y Bd y)X(i', y) 

X J:6.t dT21T2 dTI exp[i(T2 - Tl)(Ey - Er,,)/lfL (6.23) 

The time integral is found to be 

. sin2[(Ey - Eyn)Ll.t/2n] 
mtegral= [(Er _ E

r
,,)/211]2 = 21Ti/Ll.1 O(E, - Ern). 

Hence, 

. -21T>,,2Ll.t,,· I ' 
hmSrr • = If Orr' 0 (y 1 Bd y) X(i , Y)O(Ey - Ey") 

x "I" 

Finally collecting terms, from (6.11), (6.20), and 
(6.25), 

lim (y I Bd(Ll.t) \ }') 
A 

(6.24) 

(6.25) 

(6.26) 

Since the above holds for any diagonal Bd , we apply 
(6.26) in particular for Bd= lyO)(yOI (and we take y=y'). 
The lhs of (6.26) is then l(yIUt (Ll.i)lyo)1 2. Consider now 
the general solution for the diagonal part of p in the 
homogeneous von Neumann equation ap/at + (l/lfi)[p,H] 
=0, 

p(yO, t) =(yOlp(t) lyO) 

='£ (yO I U(t) I y')(y' I p(o) I y)(} 1 Ut (I) I yO). (6.27) 
l' ,r' 

We make an initial random phase assumptioll, L e., 
p(O) is diagonal (y' I p(O) I y) =p(y, O)OYY" Then (6.27) re
duces to 

p(yO, t) =~ I (y I Ut(t) I yO) 12p(y, 0), (6.28) 
y 

indicating that the conditional probability is to be identi
fied as 

I (y 1 Ut(t) I yo) 12 =P(yO, t Iy, 0). 

Hence, from (6.26) for Bd = I yO)(yO I, 

21T>,,2 Ll.t 
P(yO, Ll.tly, 0) =-If-X(yo, y)B(Er - Eyo ) 

(6.29) 

( 
2T1>,,2Ll.t, (' ) + OryO 1--",-u Xi, y) O(E y- Ey" . 

It "" 
(6.30) 

F or ease in notation, we interchange y and yO. Thus 
(6.30) is consistent with the Stosszahlansatz 
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PC?', Ath'o, 0) = Wy Oy6.t + OyyO [1-6 wyOy .. 6.l], (6.31) 
y" 

where 

211X,2 
Wyy' =TX(Y, y)o(Ey - <':Y') = WY ' y (6.32) 

(property of microscopic reversibility). The identifica
tion of X follows from comparison of (6.32) with the 
"golden rule" (6. 1), 

(6.33) 

Now we rewrite (6.26) for general Ba using (6.32). 
The Kronecker delta is rewritten, so that for any F(y), 

Ory.F(y) =6 Orr 0;;,.. F(Y) 
r 

=~ (I' i Y)(y i y')F(y) 
1 

=(Yi{~ iY)(YIF(Y)}ly')· 
y 

We then easily obtain 

lim (y \ Ba(D.t) \ "I) 
A 

= (y 1 Bd I "I) + (y Il~ 1)7)(Y I WyllyAtDr"Bd} 1/) 
ry" 

(6.34) 

(6.35) 

We note that the rhs contains the master operator Au 
of Eq. (6.6). Thus the final result is 

lim(yl Ba(6.t) Iy') =(yiBd I y') - (yl AaAtBa I y'), (6.36) 
A 

or also 

s: (D.!) = Ba - AdM Ba, (6.37) 

which is the small time form of (6.8). 

6.3. Large time properties 

A simple "derivation" is as follows. Equation (6.36) 
gives 

Here Ba =s:i(0). In the limit 6.[- ° we have dBaldt 
= - AuBa. Thus by integration 

di(t) = exp(- AutlB. 

(6.38) 

(6.39) 

This "derivation" is no good, however, since at the 
beginning of each time interval D.t we must reenact the 
random phase assumption (repeated random phase as
sumption). This is incompatible with quantum mechani
cal evolution, as is easily seen from von Neumann's 
equation, 

(6.40) 

if P is diagonal at all times, then [p, HO] = 0, thus p is 
then determined by >CV alone, which is clearly wrong. 
We therefore return to van Hove's paper, for a more 
profound evaluation of (y I Ba(t) I y') for all times t. 

Prior to proceeding to the proof, we shall first ex
amine the meaning of the exponential operator. Consi-

1357 J. Math. Phys., Vol. 19, No.6, June 1978 

del' the equation 

af(y, t) + 6 [_ Wylly f(y' ) + Wn " f(y)] = Q(y, t). (6.41) 
at y" 

The formal solution is (see, e. g., Morse and Fesh
bach," Sec. 7.3)" 

fry, t) = 101+0 dt' 6 K(y, t; y', t')Q(y', t') 
y. 

= r t+o dt' 
·0 

J 6.y' g(y, t; y', t')Q(y', n. 
all states (6.42) 

Here 6.y' =Z(y') dy, with Z(yl) being the density of 
states. The Green's function satisfies 

ag(y,/;Y,!') V[ TXT (,I' .1 t') W (t' /')J' a + LJ - yyy"yg r ,t; r, + rr"g y, .; y , 
t y" 

= 6(t - !')6yy. = o(t - I')o(y - y) /Z(y). (6.43) 

Again, we associate with any functionf(Y, t) an operator 
f(t), see (6.3) (the dependence on the parameter / is of 
no importance). We then define the Green's operator, 
being a superoperator in Liouville space, by 

?(t, t' )j(t') =6,:[; i 1') g(y, I; y', l'l(yif(Y, I'). (6.44) 
y y. 

Thus we also have 

tU,t')=6Iy)g(y,l; y,I'Ky/Dy " 
Yr' 

(6.44' ) 

Note also that the matrix element of ?(I, f) i behaves 
as a normal Green's operator in function space, 

(y I t(t, t' );(11) i y) 

=0-;1=J 6.y'g(Y,L; y',I')I(y',!') 

= Oyi J 6.y' g(y, t; y', I' )(y' li(t') I "I). (6.45) 

Since the time axis can be shifted, we also define the 
single time Green's function 

g(Y,L;y')=g(Y,t;/,O)=K(y,I+T; y',T) (6.46) 

and Similarly the single time Green's operator 

(6.47) 

We now multiply (6.43) by /y)(ylf(y', I') and we sum 
over y and y'. Then, comparing with (6.4) and (6.44), 
we find that g(t, /') satisfies the simple operator equation 

d?(t, i') + A tIt l') -Io(t _ t') dl d, - , (6.48) 

where I is the unit operator (6.7). 

The solution is 

t(l, t') = u(t - r) exp[- Ad(t - t'lj (6.49) 

or also 

?(LJ = exp(- Aut) (t" OJ. (6.50) 

The Eq. (6. B1 which we seek to prove therefore also 
reads 

s:i(l) = t(L)Ba, (6.51) 

or for the matrix elements, USing (6.45) 
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This is therefore the relationship we seek to establish~ 

7. REDUCTION FOR LARGE TIMES 
7.1. Derivation and proof via the master equation 

The calculation of 1 (y 1 U(I) 1 Y) 12 was carried out by 
van Hove in his 1955 paper. The computation of the 
matrix elements (y 1 B(t) I y') can be carried out with the 
same summation technique. This was actually already 
noted by van Hove, though the computation as such was 
not given. We have therefore reconstructed this com
putation, using the splitting of U in diagonal and non
diagonal parts, as indicated in van Hove's paper. The 
details are given in Appendices A and Bo First, Ud(t} 
is found; then Und(t) is expresSed in Utt as a convergent 
series Z;;:l U~~)(t). Terms of order of magnitude ~,2f are 
carried along to all powers. The croSS terms of Ua and 
Und obviously yield no diagonal terms; cross terms 
from U~!:) and U~r;;) with Jl * III are found to vanish in the 
weak coupling limit. One thus obtains, with -:\ = 'Artr 
and with r defined by 

the following matrix element for B:U): 

(y I S:(t) I}') = ()' I UJU)BdUd(t) h,') 

+,0 (y I U ;~)t (I)Bd U~~)(t) I ')I'), 
n=l 

or 

(7.1) 

(7.2) 

XX({3n, {3n-1) ... X({3l,') exp[ - A- 2 r(f3n)(2t - en)] 

x exp[ - -:\2r(f3n_1)( Bn - Bn_1) j ... 

xexp[-> A2r(f31)(e2 ~ e1)Jexp[- A2r(y)B11 

(7.3) 

[Note: in the term with 11 = 1, factors with f3 0 (not de
fined) are to be omitted. J In particular, take B(t) 
== 1 y)(y I and set 'Y = y'; (7.3) then yields P(y, t I y'). One 
finds 

P(Y,ll,') 
~ 

= 6rr .lI(t) exp[- 2A2/ r(y) I + 6 (n 1;2)" 
n=2 

r2t f e [,eO r f X de ndB _1" • "dB 1 A{3n_1'" All 1 .0 nOn ·0 . 

X 6(Er - EBn_l)6(Epn_l ~ ES
n

_Z) •• ' 

X 6(E
B1 
~ Er.)X(y, Pn_l)X(f3 n_1, i3 n_Z) •• ,X(f31, y') 

x exp[ - A2r(y)(2/ - Bn) j exp[ - 'A2r(l'n_l)(e n - en_I)] ... 
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x exp[ - 'A2r ({31)(B 2 - e1)] exp[ - A2r (y')e1l 
+ 7TA2 tt del 6(Er _ Ey.)XCY, y') 

a 

(7.4) 

(the last term was written separately since the sum
mand has too many undefined symbols, were it carried 
to /1 = 1; for IZ = 2, factors involving /3 0 are to be omit
tedl. Substituting (7.4) back into (7.3), we find the ex
pected result 

We now differentiate (7.4), 

ope:;;,/ly') 
VI 

XO(E;; ~ Een _l )6(E8
n
_l- E

i3n
_Z) ,.-

X 6( Eel - ICr • )X(y, f3 n _1)X(/3n.l> 13 n _2) ••• X(Pl, r') 

Xexp[- ~2r(f3n_l)(2t - Bn_1)J'" 

X exp[ - 'A2r(i3 1)( B2 - BIl] exp[ - ~2r(Y' )elJ 

+ 2n:\' 6(E; - Ey• )X(y, y) exp[ - 21 >:'[,(y') \. (7.6) 

Substituting (7.1) into the first term of (7.6) we notice 
that 

first term of (7.6) = - I Ay' W, .. ;;p(Y, t I y'). (7.7) 

In the sum terms of (7.6) we change the summation 
index 

~ oc 

6 In =£ In+l + 12; 
n='2 n;;;:2 

(7.8) 

for the new integration variable i3 n we write 'I' . Hence, 

sum term of (7.6) + last term 

== 2n~2 ~ (nA2)" IoZt dBn IoBn den_l ... 
n=2 

X .(8 2 dB r A-I' I AP. • -' r A/3 )0 1 . r I'n_l , 1 

X 6(E-r - Ey,,)6(E, .. - EB 1)6(.<B - Ea .2)'" 6(EB1 - Er ·) 
n- n .. l n-

Xexp[- 1;2r(y")(2t- Bn)jexpl- ~2r(i3n_l)(Bn- Bn_1)J··· 

Xexp[- 1;'r(i31)(eZ - ell]exp[- A2rV)81i 

+ 2n'A2 . nA2 ,~)2t del I A!31 0(E; - Eel) 

X 6( Eel - Er , )X(y, /31)X(!3 1, y') 

Xexp[- A2r(/31)(21- e1)]exp[- A2r(y')811 

(7.9) 

Comparison with (7.4) shows that 
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(7.9) = 21TX2 J 6.'1' X(y, 'I' )o(q - Ey .. )P(y' , t I y') 

= J 6.'1' Wn-"P(y' , t I y'). (7.10) 

Thus, from (7,6)-(7.10) we find, still USing micro
scopic reversibility, 

ap(y, t I y') _ !6.Y' [WyuyP(y' , t I y') _ Wy"P(y, t I y')] 
at 

= o(t) Oyy, (7. 11) 

or 

ap(~'ft I y') + MP(y, t I y') = o(t)o(y - y') /Z(Y), (7.11') 

which is the master equation. Comparison with (6.43) 
shows 

P (y, t I y') =' g( y, t; y' ) . (7.12) 

We need a few more properties of (6.43). Let - a/at 
+ M be the adjoint operator. We note that M =M, for 
the integral operator is self-adjoint. Let ii(y, t; y', t') 
be the adjoint Green's function, i. e., the Green's func
tion of - a lat + M. We can associate with ii the condi
tional probability for the reverse time behavior, i. e., 
ofP(y,-tly)=I(yIUt ly')I2, whereUt=U(-t). Thus, 45 

P(y, - tly') =g(y, - y; 'I). (7.13) 

Since we also have45 

P(Y,tiy')= I<yl U(t)ly')12 

= I <'I I Ut (t) I y) 12 =P(y , - II y), 

comparison with (7. 12) and (7. 13) shows 

g(y, t; 'I) =g(y, - I; y). 

(7.14) 

This is just the condition for reciprocity, since by shift
ing the time axis (7.15) also reads 

g(y,t; y',O)=ii(y',O; y,t). (7.15') 

Finally, since !l1=M, the adjoint Green's function for 
negative time satisfies the same equation as the regular 
Green's function for positive time, 

g(y, - t; y) =,g(Y, t; y). (7.16) 

Thus with (7.15) 

g(y,t; y')=g(y',t; y), (7.17) 

indicating symmetry for fixed t. When (7. 17) and (7. 12) 
are substituted into (7.5) we arrive at 

which is (6. 52). 

7.2. Proof via a differential equation for the matrix 
elements 

(7.18) 

Q.E.D. 

Equation (7. 17) indicates there is also symmetry in 
P, 

P (y, t I y') = P (y , t I y) . (7,19) 

This property can be shown to hold for the result (7. 4). 
In the last term we simply change the integration vari
able, 81 - 2t - 81, From the big summand we lift out the 
time integrals; with 2t = T, let 
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rT r9n (92 8 
Jc =' J o d8n Jo d8 n _1 ••• Jo d 1 

X exp( - ~2r (y )(T - 8n )] exp( - A2r(13n_1)( 8n - 8n_1 )] ••• 

(7,20) 

This integral is of the same form as the configurational 
partition function in Takahashi's nearest neighbor gas; 46 

the functions r correspond with the two-body potentials! 
Thus, as there, we introduce the new variables 

Tn=T-8m 

T n-l = 8n - 8n_1, 

Tl = 8 2 - 81, 

The integral becomes 

}c = faT £IT n exp[ - x2r(y)T nJ loT ~ n dT n-l 

[ 
-2 J (TJI" -"'T? Xexp - A r(13 n_l)Tn_1 "')0 n " fiT 1 

xexp[ - :\2r (i3 1)] exp[ - -;\2r(y )(T - 6 T i)], 
i 

(7.21) 

(7.22) 

which is a convolution of 11 + 1 quantities. Thus we in
troduce the Laplace transforms 

z(s) = fa'" exp(- 8T)Jc(T)dT, 

F[s, r(a)] = 10" exp[ - sT - -;\2r (a)T] dT 

= [8 + >:2r (a) ]-1. 

The transformed result (7.22) becomes 
n -I 

Z(8) =F[8, r(y)JF[s, r(y')j n F[s, r(i3kl]. 
bl 

(7.23) 

(7.24) 

We note the symmetry in Y and y'. We thus interchange 
y and y' and we change the 13's cyclically, i3 1 -i32,"', 

13 n _1 -i3 1, and we transform (7.24) back with the factors 
F in the prescribed order. The new Jc is put into (7.4) 
and the integration variables 13 1 " 'i3 n _1 of this expres
sion are changed cyclically. The symmetry then 
follows. 

With this symmetry knowledge, we will now show 
that the matrix elements (7.3) can be handled directly, 
without appeal to the master equation. Evaluating the 
time integrals with Laplace transforms in a similar 
way as above, we find that we can interchange y and i3 n 
everywhere, except in 6.i3 n and in the matrix element 
({3n I Ed I i3n); this yields the following alternate expression, 

<YI~(t)IY') 

= Oyy.u(t) exp[ - i\2tr(y) J<y I Ed I y) 

;.,. - 21 (9 + OyY'U (1TA2)n J d8 n J, nd8n_1 ••• 
n=2 0 0 
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X B(ES
1 

- Ee)X(Y, {3n_l)X({3n_1, (3n_2) .• oX({31, (3n) 

x exp[ - ~r (1")(21 - 8n)] exp[ - A2r ({3n_l)( 8n - 8n_1)] ••• 

x exp[ - -;\2r (13 1) (82 - 81) J exp[ - -;\2r (13 n ) 81](13n I Bd 11'3") 

+ 27T-;\2 102t 
d8 1 J A{31B(EB I - E.y )X(13 1, 1") 

X exp[ - -;\2r (1")(21- 81) 1 exp[ - -;\2r (1'3 1) 81](1311 Bd I (3 1). 

(7.25) 

If this is differentiated, one easily arrives at the differ
ential equation, using the same steps as in the previous 
subsection, 

a(YI ~ (I) II") + fA/' [- Wy"y(/' I B:(t) II') + Wn,,(y I s,: (t) I 1") 

=6(t)(yIBd ly), (7.26) 

which is of the form (6.41). The solution is by (6.42), 

(7.27) 

Since the off-diagonal elements are zero-see (7.25)-
we once more obtain the result (6.52). Q. E.D. 

8. APPROACH TO EQUILIBRIUM 

In this section we first treat some known results con
cerning the master equation and the nonequilibrium 
distribution function (subsection 8. I). Next we establish 
new results for the evolution of the reduced Heisenberg 
operators B:(t) (subsection 8.2). The two problems are 
of course related; the first aspect looks essentially at 
the equilibrium approach in the Schrodinger frame, 
while the other aspect views the situation within the 
(reduced) Heisenberg frame. 

8.1. Properties of the operator M and relaxation of the 
distribution function 

In the space of real functions j(,) the scalar product 
is defined with the density of states Z(,), as a weighting 
factor, 

(f,J.{) =- r (it Z(,)j(,)J.{(') = J A}j(,)g(,), (8.1) 

with the integral over all y-space. The master operator 
1\11 of (6.2) is self-adjoint, 

(g, I'dj) = - J J A, Ay' {Wy"yg(Y)f(y") - Wry"g(y)f(y}} 

= - I J A,Ayl{Wy"yJ.{(y")j(y) - Wrr"g(y)j(Y)r 

= (f, AIJ.{) , (8.2) 

where in the first integral we interchanged I" and ," and 
used microscopic reversibility, Wrr .. = Wy .. y • The 
master operator M is positive semidefinite. We have 
for any f, 
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(f, Mf) = J I A,Ar" WYY " f(})[f(y) - f(y") J 

=J J AYAYIWn .. f(yl)[{(y")-f(yl] 

=l J I AyAr"Wry .. [j(y) - f(y")]2? 0; 

J. Math. Phys., Vol. 19, No.6, June 1978 

(8.3) 

in the last line we took half the sum of the preceding 
expressions. 

We must now be a bit more specific on the structure 
of ,'\;1. As noticeable from (6.1), ,"vI contains a delta func
tion in the energy. We substitute (6.32) and integrate 
out the delta function, 

21TA2f II II II Uf(E,Cl')=-T ACl' X(E,Cl'Cl' )[((E,Cl' )-f(E,a)j. 

(8.4) 

Clearly, Al =fot1" only acts on a space, E being a pm'om
eter. We define the scalar product in this subspace, 

U,J.{)'=- f Aa/(E, CdJ.{(E, a), (8.5) 

with Aa=Z(E, a)da being the number of states of en
ergy E, having a within (a, a+da). The connection with 
the full scalar product in , space is 

(f, g) = J~ ~ dE (j, J.{)' . (8.6) 

Property (8.3) reads in particular 

(f, 1\11'f)' = 7T;2 ff AaAa"X(E, aa") [j(E, a) - fiE, a") J2 

> 0, (8.7) 

since X - 0 [see (6.33)]. 

Next, we consider the eigenfunctions and eigenvalues 
defined by 

At 'PK(E, a) = K(E)'PK(E, a), ('PK) 'PK')' = B«.. (8.8) 

The eigenvalues are positive semidefinite as is found 
by substituting f = 'PK in (8.7), 

K= 1T~2 ff AaAa"X(E, aa")['PK(E, a) - 'PK(E, 0'")]2 

> O. (8 9) 

There is an eigenvalue K = 0, for the equation 1'>1' 'Po = 0 
has a solution, viz., the equilibrium solution of the 
master equation. The corresponding eigenfunction is 
independent of Cl' for fixed energy; using the normali
zation we find 

(8.10) 

where 

G(f.) = J Z(E, a) da (8.11) 

is the degeneracy of the energy E or, if coarse graining 
is taken into account, the number of states in an energy 
cell (E, E + BE). It can further be shown that the eigen
value K = 0 of a discrete spectrum is nondegenerate 
since otherwise !vI is reducible, i. e., the master equa
tion splits into two or more master equations. For the 
same reason, the eigenvalue K = 0 must be isolated if 
part of the spectrum is continuous. Thus the spectrum 
is always of the form 

K = 0 (equilibrium distirubution) 

other K? Be- O. 
(8.12) 
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From (8.9) and (6.33) the estimate 0 - A2V2 /fiOE, where 
OE is a measure for the width of the energy distribution, 
indicated in (6.17) is evident. 

We now consider P(y, tly') as given by the master 
equation (7. 11'). Integrating out the energy delta func
tion in M, we find that P is separable as P(y, t I y') 
=P' (EO', t I Ea')O(E - E') with for P the more restricted 
master equation, 

aP(Ea,tlw') +M"P'(Ea,tIEa') 
at 

= o(t)o(a - a')/Z(E, a). (8.13) 

Expanding P" in eigenfunctions CP.(E, a) one easily finds 

P'(Ea, tlEa') ==S exp(- KI)CPK(Ea)CPK(Ea'), 
• 

K= K(E), (8.14) 

where S denotes a sum for the discrete spectrum, and 
may contain integral parts for the continuous spectrum. 
For the nonconditional distribution we have 

p(Ea, t) = J c.y'P(y, t I y')p(y', 0) 

=J dE' J c.a'P"(w,tIW')O(E-E')p(E'a', 0) 

= S exp(- Kt) J c.a' CPK(W)CPK(W')p(E a', 0). 
K 

(8.15) 

For t - 00 this yields in view of (8. 12) and (8,10) 

( ) 1 f ' ( , ) P (E, 0) 
Peq Ea =C(E) c.a pEa, ° =~' (8.16) 

where P is the energy distribution function. Clearly 
due to mixing of a states within an energy cell, Peq(Ea) 
becomes independent of 0'.47 The microcanonical distri
bution is direct. The canonical distribution follows only 
if the distribution over the various energy cells at t = 0, 
P(E,O), was already canonical. The non mixing of states 
from different energy cells is of course due to the (arti
ficial) assumption of vanishing A V in the van Hove limit. 

Finally, the computation of the Gibb's entropy re
quires us to find 

Se = - k J J dE c.ap(w, tllogp(Ea, t). (8 17) 

For p(Ea, t) one finds by integrating (8.13), over all 
initial distributions, 

ap(w,t) 
of +lW'p(W,tl=O(t)p(w, 0). (8. 18) 

[This equation is sometimes also called the master 
equation; it has the same structure as (7. 26). ] From 
this one easily obtains 

dSe Trk
A2
fd. (( "( "[P" ] Tt=T ~) c.ac.a X E, 0'0') (w, t) -p(Ea, t) 

x [logp(w", t) - logp(w, t)]? O. (8.19) 

The dissipative nature of the system is thus now abun
dantly demonstrated. 
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8.2. PROPERTIES OF THE OPERATOR J\ AND 
RELAXATION OF THE REDUCED HEISENBERG 
OPERATORS 

In the Liouville space the scalar product of two oper
ators is generally defined as48

: 

{C,D}"'TrCnt=J Jc.yc.y'(ylcly,>(yIDly'>*, (8.20) 

We observe that{C,D}*=={D,C}={Ct,Dfj-. In the sub
space of Hermitian diagonal operators (diagonal Ligu
ville space) the product (8.20) gives for operators f as 
defined in (6.3), 

{j, t?r == J c.y(y Ifly>(y iily> = (j~ g) (8.21) 

We will also be considering more restricted operators 
denoted by an overbar, 

f(EJ = J C.a I W>f(E, a)(w I, (8.22a) 

f(E, a)O(E - E') =(E'a I7(E) \E'a>. (8. 22b) 

We consider the operator Ad acting in the diagonal 
Liouville space. From its definition (6.6) one finds that 
~ decomposes into a sum of operators for each energy 
cell, 

Ad = - 2~A2 fa ~ dE !!c.ac.a" I Ea>(w IX(E, aa") 

x (~ .. - If" ) ",6fc.a I Eia>(Eia Iff!' i =~1\:,(S" 23) 
1 • 

where we consider the energy divided over energy cells 
Ei when convenient; fh is defined such that 

(S.24) 

Theorem 1: The eigenvalues and eigenvectors of A; 
are Ki ", K(Ei) and ~Ki, respectively, where 

(S.25) 

in which Ki and CPKi(Ei, a) are the eigenvalues and the 
eigenfunctions of AI'i, respectively, see (S. S). 

The proof is direct: 

J\i~Ki = J c.ajEia><Eial/y"i ~Ki 

=I c.a iEia)(EiaIM,icp.i(Ei, a) 

Theorem 2: The eigenvalues and eigenvectors of ~ 
areall{Ki~andall{~Ki}, respectively, O~Ei~oo. 

The proof is straightforward. From (8. 22b) we find 
that/h eiJ(E i) = 0, if. j. It follows that Ai ((JKi = O. Thus 

(S.27) 

Theorem 3: We have the following projector property, 

(8.28) 

where PKi is the projector associated with ((JKio 

The proof is most easily given in Dirac notation: 

K.M. van Vliet 1361 



                                                                                                                                    

(8.29) 

now 

=B J t:.aj(E, a)<p.t(E t , a)o •• i 
E 

(8.30) 

which completes the proof. 

We thus have the following decomposition theorem, 

Ad =~ S KI F.I ; 
I .t 

(8.31) 

going over to a continuous energy scale we also have 

(8.32) 

Finally, using (8.28) we have for the reduced Heisen
berg operator 

B;(t) = exp(- Ai)B 

= ('dE S exp[- K(E)t] r t:.a(wIBlw) 
o d.) -

The expectation value as function of f is now found to 
be, employing (8. 22b), 

(Hi (t)) = T r[PeQHi (t)} 

=1o""dES exp[-K(E)t] 
de) 

(8.34) 

For /- 00 only the eigenvalue k(E) == 0 is retained; 
then this becomes, recalling PeQ(E, a') =PeQ(E, a), <Po 
=1/v'G(E), and ft:.a'=G(E), 

lim (~(t) = 10 ~ dE J t:.a(Ea I B I Ea)PeQ(E, a) 
t - '" 

(8.35) 

Also, for t:.B:(t), defined analogous to (3.13) of the 
Kubo theory, we have 

lim(t:.~(t» = lim TrtPeQ[Bf(t) - [(Bd )]} = O. (8.36) 
t -co t .. co 

Thus, the approach to equilibrium is well established. 

We also consider the correlations. From (8.33) and 
(8. 22b), 

TrtPeQB:i (t)A} 
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= rOdE S exp[- K(E)t] J t:.a(EaIB\Ea)<p'(6)(E, a)fo"'dE' 
o d.e) 

x J t:.a'PeQ (E', a')<PK (E' l(E' a'lo(E - E ')(€' a'l A I E' a'). 

(8.37) 
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Now let t - 00. Again with PeQ(E', a') =PeQ(E', a) and <Po 
= 1/-fG(€) we obtain 

lim (B:(t)A) 
t - '" 

= ;:"'dE!t:.a(WIB1W)PeQ(E,a) l"'dE' 

xjt:. a '(E'a'I A IE'a')6(E - E') G~E)' (8.38) 

If the ensemble is microcanonical, then PeQ = O(E - E') i 
G(E). So for that case the mixing property follows, 

lim (.s:(t)A) = (B)(A). (8.39) 
t - '" 

This result can also be obtained from the Schrodinger 
form of the correlation function, using (80 14). 

C. CONSEQUENCES FOR TRANSPORT FORMULAS 

9. SUSCEPTIBILITY AND CONDUCTIVITY FOR 
CLASSICAL FREQUENCIES 

We consider the Kubo form for the response function 
of the interacting system under consideration. We have 
the reduced function 

Here P~Q is the ~anonical distribution exp(- (3H u), 
Tr exp(- (3HO); AI is the operator in the interaction 
picture 

AI (t) = exp(iHOt / ir) it exp( - iHlI t. ill. (9.2) 

A problem is now that we cannot directly replace JiI by 
B'f and take the van Have limit; this procedure would 
result in removing from the trace all terms 
(yIAI (-i1f(3')Ir') with YH'. But, the diagonal element 
(y IAI I Y) = (l/iff)(y I [AI, HOll y) = O. Suppose, however, 
that in (9. 1) we first take the classical frequency limit 
(5.4). Then from stationarity, 

(..11(_ i1fi3') lim JiI(m 
:\ 

= lim (AH (O)]jf (t + i1f!3 ') 
:\ 

'" lim (..1H (O)iJi (I) = (A slim]jf (i). (9.3) 
:\ ). 

Here AS is the SChrodinger operator, for which the 
superscript will be dropped. 49 Substituting (9.3) into 
(9.1) we obtain 

cp~IA(t) =(3 Tr{P~QA lim Hi (t)}, (9.4) 

" 
where the superscript cl indicates that this is valid for 
classical frequencies 1fw« 1/!3. Similarly for the relaxa
tion function 

>¥~~ (I) =(3 Tr{P~Qt:.A lim t:.]jf (tl). (9.5) 
:\ 

9.1. The interaction form 

We now set ~ (t) - s: (t) and use the result (6.8) of 
the preceding sections. We then obtain the following 
interaction forms 
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¢ffA(t) =/3 Tr{P~qA exp(-1\t)B}, 

>V~~ (t) =/3 Tr{P~q M exp(-1\t) aB}. 

(9.6) 

(9.7) 

By (3.6), (3. 9), and (3.11) we find the corresponding 
expressions for X and Lo For example, from (3.6), 

9.2. The Schrodinger form 

With the trace computed in the representation 1 y), 
the result (9.5) also reads 

The latter matrix element we take from (7.5) and we 
write A,. = (y IA 1 y), etco We then find 

Likewise for (9.7) and (9.8), 

>v~IA(t) =13 J J ayay'p2q(y)aB,..M,.p(y', t 1 Y), 

XffA (iw) =/3 10'" dt exp(- iwt) f J ayay' 

XP~(Y)B,.,A,.P(Y', t 1 y). 

Similarly for the conductivity 

L~~(iw) =/3 to dt exp(- iwt) f f ayay' 
o 

(9.10) 

(9.11) 

(9.12) 

(9 0 13) 

For the d. c. electrical conductivity (A = B = J) this re
sult was also given by van Hove5o though seemingly with 
one-particle results (as in Boltzmann theory, IY)- Ik) 
= Bloch state) in mind. 

We may also introduce a two-point probability by 
Bayes' rule 

W2(y', t; y, 0) =P(y', t I y)p2q (y). (9.14) 

Then we have the stochastic espressions 

XS1A(iw) =/3 J ~ dt exp(iwt) J f ayay'A,.B,., W2(y', t; y,O), 
o 

(9.15) 

TABLE IV. New forms (classical frequencies). 

Function, coefficient 

->.c1 
"'BA 

Interaction form 

G Tr{P~qA exp(- A/)B} 

(l Tr{p~qM exp(- A/)aB} 

(9.6) 

(9.7) 

Tr{P~qM exp(- A/)aB} (9.29) 

{3 f~ dt exp(- iwt)Tr{P~qA exp(- Aat)B} 
o 

{3 f~ dtexp(- iwt)Tr{P~qA exp(- Aat)B} 
o 
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L~IA(iw)=/3 J~dtexp(-iwt) 
o 

X f f ayay'~B,.,W2(Y" t; y, 0). (9.16) 

We refer to (9.10)-(9.16) as the Schrodinger form, 
since in this form the operators are fixed, while the 
time dependence is vested in the probability function. 
A summary of results is given in Table IVo 

The connection between the Kubo form-based on the 
Heisenberg operators-and the Schrooinger form can 
also be shown directly. With pH =ps(O) =Peq and Jif(t) 
= rI (t)Bs U(t) we have quite generally, {I rp)} being an 
arbitrary complete set of states, 

(Jif (t)AH (0) 

= Tr{ Jif (t)AH (O)pH} = Tr{Jif (t)A S Peq} 

= B (rp I Ut Irp')(rp'IBs lrp") 
II' ,IP' ,IP" ,1/)' 11,11) i v 

(9.17) 

We now assume that B S and AS are replaceable by dia
gonal operators, and we make an initial random phase 
assumption. The result is 

(Jif (t)AH (0) = B I (rp I Ut I rp') 12(rp' I B S I rp') 
~~, 

(9.18) 

Next we introduce the interaction Hamiltonian (4.2), we 
choose {I rp)} ={ 1 y)} and impose the van Hove limit. We 
then have P( rp', t 1 rp) - P(y', t 1 y), P.q(rp) - P~Q(Y). This 
gives the previous result. The burden of the proof is, 
of course, to show that P(y', t Iy) satisfies the master 
equation, so that the formalism of Sec. 7 is still neces
sary in order to give the result the physical meaning 
set forth in this paper. 

9.3. Justification of omission of nondiagonal parts 

The rather qualitative argument by van Kampen40 

that macroscopic variables, displaying a rather slow 
time behavior, are mainly diagonal with the Hamiltonian, 
can readily be made explicit in the present context. We 

Schrodinger form 

(3 f J '::'YLl:Y'P~q (y)By.A,P(y', t 1 y) 

AI} '::'Y'::'Y'P~q(y)aBr' M,P(y', t IY) 

I I'::''Y'::'Y'p~q(y)'::'By. M,P(y', t Iy) 

(9.10) 

(9.11) 

{3 I dt exp(- iwt) J I .::,y'::'y'P~q(y)Br·A'p(y', t /1') 

{3 J dt exp(- iwt) J J aY'::'Y'p~q(y)Br,A'p(Y" t / 1') 

- iw{3 r dt exp(- iwt) J J .::,yaY'p~q(y)aBr' M,P(y', t / 1') 
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c:ons.ider.the correlations {AB(t)M). With B==.Bd +Bm' 
A =Ad +Am' one easily shows 

Tr{PeqAB(t)<lA} = Tr{PeqABd(t)Md} + Tr{PeqABm(t)Mm}. 

(9.19) 

Thus, the Lemma (3.44) results in the following rela
tion between diagonal and nondiagonal parts 

r: dt exp( - iwt)[ Tr{PeqABm (t)Mm} 

- exp(- i31iw) Tr{PeqMm ABm (t)}] 

= [exp(- !3Ifw) - 1] r: dt exp(- iwt)Tr{Peq<lAdABd(t)}. 

(9.20) 

Consider now classical frequencies i31iw« 10 Expanding 
(9.20) we obtain 

- 1i~ f~~ dt exp(- iwt)[Tr{PeqABm(t)AAnd} 

- Tr{PeqMmABm(t)} 1 

""i3 f: dtexp(-iwf) Tr{PeqMdABd(t)}. (9.21) 

But, 

ABm (t)AAm - MmABm (t) = AB(t)M - MAB(t), 

(9.22) 

Thus the lhs of (9.21) is the Fourier transformed re
sponse function, cf. (3.47). So we have the result 

(9.23) 

or also, 

¢tA(t) ""i3 Tr{PeqMdABd(t)}. (9.24) 

This result must remain valid in the van Hove limit: 

(9.25) 

(we superscripted the response function with R for 
clarity, we omitted the A'S since {A) = 0, and we used 
the fact that Tr{PeqAndH.:(t)} '" 0). Equation (9.25) indi
cates that it suffices to know the diagonal part H.: (t). 
Indeed, comparison with (9.4), 

clR r{' .,R 
¢BA (t) =i3 T p2qAn (t)}, (9.26) 

shows that for classical frequencies or for large times 

~(t)« ~(t). (9.27) 

For quantum frequencies or for small times no such 
greatly simplifying statement can be made ("small" 
times means here t« lif3, but we still assume t» T t in 
accordance with the van Hove limit). From (9.20) one 
finds for i3lfw » 1, 

(9.28) 

ThuS the nondiagonal contributions are no longer negli
gible. Results for quantum frequencies thus require a 
study of the nondiagonal reduced Heisenberg operators. 

9.4. Classical fluctuation-dissipation theorems 

For the relaxation function we found, cL (9.5), 
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(9.29) 

i. e., Eq. (3.34) is confirmed for the reduced functions. 
May it be once more emphasized that the fluctuation
correlation function .pclR, in contrast to .pel, shows 
clear-cut relaxation. Its Fourier spectrum exists, 

S~~(w) 

= 2 f~~ dt exp( - i wt) .p~:: (t) 

=2 f"dteXp(-iwt).pi~(t)+2 I"dtexp(iwt).pl~(t) 
o 0 

= 2Tr{Peq M d Aa ~ iw ABd} + 2Tr{PeqABd Aa ~ iw Md} , 

(9.30) 

where we used the transposition property (next section). 
Further, from (9.29), 

S~~(w)=2kT J~ dtexp(-iwt)>Itt:(t), 
-~ 

(9.31) 

which is the claSSical analog [[(w, T) =kT] of (3.56). 
Thus the classical theorems analogous to (3.60) and 
(3.61) follow. 

10. SYMMETRY PROPERTIES; THE ONSAGER
CASIMIR RELATIONS 

The symmetry properties involving time and magnetic 
field reversal, given by Kubo (Ref. 2, Sec. 6) are in 
a much sharper way established in the present context. 
We conSider the SchrOdinger form for the classical 
fluctuation-correlation function 

(10.1) 

First, switching the integration variables, we also 
have 

(10.2) 

But 

(10.3) 

by stationarity and pair invariance. Comparing now 
(10.2), (10.3) with (10.1) we find the transposition 
property 

(10.4) 

where the magnetic field has been added for comparison 
with what follows. 

Secondly, we consider the time-reversal features 
stated in (7. 14). The result was based on the time
reversal relation U(- t) = Ut(t), for which we assumed 
that the Hamiltonian is invariant, H(- t) =H(t). How
ever, in order that this be so, we must switch the mag
netic field H along with t; thus [Ut(t)]H == [U(- O]-B; this 
leads to 

(7.14) - (10.5) 

Likewise, Eq. (7.13) must be amended, to read 
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(7, 13) - (100 6) 

Combining these two equations, and uSing PI ='!?, we 
find that reciprocity (7.15) is still satisfied 

.K'(y, I; y') =.?(y', - t; yl. (7.15) = (10. 7) 

Also, the mathematical identity (7. 16) still holds, so 
that (7.16) and (7.19) are still valid, i. e., pH is 
symmetrical: 

(7.19) = (10.8) 

Finally, combining (1005) and (10.8) we have 

pII(y, II y') =p-H(y, _ t I ,'), 

or also 

W:!(y, t; y', 0) = WiH(y, -I; y',O). 

(10.9) 

(10. 10) 

The time reversal further alters the SChrodinger oper
ators A and B according to EAA and EBB, with E =o=± 1, 
depending on the even (+ 1) or odd (- 1) character of 
the variables, Thus from (10.2) and (10.10) we have 
the timc-rcl'cr8al properl\', 

(10.11) 

Combining (10.4) and (10.11) we also have 

(10.12) 

We note the microscopic nature of this proof: ¢cl
R was 

linked directly to the Hamiltonian via H - U -p - W2 
-¢. 

Since q, clR is proportional to ¢clR, the symmetry 
properties also hold for q,clR. Further, the result 
(10.12) is immediately carried over to the Fourier
Laplace transforms A(iW) and L(iw). We thus obtain, 
restricting ourselves to classical frequencies 

These are the Onsager51-Casimir52 reciprocity 
relations. 
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APPENDIX A: DERIVATION OF THE MATRIX 
ELEMENTS IN VAN HOVE'S FORMALISM 

The derivation of the matrix elements (y 1 Bd(t) 1 y') 
(where Bd is an arbitrary diagonal operator) goes some
what smoother than the derivation of pry, t I)") found in 
van Hove's paper, since there is more symmetry. 
Though projection operator techniques-see Appendix 
B-are faster, van Hove's method has the advantage 
that the computation is baSically direct; we still note 
that our starting point is the Liouville equation which 
leads directly to (6.9) whose solutions we seek in the 
van Hove limit, while van Hove's treatment is based 
on the Schrodinger equation, an unnecessary complica
tion. For this and other reasons we include this deri
vation here. 

The essential feature of the development is the con
struction of a series expansion for U(I) which is differ
ent from that in (6.10). For the present problem it is 
advantageous to split U directly into a diagonal part 
(Ud ) and a nondiagonal part (U m) - "diagonal" referring 
to the representation {(y)i which are eigenstates of HO. 
The main results needed are contained in two lemmas. 

Lcmllla 1: The diagonal part Ud(t) = '[,;ouj2n)(t) in
volves all even orders of perturbation and is summable, 

where 

r(y) =7r f tij3X(f3, )){j(E~ - Ey ), 

ti(y) = P f tii3X(f3, y)h - Ey ), 

jJ denoting the Cauchy principal value. 

(AI) 

(A2) 

(A3) 

Proof: The evolution operator is written as 2-k':OUIJ<) 
where UiJ<) for l?::- 1 follows by iteration from (6.9'),41 

x exp[ - iH°(l- Tk )/lIjV(Tk ) exp[- iHo(Tk - T k _I )/lIj 

x V(Tk _l ) •.• V(T I ) exp[ - iHliT
I TiJ. (A4) 

The matrix elements are now 

(yluiJ<)iro> 

= (A/in)k 6 CdTkCkdTk_I .. ·C2(/TI 
Yk_I"'YI·O'1) ·0 

x exp[- iEyk_I(Tk - Tk_l )iI1KYk_11 V(Tk_l) I Yk-2) •• , 

x <Y21 V(T 2) 1")/1) exp[ - iEyl (T2 - TI)ffj 

x <YII V(T I ) I Yu) exp(- fEy uT I,m. (A5) 

We picture this in Fig. 1, representing the time points 
by points, the interaction by arrows taking place at cer
tain time points, and the states by intervals between 
the time points which indicate how long a given state 
lasts (we differ slightly with van Hove, who represents 
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+-
time 

FIG. 1. Diagram for reading off the matrix element of the 
evolution <I'I U(k) I Yo). 

the states by points). The structure of (A6) is readable 
directly from the figure. 

We now consider the part u(2n) of the evolution oper
ator; we write integrals for the state sums and set 
V(t) '" V, 

(oy I U (2n ) I Yo) 

x exp[ - iEy2n_1 (T 2n - T 2n-1) lif](Y20_11 V I Y2n-2) ... 

X(Y11 Vlyo) exp(- iEy oT 1/n). (A6) 

We especially consider the double transitions such as 
Y - Y2n-1 - Y2n-Z; the rule (6.13) is applied to the operator 
trio v{ t V as follows, 

(y[ v{ I Y2n-1) exp[ - iEy 2n"1 (T 20 - T 20-1) In ](Y2n-1 I} V I Y2n-2) 

+ Y part. (A7) 

Preceding and following this trio are exponentials, 
which combined with the exponential in (A 7) and taking 
account of the Kronecker delta of (A 7) can be written as 

exp[ - iEy (t - Tn) In] exp[ - iEy 2n-1 (T 2n - T 2no1) I n] 

Xexp[-iEy2n_2(T2n_1- T2n _z)lnj 

= exp(- iEyl in) exp[i (Ey - EY2n_1)(T2n - T2n _1)ln] 

X exp(i Ey T 2n-2/ ff). (AS) 

We now repeat the trio operation for other pairs, such 
as (Y2n-21 V{ } V I Y2n-4), etc. There are a total of n such 
pairs, yielding the deltas 6y 'y20_2' 6y2n-2hn_4' 6y2lo ' We 
thus have "saw tooth'" transitions in which each second 
neighbor is equal to the original state; Y - Y2n-1 - Y 
- Y 2n-3 - Y, etc. The states Y2n_b Y2n_3, ... , Y1 are called 
free states. Moreover, leaving off the Y parts, we pick 
out the diagonal matrix element Y=Yo, as follows from 
integration over all Kronecker deltas 

J tl.Y2n_2· •• J tl.Y26y ,Y2n_26y2n_2,YZn-4 .•. 6r 2,Yo 

= J riy 2n-2' .• .r dyz 6(y - Y2n_2)6(Y2n_2 - Y2n-4) .•• 

X 6(Y2 - Yo)/Z(Yo) 

= 6(y - y o)/Z(yo) = 6y ,Yo' (A9) 
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The result (A6) is now complete, except that we must 
still integrate over the free states f tl.Y2n_d tl.Y2n_3 .. 
x J tl.Y1' We relabel these variables, viz., Y2n-1 =-i3 n, 
Y2n-3=i3 n-1, ... , Y1 ={31' From (A7)-(A9) the result is 
then 

x exp[i(Ey - ES1 )(T2 - T1)/n]x(i3n, y)X(i3 n_1, y) .. 'X(i3 1, y) 

(AI0) 

Introducing the time variables [ - T2n = 82n , T 20 - T 2n-1 
= 82n _1 , ••• , T 2 - T 1 = 81, the time integral becomes 

/(1) = r t de (t-82n de ... (I- 1P 2n+'" <172) de J 0 2 n • I] 2 n _1 j 0 1 

(All) 

For the Laplace transform this yields by the convolu
tion theorem 

~ 1 n 1~ 
I(s)=nO exp(-se)exp[i(Ey -Es)8 rrjd8 

S k=l 0 k 

1 n 1 
= -::n+r n ('/ fl)( ) s h1 S - I I Ey - E Sk 

1 n( mP ) "'-::n+r Il --- + Tfn6(Ey - Ee) , 
S h1 Ey - Ea

k 
k 

(Al2) 

since I s I -1/[« 6E/n So also 

J tl.{3n··· J tl.{31X ({3m y) " X((:\, y)t(s) 

(l/sn+1)[nr(Y) _ izitl.(y) In; (A13) 

whence finally by inversion, 

(AI4) 

It is also clear that the odd operators U(2n+1) do not 
yield diagonal contributions since the saw-tooth scheme 
fails; the extra time integral causes the magnitude to 
go with A - O. Summing the even order operators one 
has therefore, 

(yludlyo) 

= 6y y exp(- iEytln) exp( - (A2t/n)[r(y) - itl.(y)jt (AI5) 
• 0 

which is the diagonal form of (AI). 

Lemma 2: The nondiagonal part of the evolution op
erator Und is expressible in the diagonal part Ud by a 
series; thus the total U is 
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FIG. 2. Integration of the time integrals. 

the subscript (nrT) means that in the curly bracket the 
intermediary states and the initial state must all be 
kept different from the final state. Van Hove gives this 
result without proof. We will show that this result is 
easily obtained with the projector operator method, see 
the next appendix. 

The evaluation of the matrix elements is now straight
forward. The diagonal part of U yields, cf. (A 15), 

(y I UJBd Ud I YJ = o"y .(1' I Bd II') exp[ - 2;\.2/r (y)/ti]. (A 17) 

The cross terms of Ud and U nt obviously yield no dia
gonal terms. For the nondiagonal part we exemplify 
the procedure by looking at the first term, 

(yl U~)tBdU';})IY') 

(nd) (nd) 

Here, llay are the eigenvalues of Ud , 

Uct(t) I y) 

=lIcrr (!)iy) 

= exp[ - if."t / If + (;\.2t/1Z)[iA(y) - r(y) Jl-I Y). 

(A18) 

(A19) 

(The requirement that there are no diagonal transitions 
is automatic for this first step since V is nondiagona1. ) 

We apply van Hove's functional rule for the operator 
{ r in (A18). Then, 

;\2 r (t 
matrix e1. =f1 J

o 
dTI Jo dT{1I1y(T{ JUcrr(TI) 

x{ o"y' jA(3Ul8 (t - TUUdB(t - T 1)«(3 [ Ed I (3)X((3, y) 

+ jA(3U1B (t - T;)Ucta(t - T 1)«(3 [ Ed 1(3) Y((3; 1', y')}. 

(A20) 

To evaluate the term with X we set T1 - T{ = 8{, Tl + T{ 
= 81 , The area of integration is indicated in Fig. 2. 

We denote by C2 the path along the upper two sides 
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and by CI the path over the lower two sides. The result 
then is 

x exp{U/1Z){ Ea - Ey - ;\2[A()3) + A(y)]~81} 

xexp{(;\.2/1Z)[r((3) - r(y) J8 1} exp[ - 2(;\2t /1Z)r((3) J. (A21) 

To evaluate the integral over d8;, we note the asympto
tic form 

I5CiI5T» 1. (A22) 

For the majority of values along the curves C1(81) and 
C2(8 1), this relation holds. In the resulting delta func
tions, we can set ;\l - O. Thus the result for this part is 

(matrix e1. )due to X 

x I5h - f.,,) exp(- (;\2 /1Z)r(13)(2t - 81)] 

x exp[ - (;\2 /1Z)r (y) 81 ], (A23) 

The part due to Y can be evaluated Similarly, employ
ing Eqs. (6.18) for the integrals. The result is found 
to be of order ;\.2, hence vanishing. 

The complete story can now be evaluated in the same 
manner. For simplicity we write in what follows ">;: 

=;\. /-rfi. The general matrix element is 

= (">;://1fi)m(">;:i//1f)M n dTn' .. 10'2 dT I 

X lot dT~ ..• 10'2 dT{ J AY,_I'" J AY1J AY~_I'" JAy; 

(A24) 

We apply van Hove's functional rule first to the opera
tors v{ } V occurring in the middle. Next we apply this 
rule to the expression between the two V's lying sym
metrically outside the middle part, and so on. Thus we 
establish bridges between all pairs Yi and y;. No re
strictions are placed on the intermediate states )31 which 
arise from the functional rule; however, we note that 
the diagonal transitions are always absent due to the 
structure of the kernels X [X(13 n, )3n_l) exists only for 
(3, '" 13 n _l ]. In case n = fIl, the above procedure will ex
haust all terms. The time integrals can be handled with 
a double Laplace transform, or, in a more elementary 
way, as in the above procedure, i. e., we make the 
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change in variables T i - T: = e;, T i + T; = ei • In finding 
the new limits, we noted that the first change in vari
ables (Tn' T ~ - e n' e~) resulted in limits O·~ en'" 21 while 
for e~ we can set - 6Te e~ <: 6T, where 6T, though 
asymptotically large for the integrand, is negligible 
compared to en. Thus one readily sees that the integra
tion area on en_V e~_l is again as in Fig. 2, but with 
0< en_I ~ en, while for e~_1 we can again set - 6T <: e~_1 
'" 6T; and so on. The result is easily found to be 

x !.~p .. , (~i316(Es - Es ) .. 
. n. n n-1 

X 6(Es1 - Ey)X(Pn,Pn_I)" ,X(P\l Y) 

x exp[ - A2r(J3n)(21- en) 1 exp[ - A2r(Pn_l)(en - en_I)]' .. 

xexp[- A2r(pl)(e2- e1llexp[- A2r(y)e 1 l(pn\Bd lp n). 

(A25) 

If we compute in a like fashion the matrix elements for 
]/ * 117, we must, in addition to the above, account for 
(n - IJI) remaining integrals. The result is found to be 
of order x1n

-
ml

, 1. e., vanishing. Hence, summing 
(A25) for all orders 11, we obtain the complete result, 
as given in the text Eq. (7.3). If we still affect the 
change in variables ei = 2,~ i, the time ordering is even 
more symmetric (0 oS~1 < -9 2, ••• , 0 "'~n "" t) and the for
mulas are in appearance similar to those of van Hove. 

APPENDIX B: PROJECTION OPERATOR SOLUTION 
FOR THE EVOLUTION OPERATOR U(O 

The objective of finding expressions for the diagonal 
and nondiagonal parts of the evolution operator is most 
expediently accomplished by using Zwanzig's projector 
operator method. 53 Since, to our knowledge, this 
scheme has not been applied to the evolution in state 
space (Zwanzig' s paper is mainly concerned with the 
Green's operator in Liouville space), we will do this 
here. 54 

We consider the differential equation (6.9) for U(t) 
and we split into diagonal and nondiagonal parts. We 
note the general rule 

= (AdBd) (d) + (AdBnd) (nd) + (AndBd)(nt) 

+ (AndBnt)d + (AndBnd)nd' (B1) 

The subscripts in parentheses are automatically ful
filled and can be omitted. Noting that HO has no non
diagonal terms and AV has no diagonal terms, Eq. (6.9) 
splits as follows: 

1368 

Iii aUd =HOUd + (AVUnt)d =HOUd + PXVUrrJ , 
at 

. aUnd ° ( VU ) lit-at=H UrrJ + XVUd + A nd ttl 

=Hou nd + AVUd + (l-P)AVU rrJ , 
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(B2) 

(B3) 

where we revert to Zwanzig's notation, Ad =PA, ArrJ 
= (1- P)A; the reader is fUrther reminded that the pro
jection operator P or 1- P acts on everything to its 
right, except when otherwise indicated by brackets. 

The Green's operator of (B3) satisfies 

af(l, I} _ ~ [Hof+ (1 _ P)AVfJ =16(1 _ I') (B4) 
(II Iil ' 

where 1 is the unit operator in state space. The solution 
is 

1(/, I') =1 exp{l;liil(i -I')[HO + (1 - P);\V]} 11(1 - I') 
(B5) 

The formal solution of (B3) becomes with the initial 
condition Unt(O) =0, and notingt(l,li)=t(i-I',O) 
"''7(1-1'), 

und =!:·lt 

rll'f(i-I');\VUd (!') 
,/I ° 

=:. (t til''!(I')AVUd(l-I'). (B6) 
hz Jo 

When this is substituted into (B2) the result is 

(iU ;\21 t 

trio-Id =HOUd +-: rll' PV'!(L')VUd(! -I'). 
() til 0 

(B7) 

This result is still exact. We now consider the weak 
coupling limit of small ;\. Then for 1(1 ') we write l' 0(1 ') 
where 

f°(t') =! exp(- it'Ho/tr)u(i'), 

Then (B7) becomes approximately 

(B8) 

au ;\2 it 
triO-I" =HOUd + "". til' PVexp(- it'Ho/trlVUd(! -I'). 

I' fi1 U 

(B9) 

We note the integral is of order ;\2,. 

Now let W = exp(iHol'lf) Ua• Then for W we have the 
integrodifferential equation 

ilW;\2 ft -a- = - -;:'J exp(iHol/ til til' 
I IT ° 

XPV exp(- il'Ho /If) V exp[- i(l-I')HO !fiJWU - I'L 

(BI0) 

We use van Hove's functional rule in the form (6.13')' 
Noticing that P does not have to act on the diagonal 
factors exp[- i(l- t')Ho/ti] and W(i -I'), we have 

PVexp(- it'Ho/irlV 

=6Iy)H exp(- il'Eydtr)X(y', y); (B11) 
yy' 

hence also, 

= 0 I y)(y I exp[ - it '(Ey ' - Ey )/tr\X(y', y). (B 12) 
rr' 

This is substituted into (B 10). Taking the Laplace trans
form W(s) we obtain by convolution 

A A2 "I (I X(y' y) A 

sW(S)-W(O)=--;:T~ y) Y .(' )/lI W(s). 
/rrr' S+lEy .-Ey I 

(B13) 
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Here W(O) == Ua(O) = 1. We now consider asymptotic 
times, or small I s I, so that 

1 • ",n[-iP +rr6(~y. _~) . (B14) 
s + i(Ey• - Er)/If Eyt - Ey J 

With the definitions (A2) and (A3), Eq. (BI3) yields 

W(s)={s+ A
2
£ 11')(1'1 [r(y)_i.:l(y)]}-l. (BI5) 

n r 

The inverse transformation gives 

Wet) =exp {- A~t'f 11')(1'1 [r(y) - i.:l(Y)]}. (BI6) 

Hence for Ua, 

Ua == exp { ~it HO _ ~t ~ 11')(1' 1 frey) - i.:l(Y)]}. (B17) 

By series expansion one easily verifies that 

exp( - 611')(1' 1 F(y)} =611')(1' 1 exp( - F(y)}. (BIS) 
r Y 

Thus (BI7) is in accord with (AI). We thus obtained van 
Hove's diagonal part in an easier way. 

For the purpose of the nondiagonal part, see (B6), we 
may not approximate get) by g0(t); we must maintain 
the complete result which is of order (N)" (all orders 
n?o 1). We note that the van Hove limit cannot be car
ried through in Unlet) itself, though terms of order 
(,\2/)" are readily extracted from the matrix elements 
(yIBd(t)lr'), see AppendixA. 

In the result (B6) we take the Laplace transform, 

(B19) 

For the computation of the matrix elements we will, 
as before, seek a convolution series in Udell. There
fore, we rewrite (B19) as follows, using (BI7) 

Und(S) = ~i {s + (il1i)Ho + (A2/n)1> - [(llni)(l - PlAY 

(B20) 

where 

1> =~ 11')(1' 1 [r (1') - i.:l(y)], (B21) 
Y 

1 
(B22) 

Equation (B20) is now expanded in a perturbation series, 
see, e. g., Fano,25 

(B23) 

In the factor in [ ], the term in A2 can be neglected ver
sus the term in A; in front of the last factor V we set 
(1- P) for symmetry reasons. The result is then 

- ~ "{A ~}" UO/1(s)=Ud(s)£ ",.(I-P)VUd(s) • 
"=1 ,,1 

(B24) 

The inverse transform is easily shown to be 
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Una(t) 

.. (A)" it loT. _v _ dT dT •.• 
-LJ "'. n .-1 

n=l "f 0 0 

X{VUa(T 1)}nl" ·rna· (B25) ----n-fold 

The n-fold nd requirement defines the symbol (nd) of 
(At6); the full result is hereby proven. 
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It would be extremely advantageous, from the point of view of the planning of experiments and of the 
testing of theoretical models by such experiments, if a representation of the reaction matrix could be 
found such that the differential cross section is given by the absolute value squared of a single amplitUde, 
and the simplest type of polarization experiments are expressed in terms of functions involving only two 
amplitudes each. It is shown that, within the framework of a set of plausible and very weak constraints, 
such a representation does not exist. 

I. INTRODUCTION 

Polarization experiments constitute a wealth of in
formation about particle reactions in high energy, 
nuclear, and atomic phYSiCS, and in fact provide indis
pensibly crucial data in the determination of the reac
tion matrix. As a result, much attention was devoted 
during the last two decades to the formulation of repre
sentations for the reaction matrices such that the rela
tionship of amplitudes and experimental observables is 
simple, thus facilitating the planning of experiments and 
the testing of theoretical models. Since in a given 
theoretical model it is relatively easy to calculate any 
set of amplitudes one chooses to use for the reaction 
matrix, the representations should be constructed pri
marily with the compatibility with experiments in mind. 

In terms of these experimental realities, priorities 
develop according to the degree of ease of the conven
tional experimental techniques, and not in terms of the 
information content of the particular experiment. Thus, 
for example, measuring differential cross sections 
(i. e., the observable in which no particle is polarized) 
is naturally always the first order of business, in spite 
of the fact that perhaps of all observables, this one has 
the least information content from the point of view of 
the exploration of the reaction matrix. Beyond the dif
ferential cross section, in general, the fewer particles 
that need to be simultaneously polarized in the experi
ment, the easier is the experiment judged to be. 

On the other hand, even apart from the lack of infor
mation content of the differential cross section, it is 
expressed in virtually all representations of the reac
tion matrix by a cumbersome form involving the sum 
of the squares of the absolute values of all of the reac
tion amplitudes. This makes it additionally useless in 
the experimental determination of the reaction 
amplitudes, 

For this reason it appears particularly attractive to 
try to find a representation for the reaction matrix in 
which the amplitudes are chosen as follows, The differ
ential cross section is expressed in terms of the abso
lute value squared of one single amplitude. The remain-

a)Work in part supported by the U. S. Energy Research and 
Development Administration. 

ing amplitudes are chosen in such a way that a set of 
simple experiments can be found which completely de
termines the reaction amplitudes through a set of sim
ple relations between the experimental observables and 
the amplitudes, so that each of these relations involves 
only two amplitudes. With the help of such relations, 
the algorithm of actually obtaining the values of the 
amplitudes from experimental measurements would be 
very easy and free of unnecessary ambiguities, and the 
propagation of the uncertainties could also be traced 
easily from the measurements to the amplitudes. 

The purpose of this note is to demonstrate that under 
a set of very plausible and weakly constraining assum
tions, such a dream-representation cannot be realized. 
Thus we will have to continue to consider the differen
tial cross section as an observable which either should 
not be included at all in a set aimed at determining com
pletely the reaction amplitudes, or must remain a mem
ber of a set which is cumbersome and possibly waste
ful of experiments in determining the amplitudes. Hence 
our result provides a certain kind of a lower limit for 
the SimpliCity of the set of experiments that can in fact 
determine the reaction amplitudes. 

II. THE THEOREM AND ITS PROOF 

The theorem we want to demonstrate can be stated as 
follows: It is impossible to construct a representation 
of a reaction matrix so that the differential cross sec
tion is given by the absolute value squared of a Single 
amplitude, and all the other observables in a set of ob
servables which fully determine the amplitudes are giv
en by functions of two amplitudes each. 

In the proof of the theorem, we will need to demon
strate the truth of this statement only for the two types 
of reactions 0 + 0 - 0 + 8 (where 8 is a boson) and 0 + 8! 
- 0 +82, where 8! and 82 are fermions, and the 8'S de
note both the name of the particles and the values of 
their spins which however can be chosen arbitrarily. To 
demonstrate the theorem for these two cases is suffi
cient because of the factorization theorem! which tells 
us that more general reactions can always be syn
thesized nondynamically out of reactions of the above 
types. This factorization theorem states that for all 
purposes which are independent of the particular dy
namics governing the particle reaction, a reaction 
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containing several particles with nonzero spin can be 
synthesized out of simpler reactions each of which 
contains only a fewer number of such particles with 
nonzero spins. Since in this paper we deal only with the 
relationship of the reaction matrix and the experimental 
observables, which relationship is indeed independent 
of dynamics, the proof of our theorem needs to be given 
only for such simpler, irreducible reactions, and it 
will then hold automatically also for composite 
reactions. 

Another simplification in the proof is brought about by 
the freedom we have in our choice of using, as a basis 
for comparison with the hypothetical new representa
tion, any of the "traditional" repres entations of the 
reaction matrix. Such a comparison is needed in form
ulating the constraint among the bilinear combinations 
("bicoms") of the amplitudes in the new representation. 
Utilizing this freedom of chOice, we will make use of 
the optimal type representation2 which enormously sim
plifies the relationship between observables and bicoms 
and hence makes the proof very much more transparent. 
Whether the optimal type representation does or does 
not conveniently match directly the experiments that 
can be simply carried out in the laboratory is of no 
relevance from this point of view, since if the proof of 
the theorem holds with an optimal representation, it 
also holds with any other representation that is linearly 
related to the optimal one, i. e., with any of the present
ly known and used representations. As will be seen, all 
of our arguments will be dimensional so linear trans
formations of the observables will not change our 
conclusions. 

It might be worth remarking that if we restricted our
selves to representations of the reaction matrix which 
are linearly connected to the "traditional" representa
tions, the theorem and its proof would be trivial. We 
want, however, to include a much broader class of 
representations of the reaction matrix, given by Eq. 
(7) below, thus making the theorem significant and at 
the same time the proof more subtle. 

III. PROOF OF THEOREM 

First let us consider 0 + 0 - 0 + s. Without imposing 
any symmetry, other than Lorentz or rotation invari
ance, this reaction is described by n "" 2s + 1 ampli
tudes, which we will call fl' f2' ••• ,fn' in an optimal 
representation. 2 In such a representation all the ob
servables are related to the bicoms by a matrix con
sisting only of submatrices along the diagonal, which, 
for irreducible reactions are of size 1 x 1 or 2 x 2. For 
reactions of the above type only 1 Xl' s appear (i. e. , 
the matrix is diagonal). 

There are a number of nonlinear relations among 
the n2 bicoms, that reduce the number of independent 
bicoms to 2n - 1. These constraints are of the following 
forms. Let 

where ij = 1,2, ... ,n and the R's and l's are now ob
servables; and let 

(1 ) 

61J""RL +IL. (2) 
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Then the constraints are of the form3 

(3) 

and 

arctan.!.JL + arctan .!.a. + arctan !..BL = O. 
R lj Rjk Rkl 

(4) 

There are (2) relations of type (3) and (3) of type (4), 
though they are not all independent. Using the type (3) 
relations we can obtain an important relation, 

(5) 

where the sum on the right involves (3) terms. The sum 
on the left is proportional to the differential cross sec
tion, denoted by a. 

Let us now define a new set of amplitudes, 
gl, g2' ..• ,gn' and assume that 

Then the other observables will be real or imaginary 
parts of functions of the set {g}, 

R/J=hjj({g}), I/j=kjj({g}). (7) 

We now assume that the h!i's and k/J's are only func
tions of two gl's each, L e., 

hij({g})=hij(gi> gil, k/j({g})=kij(g/,gj), 

and that these functions have no essential singularities 
in theg;'s. 

The dimensions of the amplitudes {f} are fixed by 
relatIOn (6) and so it follows from (1) that observables 
RiJ and Iii all have the dimensions of a. Then the h/i's 
and k;/s all have the dimensions of a as well. The 
amplitude gt has the same dimension as any of the 11 's 
(a1!2). Without loss of generality, therefore, we can as
sume that all the gi 's have the same dimension, gj - at /2. 

The functional forms of the hiJ's and ku's are thereby 
restricted to be real rational functions in the gl' s, viz. 

~ 

hjj(g/,R)= 6 cliP>g1gjP+ c • c• 
n, p= ... oO 

and (8) 
~ 

kjj(g/,gj)= 6 dljP>g1gjP+ c • c ., 
n.~-OO 

where diP> and d~iP> are arbitrary complex coefficients 
of dimension L 2- n- P (L meaning "length"). We require 
that 

(9) 

Next we turn to the constraint (4). Consider the sim
plest special case of the functions in (8). We have 

Then 

hu =L2-mU .... /igr U gj.ii + c. c., 

kij = iL2-n/rr/jg~jj gjrli + c. c. 

XL<mU+.jj>-<nu+r/i» , 

where g/ = I g/ I exp(ia j). 
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Because of the symmetry requirements (9) on the h' s 
and k's, we must have 

11Ilj=qlj and nlJ =riJo 

As a result, we have 

arctan 5.u.,' = arctan( jglj jgj j )niJ-miJ L2mjJ-2nu 
Iii 

x sin[n/J(a j - ail] ) 
cos[mjj(a l - aj)] . 

(12) 

(13) 

We now substitute (13) into (4), for some particular 
values of (i,j,k). Equation (4) must hold for any values 
of the amplitude. In particular, suppose that Igl 1 is 
varied. Then the invariance of (4) requires that the par
tial derivative with respect to Igj 1 of the left-hand side 
vanishes. Hence we have 

a !!..u.. a kki 
0= -a-I -I arctan I + -~-I -I arctan-h gl ~j u gl M 

_ hjJkji(nlj- nIij) + hkjkkj(nkl- mkl) 
- Igj 1 (hL + kL) Ig1 1 (h~i + k~l) 

(14) 

This must hold for any values of gj or gk' Furthermore, 
the numerator and the denominator of the first term are 
not of the same order in gj and cancellation of the de
pendence on gj cannot occur in general. Therefore, we 
must have 

n/ j =n1 i j, (I5) 

and similarly 

(16 ) 

With these relations we substitute back into (13) and ob
tain from (4) 

nl/(a l - a j ) +njk(a j - a k) +nk/(a k - a/)=O. (17) 

In order for this to hold for all a j ,1,k we must have 

(18) 

so hlJ and k jj are simply real and imaginary parts of 
(glgJ)". 

Then we consider Eq. (5). It is apparent that the 
right-hand side is a symmetric function of all of the 
gl's. But the left-hand side is just (";1) Igjl2. Thus Eqs. 
(4) and (5) cannot be satisfied by any nonzero function of 
the form specified in (10). 

Returning now to the study of constraints given in 
Eq. (4), we consider the next simplest case of the func
tions in (8); namely, 

(19) 

Now again requiring that the partial derivative with re
spect to Ig1 I of Eq. (4) be zero, leads, as before, to 
the conclusion that 

a b.L 
-0-1-1 arctan h ' 

gj Ii 
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is independent of Ig j I. So the numerator and denomi
nator must be the same order in Igj I. The powers of 
Ig j I in the denominator are 

2q I q + 111, q + q', q + m', 2 m, nJ + q', 111 + 111' , 

2q', q'+m', 2m', 2r, r+m, Y+Y', r+n', 2n, 

n +r', n +n', 2r', r' +n', 2n'. 

The numerator can be written as 

a a 
hlJ a Ig

j 
1 ku - kIJ algi 1 hij) (20) 

and therefore the powers of Igj I in the numerator will 
be 

q +r, q +n, q +r', q +n', ])I +n, 

III +r', 111 +n', q' +r', q' +n', Tn' +n'. (21) 

We will now show that for these two sets to be the same, 
we must have pairwise equality between the powers that 
appear in h lj and the powers that appear in klj' For 
this purpose, consider two sets of integers: 

i P-i n-k-p 
~~~ 

{a}=ajG2"'Gj al+j"'ap ap+j"'Gn_k 

{b}=bjbz,,·b j bj+j .. ·b. b.+j,,'b._1 
~~~ 

J .-j .-1-. 
~ 

overlapping 

bn- ,• l ••• bn 
~ 

I 

Between the two sets, we have an overlapping set of 
n - k - i =n -l- j quantities; that is, 

as sets. Which G is equal to which b is unknown and un
important. We see from the above that k + i =j + l. 

In each of these sets, some quantities are even (e) 
and some are odd (0), as indicated above. In particular, 
we see that among the nonoverlapping quantities i of the 
a's and j of the b's are even, and!? of the a's and l of 
the b' s are odd. 

We now form the table of sums of these quantities; 
i. e., a table that contains at a given place the sums of 
the two quantities which label the row and the column 
of that particular place. The result is given in Table I. 
We see that the table is symmetric around the main 
diagonal. The parity of the sums is indicated in the 
table. 

The sums are now ordered into two sets. Set I is 
{aT + as, bT + bs} while Set II is {aT + bJ. The table also 
shows which squares are in Set I, and which are in Set 
II, and which are in both sets. 

Now We explore the conditions under which Set I is 
identical to Set II. For this we can ignore the overlap 
set which is already common between the two sets. 

In each of the two remaining, nonoverlapping sets, we 
count up the number of even and the number of odd quan
tities, and then demand that the two numbers of the 
evens be the same, and the two numbers of the odds also 
be the same. We have 
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TABLE I. Table of the sums of the powers of g's in the numerator and denominator of Eq. (14). The letters e and 0 denote even 
and odd. The I and II refer to the two sum sets explained in the text 

i k .i I p-i n-k-p 
~ ,~ ~, 

e 0 e 

at"·, a i a n-· ·an-~l b(··bi 

at 

" e " e 0 

" " a i " 
an " ", 

0 0 e 

" " an_kt-l " 
b! " " e e 

.. 
0 

bi 

bi+! 

0 0 e 

b n-1+1 

b i+!a i >! 

e e 0 

b. ap 

b.+!ap+! 

0 0 e 

bn_1I/n-k 

Set I: Even: 1i(i + 1) +±ldl? + 1) +~j(j + 1) +1Z(1 + 1), 

Odd: il? + jl; 

Set II: Even: ij + 1<1, 

Odd: il +jk. 

e 

0 

e, 

" 
0 

e 

0 

In addition, we also have i + k =j + 1, as mentioned 
above. 

From the two numbers of odds we have immediately 
i = j, and then from i + k = j + I we get h = 1. Finally, 
from the two numbers of evens we obtain i + k = 0, and 
since i and k are positive integers, we must have i = k 
=0, and hence alsoj=I=O. We see, therefore, that 
the nonoverlapping sets are empty, and all a's and b's 
are in the overlapping set. 

" 

As a result, if the numerator and the denominator in 
Eqs. (20) and (21) are to have the same powers, the 
exponents must satisfy 

" 

(22) 

Any permutation of the right-hand sides produces the 
same result. 

Substituting these values of the exponents back into 
the derivative relations given by Eq. (14), we obtain in-

1374 J. Math. Phys .. Vol. 19. No.6. June 1978 

0 ~ ~ 
~ bi+!"··b. b.+t ••• bn_l 
bi+!"·· bn-I'! a i + 1*· .ap ap,!" .an-k 

li 0 e 0 

~ .. . .. 
e 0 e !, 
0 e 0 l; 

., 

"" 
l' 

i'e 0 e 

" "" 
"" lp-, 0 'e 0 

" " " ' "\ 
''''" 

!"_k_' e 0 e" 

" " " 

dependence of Igj I only if all the exponents are equaL 
Thus we have reduced this case to the simplest case. 

The reasoning used in this second simplest case can 
be applied to the functions of the general form in (9) to 
obtain the same result, that only terms in which all 
exponents are equal survive the constraints (4), and 
then (5) cannot be satisfied. 

This completes the proof for the reaction 0 + 0 - 0 
+s. 

Now we consider reactions 0 +SI - 0 +s2' In the opti
mal representation the matrix connecting the observa
bles to the bicoms contains both 1 x 1 and 2 x 2 sub
matrices along the diagonal. 2 

The single polarization measurements can be con
structed out of the 1 x 1 terms only, as can be seen in 
Table I of Ref. 1. It can also be seen from this table, 
combined with the rules given in Ref. 4, that the ob
servables belonging to the 1 xl's suffice to determine 
the amplitudes completely. Therefore, we need only 
consider the observables belonging to the 1 Xl sub
matrices, because if a set of observables is complete 
in one representation, it is complete in all other repre
sentations. Hence these reactions are in no way differ
ent from the preceding reactions, and again no solution 
of the desired form can be obtained. 
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In conclusion, a representation of the amplitudes, in 
which the differential cross section completely deter
mines the magnitude of a single amplitude, along with 
the constraint that single polarization observables be 
functions of pairs of amplitudes, can not be constructed. 
The impossibility of such a representation is a result 
of the strong restrictions imposed on any representation 
by the nonlinear constraint equations [(3), (4), and (5)] 
among the observables, as expressed in the optimal 
choice of those observables. 
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The charged Kerr-Tomimatsu-Sato family of solutions with arbitrary integer distortion parameter I) for 
gravitational fields of spinning masses is presented. The Bonnor-Misra-Pandey-Srivastava
Tripathi-Wang family of solutions is also referred to. 

PACS numbers: 04.20.Jb 

1. CHARGED SOLUTIONS 

Of interest recently has been the problem of finding 
the exact solutions of axisymmetric Einstein-Maxwell 
field equations, 1-10 The purpose of the present paper is 
to present the charged Kerr-Tomimatsu-Sato family 
of spinning mass solutions for arbitrary integer dis
tortion parameter 0. It was shown that the Kerr l1 and 
the three Tomimatsu-Sato1Z spinning mass solutions 
can be written in a closed form13 with arbitrary posi
tive integer distortion pa.rameter ° and that by direct 
substitution this closed form does satisfy14 the equations 
on the first order intermediate integrals of the second 
order Ernst equations. 15 We have not yet succeeded in 
showinr: directly that this closed form 13 satisfies the 
Ernst equation. 15 

Now we have four parameters, i. e., the mass /J1, the 
angular momentum J = 1J12qa = mCi., the electric charge 
e2 = /11 2 [ A [2, and the distortion parameter 0. 

The family of solutions is of the form 

ds z = r1[eZr (dz Z +dpZ) + p2 dipzl-f(dt _ w dip)2, (1) 

with 

and 

f=A/B, 

w=- 2mqbC/A, 

exp2y=A/pZ6(a _ b)6Z, 

A =F(oZ), 

B =A + (2/a)H + {1 + (1/aZ
)} G, 

6 6 

C = 6 6 a1
"" br

-
1
{_ pxg(o, r, r') 

T=l r' =1 

-1 {a + (1/a)}h(0,r,r')}F(oZ -r), 

and of the form 

A 4 =A(aH +G)/aZB, 

Af = - V/aB = - >'SG/2, 

aA 3 aA 4 BKa aA3 
-w +--

ay - ay A ax' 

and 

A3 = WA4 + (AK/2aZ){aQ +R - (o/pq)}, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9 ) 

(10) 

[see Eqs. (21) and (22) for Q and R], (11) 

where A3 and A4 are the <p and t component of the electro
magnetic 4-potential, respectively. We shall follow the 

notation of Ref. 13 unless otherwise noted. We define 

a2+!A!Z=1, Ci.=mqa, ande=11I!A!. 

We choose the unit of length as K=mpa/o, i. e., 

P=K(xZ_1)1I2(1_y2)1!2 and Z=KXY, 

(12) 

(13) 

The complex scalar electromagnetic potentia14 <I> =A4 
+ iAf and the twist potential SG are 

(14) 

When e = O( [ A [ = 0 and a = 1) the metric given in Eqs. 
(1)- (7) satisfies the vacuum Einstein equations. 13 

2. DERIVATION OF SOLUTIONS 

It is straightforward to obtain Eqs. (2), (5), (6), (8), 
(9), and (14) from the procedure Ernst4 has formulated. 
We shall derive Eqs. (3), (4), (7), (10), and (11) in 
this section. From Eq. (11) of Ref. 4 we obtain 

a oW =3J!,; [{<A + 2G) +(.!. +a)H}2!.. ax A a ay 

-Ia~! {<A+2G)+(~+a)H}J (15) 

and 

(16) 

(17) 

(18) 

(19) 

(20) 

(21 ) 

and 

Xh(o, r, r')F(02 - r). (22) 

By making use of Eqs. (17)- (22) Eqs. (15) and (16) may 
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now be written in the form 

a~ =_ K{oQ +1..(1.. +a) OR} oX ax 2 a ox 

and 

a~; =-K{~; +i(~+a)~~}, 
which give 

aw = - K[ Q + (l/2){(l/a) + a}R] + const. (23) 

The constant in Eq. (23) is determined to be (a/2){(l/ 
a) + a} (m/q) so as to get w - 0 when q - O. Then we get 
Eqs. (3) and (7) with the help of Eq. (5) of the former 
of Ref. 13. 

Next, the metric function y satisfies 

ay 1 oA {} oy 1 oA r} 
2 oa = A aa - a _ band 2 ab;;=: .if aa + a - b ' 

also in the charged version, from which we get 

2y = InA - r} In(a - b) + const (24) 

The constant in Eq. (24) is determined to be - Inp20 so 
as to get y - 0, when x - co. Thus we obtain Eq. (4). 
From Eq. (8) of Ref. 4 we obtain Eqs. (10) and (11) 
with the help of Eqs. (17)-(20). 

The present solutions may now be written in the 
Boyer-Lindquist form 

ds2 =~dr2 +,£2d82 + Bt:. sin
2e dq} 

t:. A 

_~ (dt _ 2Q!C sin2e d )2 
B a2A cp, 

where 

r= (mpa/O)x +m, cosB =y, p =t:.1/2 sinB, 

z = (r - m) cosB, t:. = (r _ m)2 _ {(m2 _ Q!2 _ e2)/B2} 

= (mpa/o)2a , 

Bm2fia26 (B2t:. )1...0
2 

,£2= +sin28 r}{mZ _ Q!z _ ezy-i mZ _ Q!z _ e2 , 

and 

(mpa)2 = m2 _ Q!2 _ e2• 

(25) 

The area of the surface x = 1 (event horizon for odd 0) 
is 

3. BONNOR-MPST-WANG FAMILY OF 
SOLUTIONS 

In the present section we shall present the Bonnor2-
Misra- Pandey-Srivastava- Tripathi5-Wang 1 family 
of polarized charge solutions to Einstein-Maxwell 
equations for arbitrary integer distortion parameter o. 
It should be stressed that the K-TS family of solutions 
and the B-MPST-W family of solutions are mathe
matically identical, though of course physically quite 
different. One interprets the parameter q as repre
senting the angular momentum J=m2q for the K-TS 
family of solutions and the dipole moment P = - 2m2q 
for the B-MPST-W family of solutions. 
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From the vacuum Einstein equations R,.v=O with the 
line element given in Eq. (1) one obtains the following 
set of equations: 

t:. _.!.(3I.)2_.!./2[.)2 +f3(aw)2+f3(oW~ =0 
f / az f \"ap pr az pr apJ ' 

(26) 

t:.w-! ow +! of oW +! of ow =0 
p op / oz oz / op op , 

(27) 

kL--!J.r Y.. Y.. +f2 oW ow -0 
OZ 2f OZ op 2p oz op - , 

(28) 

1 ('0/)2 /2 ('Ow)2 
t:.y +2J2 OZ + 2? ap =0, (29) 

and 

2 0')/ 1 (~)2 f2 ('Ow)2 
t:.y--p ap +2j'l op +2;)2" az =0, (30) 

where 

02 02 1 0 
t:.=~+~+--;-. 

uZ up P up 

The twist potential n is defined by15 

oW =~ ~ and ~=_~ on. 
oz / op op f oz 

(31) 

Equations (26) and (31) are the Ernst equation. 15 

Now we discuss static, polarized-charged, axisym
metric, asymptotically flat, and exact solutions to the 
Einstein-Maxwell equations G,._ = 81fT ,.v under condi
tions where space is empty of everything except a 
source-free electromagnetic field 

G"v =R"v - % g,.v R = 81fT "V' 

41fT,. v =F "",g",8Fvs - t g"vF"'BF"'s. 

Assume that, this is a key point, the line element for 
the present problem may now be written in the form 

ds 2 =F2[e!!Y(dz2 +dp2) + p2 dcp2]_ f2 dt2, (32) 

where metric functions f and ')/ are given in Eqs. (2) 
and (4) under the constraint a = 1, respectively. As
sume again that, this is another key pOint, the function 
w given in Eq. (3) under a = 1, now not being the metric 
function, may now define the nonvanishing electromag
netic field tensors in the form 

F f!:... ow . {3 on . {3 
t =- -SIn =-Sln 
• P op oz ' 

(33) 

(34) 

(35) 

and 

aw p an 
Fl/>. =az cos{3 = J'l ap cos{3, (36) 

where {3 is an arbitrary angle associated with a duality 
rotation. 16 

It follows, as we defined them so as to do, that the 
Einstein curvature tensor G,.v and the electromagnetic 
field tensor F,.v given in Eqs. (33)-(36) satisfy the 
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Einstein-Maxwell equations with the help of Eqs. (26), 
(28), (29), (30), and (31). Therefore the B-MPST-W 
family of solutions with arbitrary distortion parameter 
o is given by Eqs. (32)- (36) with Eqs. (2)- (7) under 
the constraint a = 1. 

The asymptotic form of \2 and ware \2"" - 2m 2q cosel 
r2 and w"" - 211l 2q sin2elr, from which one interprets 
p = - 2l1i'2q as the dipole moment. 

ACKNOWLEDGMENT 

The author would like to thank Professor S. Hori 
for many interesting discussions. 

IE. T. Newman, E. Couch, K. Chinapared, A. Exton, A. 
Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965), 

2W.B. Bonnor, Z. Physik 190, 444 (19G6). 

1378 J. Math Phys., Vol. 19, No.6, June 1978 

3B. Carter, Phys. Rev. 174, 1559 (1968). 
4F.J. Ernst, Phys. Rev. 168, 1415 (1968), 
5R.M. Misra, D.B. Pandey, D.C. Srivastava, and S.N. 
Tripathi, Phys. Rev. D 7, 1587 (1973), 

Gp.J. Ernst, Phys. Rev. D 7, 2520 (1973). 
7M. Y. Wang, Phys. Rev. D 9, 1835 (1974). 
8K. e. Das and S. Banerji, Phys. Lett. A 50, 409 (1975). 
Be. Reina and A. Treves, J. Math. Phys. 16, 834 (1975). 

lOG. Onengiit and M. Serdaroglu, Nuovo eimento B 27, 213 
(1975). 

11R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963). 
12A. Tomimatsu and H. Sato, Phys. Rev. Lett. 29, 1344 

(1972); and Prog. Theor. Phys. 50, 95 (1973). 
13M. Yamazaki, J. Math. Phys. 18, 2502 (1977); and Prog. 

Theor. Phys. 57, 1951 (1977). 
14S. Hori (to be published). 
15F.J. Ernst, Phys. Rev. 167, 1175 (1968). 
16e.w. Misner and J.A. Wheeler, Ann. Phys. (N.Y.) 2,525 

(1957), 

Masatoshi Yamazaki 1378 



                                                                                                                                    

Simple analytic expressions for the Coulomb off-shell Jost 
functions 

H. van Haeringen 

Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands 
(Received IS December 1977) 

The off-shell lost functions have been introduced by Fuda and Whiting. We give simple closed expressions 
for fc,J( k,q), the off-shell Jost functions for the Coulomb potential, and we derive their connection with 
the ordinary Coulomb Jost functions fo( k). 

The concept of a Jose function is well known in the 
theory of nonrelativistic two-body scattering. 2 Fuda 
and Whiting3 have introduced an off-shell generaliza
tion of the Jost function Il(k), which they call the off
shell Jost function II(k, q). This function is closely 
related to the half-off-shell T matrix TI(k, q;k2) which 
plays such an important role in few-body calculations. 

For a short-range potential the on-shell limit for 
q - k of I,(k, q) exists and is equal to the ordinary Jost 
function. This is not true for long-range potentials 
such as the Coulomb potential. Recently we have derived 
the l = ° Coulomb off-shell Jost function and studied 
its connection with the Hulthen off-shell Jost function. 4 

In this paper we give an exact closed expression for 
the Coulomb off-shell Jost function f c l(k, q) for all l. 
It follows from this expression that I; I(k, q) is singu
lar at q=k. Below we shall prove that [see Eq. (40.7) 
of Ref. 4] 

limwlc l(k,q)=lc l(k), l=0,1,2, ... , 
q"k t , 

(1 ) 

with 

w '" (q - k) ir exp(1fY /2) 
q + k r(1 +iy) , (2) 

where I' is Sommerfeld's parameter. 

We expect to be able to prove in the near future that 
a similar relation holds for the off-shell Jost function 
IC>S,I(k, q) for a potential which is the sum of the 
Coulomb potential V c and an arbitrary short-range 
potential Vs , namely 

limw!c>s l(k, q)=!c>s I(k), 
(J'" ~, , 

(3) 

with the same w of Eq. (2). 

Our starting point is an integral representation ob
tained by Fuda [Ref. 5, Eq. (25)] which we rewrite as 
follows, 

!c,,(k,q)=I+~7Tq(q/k)lo(qn )Vc,l)kl+)c!c)k). (4) 

Here Ikl+>c is the (outgoing) Coulomb scattering 
state and 

fC,I(k) = exp(7TY /2)r(l + l)/r(l + 1 + iy) (5) 

is the Coulomb Jost function. Furthermore (see Ref. 
6), 

o( qZ+ I r) = (_)1 (r I qZt )0 = (2/7T )l/2r l h/»(qr). 

By applying a number of relations existing between 
various special functions we have been able to derive 
the following exact expression, 

o(qH )Vc,l)kl+)c=c(kl-)Vc"lqlt)o 

= [2iY/(7Tq)]!c\(k)r(Z + 1 ) 
I ' 

x 6 [r(l + m + 1 )!r(m + 1) l(k/ q)mZ-I-m 
m::O 

[ 
rem -iy) 

x r(l+l+m)r(l+l-iy) 

X 2F 1(-m-l, iy-l; l+iy-m; l-z) 

+ (1 )",-i> r(iy - m) 
-z r(l+l-m)r(l+l+iy) 

x 2F 1 (In - I, - iy - l; 1 - iy + n/; 1 - z) J. (6 ) 

with z = 2k/(q + k). Note that the second term between 
the square brackets is, apart from the factor (1 - Z) .. -ir, 
just equal to the first term if one replaces m by -n/ 

and y by -yo 

We point out that both hypergeometric series ~l 
occurring in Eq. (6) are terminating ones, Although 
Eq. (6) looks somewhat complicated, it has the impor
tant property that the branch-cut Singularity, which 
is contained in the factor (1- ztir , can be split off. 
This has the advantage of revealing the analytic struc
ture of the quantity o( ql t IV c,ll k1 + > c. 

With the help of some further manipulations we have 
reduced Eq. (6) to the following equivalent, more 
convenient form, 

where x=q/k, u=(q2+k2)/(2qkl and we have used the 
abbreviation, 

'" (I + iY) -1(1_ iy )-1 
e lr l I 

_ r 2(Z+1)r(l+iy)r(1-iy) 
- r(Z+l+iy)r(l+l-iy) 

I 
n (1 +y2/n2)-1. 

n=l 

(7) 

(8) 

Furthermore, p/-ir,ir) is Jacobi's polynomial and Al 
is a certain polynomial 01 two variables. Its degree is, 
in both variables separately, equal to I and it has real 
coefficients. For 1= 0,1, and 2 we have obtained, 

AO(X2;y2)= 1, 

A1(X2;y2) =~(X2 + 1 + 2y 2), 

A2(r;y2) = H3x4 + 2x2(1 + 1'2) + 3 + 2y2( 4 + y2) l. 
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For general values of l we have proved the following 
important properties, 

A,(1;y2)=Cj;, (9) 

which gives the on-shell value, and for the case of 
vanishing potential strength, 

A,(x2 ;0) =x'p,(u), 

where PI is Legendre's polynomial. In view of Eqs. (4) 
and (7) the Coulomb off-shell Jost function is given by 

f c)k, q) = 1 + e,y [_A,(X2;yZ) + x'(: ~: YY p ,<-ir, iY)(U)]. 

(10) 

The proof of Eq. (1) now follows from Eqs. (9) and (10) 
and the equalities 

p,<-ir'iY)(1)=e~iY) t 
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Topological cohesion 
K. Cahill and N. Stoltzfus 

Departments of Mathematics and of Physics & Astronomy, Louisiana State University, Baton Rouge, 
Louisiana 70803 
(Received 19 December 1977) 

It is shown that suitably regular, finite-energy solutions of the Yang-Mills-Higgs equations are 
nondissipative whenever their initial data are topologically significant. 

It is well known that under certain conditions topolog
ically stable field configurations can arise as regular 
solutions of the classical field equations that describe 
the locally gauge-invariant interaction of scalar Higgs 
mesons with vector Yang-Mills mesons. 1 The purpose 
of the present paper is to show that under very general 
conditions every suitably regular, finite-energy solu
tion of the field equations for such a system is non
dissipative provided that its initial data are topological
ly significant. This effect, which we have called topo
logical cohesion, means that topological solitons com
monly occur in such theories. It also suggests that 
they may exhibit some of the resiliency associated with 
the stricter meaning of the term soliton. 2 

The interaction of the scalar mesons q:,i with the vec
tor mesons A~ will be assumed to be described by a 
Lagrange density L that is invariant, in the usual Yang
Mills way, under the local action of a compact Lie 
group G. We shall not need the explicit form of L in 
what follows. It will be sufficient to know that the po
tential or self-interaction V(q:,) of the Higgs mesons is 
a continuous, nonnegative, G-invariant function of the 
q:,i and that the points dJ on which V(q:,) assumes its 
minimum value, zero, form a smooth compact mani
fold M. It will also be assumed that the Hamilton den
sity H derived from L is bounded below by V, as is 
usually the case, and that V(q:,) itself is bounded below 
by some fixed positive number for sufficiently large 
1lq:,11, 

Since the vacuum manifold }\II is smooth, it follows 3 

that there exists a (G-invariant) tubular neighborhood 
N(M) ~ M and a continuous map r from N(M) into M that 
is the identity on 11,1 itself, i. e., for q:, in M, r(</J) = </J. 
Because N(M) is open, its complement is closed; and 
so on it the continuous function V(ep), which avoids zero 
for large II q:,1I, is bounded below by some fixed positive 
number E. Suppose now that <j:Ji(x, t) and A~ (x, t) form a 
solution of the field equations with finite energy E 
= f d"xH(x, t). Then since H> V ~ E on the complement of 
N( NI), the fields q:,/ (x, 1) must for all times t lie inside 
N(M) for all points x that lie outside a region P(t) whose 
volume 11 (P(t)) is never larger than E/E. If the region 
P(t) does not have unbounded horns or whiskers, then it 
can be put inside a sphere of radius R (t) centered about 
the origin. In this paper we use the term suitably reg
ular to denote a finite- energy solution q:,i (x, t) and 
A ~(x, t) that is continuous as a function of x and t and for 
which the radius R(t) is bounded on compact time inter
vals, It is likely4 that reasonable initial data, cpi(X, 0), 
~(x, 0) and ¢i(X, 0), A~(x, 0), lead to solutions that are 
suitably regular for positive t, at least for potentials 
V(CP) that are physically admissible. 

If now cpi (x, t) is suitably regular, then the point 
cp(px,t), where x=x/llxll, lies in the neighborhood N(M) 

for all p ~ R(t) and t? 0. The function r(cp(px, t)) is then, 
for such fixed 1 and p, a continuous map from the sphere 
5"-1 into Ai and therefore falls into one of the homotopy 
classes of [5"..1, NI]. The function r(cp (px, t), for fixed t, 
is also a continuous map from Sn- 1 x[R(t), DO) into M. 

Thus it is a homotopy between the maps r(cp(px, t» and 
r(cp (p'x, t» for all pairs p, p' ?oR(t). The homotopy 
class of cp therefore is independent of p. It is also in
dependent of t, since for fixed p, greater than the upper 
bound of R(t) on the compact interval [O,t], the function 
r(cp(Px,t» is a continuous map from Sn- 1 x[0,tj into M, 

which makes it a homotopy between r(cp(px,O» and 
r(cp(px,t». In this paper a suitably regular, finite-en
ergy solution is said to possess toPologicall'y signific{lnt 
initial data if this homotopy class [ep 1 is nontrivial. For 
such solutions, the name of the class [cp 1 may be viewed 
as a conserved topological charge. 

Suppose now that q:, (x, t), A" (x, t) is a suitably regular, 
finite-energy solution with topologically significant 
initial data. Then for all I> 0, there is some point 
x(t) for which cp (x(t), t) lies outside the tubular neighbor
hood N(M) 0 For if at some time I> 0, ep(x(t),tl were in 
NevI) for all x in Rn, then the function r(cp(px,t)) for 
that value of t would be a continuous map from 
sn-1 X [0, DO) into M. It would then be a homotopy between 
r(cp(O, 1) which is in the trivial class and r(cp(p,y, t)) 
which or p? R (0 is in [q:, 1 assumed nontrivial. This con
tradiction means that for all I;> ° there is some point 
x(t) for which cp(x(t), I) lies outside N(M). But at that 
point x(t) the energy density H(x(t),t» V(q:,(x(t),t))? E 

since V is bounded below by f on the complement of 
N(M). Every suitably regular, finite-energy solution 
with topologically significant initial data is therefore 
nondissipative. 
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Simple proof of no position operator for quanta with zero 
mass and nonzero helicity 

Thomas F. Jordan 

Department of Physics, University of Minnesota, Duluth. Duluth, Minnesota 55812 a) 

and Department of Physics and Astronomy. University of Rochester. Rochester, New York 14621') 
(Received 18 May 1977) 

That there is no Newton-Wigner position operator in an irreducible unitary representation of the 
Poincare group for zero mass and either variable helicity or fixed nonzero helicity is proved formally using 
familiar operator algebra and transformations and bringing out relevant properties of operators in the 
representation. In the case of fixed helicity, a pair of irreducible representations with opposite helicities is 
considered, so the parity operator is defined; then the correct parity transformation is assumed for the 
position operator. 

1. INTRODUCTION 

Although it is well known that there is no Newton
Wigner position operator in an irreducible unitary rep
resentation of the Poincare group for zero mass and 
nonzero helicity, 1-3 the rigorous proof uses elegant 
mathematical methods not familiar to most physicists. 2 

Here we give a formal proof using operator algebra and 
transformations familiar in ordinary quantum me
chanics and bringing out relevant properties of oper
ators in the representations. 

We consider irreducible unitary representations of 
the POincare group for zero mass and both fixed helici
ty, that is "discrete spin," and variable helicity, that 
is "continuous spin,"4 In the case of fixed helicity we 
consider a pair of irreducible representations with 
opposite helicities, as is usual for photons, so the 
parity operator is defined. Then we require the correct 
parity transformation for the position operator. 

In all cases we require the position operator to trans
form correctly for space translations, rotations, and 
time reversal. We assume the position operator is 
Hermitian, and we assume its components commute with 
each other. 

2. GENERATORS 

Let P denote the generator for space translations. 
We consider representations for zero mass and posi
tive energy so the Hamiltonian, the generator for time 
translations, is 

(2.1) 

For the rotation and Lorentz-transformation generators 
J and K we use the form written by Lomont and Moses. 5 

They take the little group to be the subgroup of the 
Lorentz group that leaves unit momentum in the x direc
tion unchanged. For the representation of the little 
group, the two-dimensional Euclidean group, they have 
generators T2 and T3 which commute with each other, 
and S, the helicity, whose commutation relations with 
T z and T 3 are those of a generator for rotations around 
the x axis with the y and z components of a vector. The 
irreducible unitary representation of the Poincare 

a) Permanent. 
b) 197G-77. 

group is spanned by eigenkets I p, s) of P and S. In a 
representation with variable helicity, the eigenvalues 
of S are either all the integers s = 0, ± 1, ± 2, . 0 • for 
a "single-valued" representation or all the half-integers 
s =:c ± ~, ± }, ••• for a "double-valued" representation, 
and 

(T3± iT2 ) [p, s) =r[ p, s:f 1), (202) 

where r is a positive number characteristic of the 
representation. In a representation with fixed helicity, 
S has just a single integer or half -integer value, and 
T2 , T3 are zero Let 

M =: (1 ,l'2- (H + P l ), P y (H + PI» 

=0 (Hx+P) (H+pox), 

N = (O,P 3 i(H + PI)' - P/(H + P l » 

c'= P X X (H + P 0 ~- ) , 

(2.3) 

(2.4) 

E2 "" (P3 H, P2 P/H(H + PJ, - p~ H(H + PI) - P I R), 

(2.5) 

E3 = (- P2 'H, P;iH(H + PI) + PI H, - P2 P 3 • H(H + PI»' 

(206) 

The rotation and Lorentz-transformation generators 
are" 

J =QxP +MS, 

K= ~ (HQ + QH) + NS - W l (E3 Tz - EzT3 ). 

(2.7) 

(2.8) 

Here Q is i'V on momentum-space wavefunctions d(p) 
with the ordinary inner product defined with the nonin
variant Jd 3p. 

The vectors E2 , E 3 , and P= p, H are orthonormal and 
p x E2 is E3 , etc. The Pauli-Lubanski 4-vector is 

Wo=P oJ =HS, 

W =: H J + P x K = P S + E2 T 2 + E 3 1'3' 

(2.9) 

(2.10) 

We also use time reversal. To fit in with the other 
transformations, time reversal must be represented by 
an antiunitary anti linear operator that commutes with 
Hand K and anticommutes with P and J. Therefore, 
it commutes with Wa and 5 and anticommutes with W. 

3. FIXED HELICITY 

First we look [or a position operator in an irreducible 
representation for zero mass and fixed helicity. For 
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zero helicity the Newton-Wigner position operator is 
Q. It transforms as a position operator should for 
translations, rotations, and time reversal. It is 
Hermitian, and its components commute with each 
other. We can easily see there is no other position 
operator. Suppose R is a position operator, Let 

R=Q+F. 

Then F must be Hermitian, invariant for translations, 
a vector for rotations, and invariant for time reversal. 
Since F commutes with P, and P is a complete set of 
commuting operators, F must be a function of P. Since 
F is a vector for rotations, it must be the form 

F = j{p2 )P 

with some real function j of p2. Then time reversal 
changes F to - F so, since it is invariant for time 
reversal, F must be zeroo 

Next we consider an irreducible representation for 
fixed nonzero helicity. The operator 

WI(K-iP/2H)=Q +WINS 

is Hermitian and transforms as a position operator 
should for translations, rotations, and time reversal 
(because H- I NS is invariant for translations, K and 
iP are vectors for rotations and invariant for time 
reversal, and H is invariant for rotations and time 
reversal). Suppose R is a position operator. Let 

R=Q+H-INS + F. 

Then F must be Hermitian, invariant for translations, 
a vector for rotations, and invariant for lime reversal. 
As above, this implies that F is zero. Then the com
ponents of R do not commute. In fact 

(Rj ,Rk ] = - iE}kIPl W
3S 0 

Thus there is no position operator in an irreducible 
unitary representation of the Poincare group for zero 
mass and fixed nonzero helicity. 

Now we consider two irreducible representations with 
opposite helicities. We look for a position operator on 
the space spanned by eigenkets I p, A) of P and helicity 
for two helicity values A = ± I s loIn place of S we have 
the helicity operator I s I ~3' where 

~ 3/ p, A) = (A / / s / ) / p, A) . 

We also use operators:::; 1 and :S2 defined by 

:::; I I p, A) = I p, - A) , 

L:2 == - fZ3~l· 

(3.1) 

(3.2) 

(3.3) 

Parity and time-reversal operators that fit in with 
the other transformations are of the formS 

plp,A)=W(A)*exp(-itjJ(P»cl/-p, -A), 

Tip, A) = 1)(,1.)* exp(i¢(p)A] I - p, A), 

where w(A) and 1)(A) are phase factors depending on A 
and ¢(p) is an angle depending on p with 

Then 
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PT /p, A) =w(A)*1)(Jd* Ip, - A), 

T pip, A) = W (A)1) (- A) * I p, - A) . 

These differ by a factor 

w(A)w(A)1)(A)1)(- A)* 

This factor must be the same for A =± I s I because PT 
and T P, which rep res ent the same transformation of 
space-time coordinates, can differ only by a phase 
factor, Therefore 

The last is the factor by which 

:SIPT Ip, A) =w(A)*1)(A)* Ip, A) 

differs from 

PT:::; 1 I p,;\) = W (- A)*I](- A)* I p, A), 

and this factor is the same for A = ± i s I so 

~IPT=±PT:::;I' 

Since PT anticommutes with i and with 

L3=poJHlsl, 

it follows from the definition (3.3) of ~2 that PT either 
commutes with both ~I and :::;2 or anticommutes with 
both ~, and ~2' 

The operator 

H-'(K - iP2H) =Q+ W'NI s 1:::;3 

is Hermitian and transforms as a position operator 
should for translations, rotations, time reversal, and 
parity (because parity changes both P and K but not H). 
Suppose R is a position operator and let 

(3.4) 

Then D must be Hermitian, invariant for translations, 
a vector for rotations, and invariant for time reversal. 
Now we assume the position operator also transforms 
correctly for parity, which implies that D anticom
mutes with P. Then D anticommutes with PT. 

Since D is Hermitian and translation-invariant, it 
must be of the form 

D = A + B2.; 1 + c:::; 2 + F ~ 3 (3.5) 

with A, B, C, F real functions of p. 

Since D is also a vector for rotations, it must satisfy 
the cOlUmutation relation 

(1 i)[D,poJj=PXD. 

Substituting His l:s 3 for po J and the form (3.5) for D, 
we get 

2HlsIC=PXB, -2Hls1B =pxC (3,6) 

from the coefficients Of:::;, and :::;2' This implies 

- (21s 1 j2B=W2 px(PXB)= - B 

so we see Band C are zero if Is I is not ~o 
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In any case, since PT anticommutes with D and 63 , 

and either commutes with both '0 1 and 62 or anticom
mutes with both 61 and L: 2 , it either anticommutes with 
bQtn Band C or commutes with both Band C, which 
means Band C are either both odd or both even as 
functions of P. Then Eqs" (3.6) imply Band Care 
zero. 

With its ~1,'02 terms eliminated, R is reduced to a 
separate operator on each of the two irreducible rep
resentations, We have already showed there are no 
such operators. Thus there is no position operator for 
two irreducible unitary representations of the Poincare 
group with zero mass and opposite fixed helicities. 

4. VARIABLE HEllelTY 

Finally we look [or a position operator R in an ir
r<i!ducibLe representation for zero mass and variable 
helicity. The operator 

H-' (K - iP '2H) = Q + H-1NS -lI"2(E3 T2 - E2T 3 ) 

is Hermitian and transforms as a position operator 
should for translations, rotations, and time reversal 
(as before), Let 

(4.1) 

Then D must be Hermitian, lnvariant for translations, 
a vector for rotations, and invariant for time reversal. 

Let 

D =AP + B2E2 + B3E3' 

From this and 

pxW = E 3 Tz - E2 Ta, 

- px CPx W) = E2T2 + E3T3 

it follows that 

D'P=A, DoPXW=-B2 T 3 +B3 T z , 

- D v px (p XW) = B2T2 + BaT30 

(4.2) 

(4.3) 

These are translation-invariant rotational scalars. They 
commute with P and J, From Eq. (2,9) we see they 
commute with S. Then they are functions of P and 5, 
because P and 5 are a complete set of commuting op-
erators. Thus we have 

(B3± iB2 )(T3'f iT2 ) I p, s) 

= [B2 T2 + B3 T3 'f i(- B2 1'3 + B3 1'2)] \ p, s) 

=/~(p,S)lp,8) 

with some functionsf.. From Eqs. (2.2) it follows that 

133 ± iBz = (1 rZ)I~ (P, -S)(Ts ± i1'2 ) 

or 

so 

Hz = (1/2r)(r~ +fJT2 - (i/2r)\t~ -fJT3 , 

133= (ii2y2)(f+ - ;J1'2 + (1/2r'Xf+ +01'3 

with A, 13, C functions of P and S. 
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(4.5) 

For D to be a vector for rotations, A,B, and C must 
be rotational scalars, because they multiply rotational 
vectors that are orthogonal, as we can see from Eqs. 
(4.3) and (4.4). From Eq. (2.9) we see 5 is a rotational 
scalar. Therefore, A,lJ,C must be functions of p 2 and 
S. 

For D to be unchanged by time reversal, A must be 
imaginary and 13, Creal, because P is changed, p 2 is 
not, and 5 is not, as we can see from Eq, (2.9), and 
iB multiplies a vector that is changed and C a vector 
that is not, as we can see from Eqs, (4.3), (4.4), and 
(2.10) . 

For D to be Hermitian, A must be zero and E, C 
must satisfy 

-iTzB- T 3C;=iBTz -CT3 • 

- iT3B + T 2 C = iBT3 + CT2 , 

which are equivalent to the commutator-anticommutator 
relations 

{B, 1'3± iT21=± [e, T3±iT21. 

From Eqs. (2.2) we can see this implies 

13 (s - 1) + B (s) = C (8 - 1) - e (8) , 

13(s+1)+B(s)= C(8)-C(5+1) (4.6} 

for the functions of the eigenvalues 5 that define Band 
C as functions of S. It [oHows that 

H(s -1) - 13(8 + 1) = C(s -1) + C(s +1) - 2C(s), 

C(s-1)-C(s+1)=[3(s-1)+13(s+1)+213(8). (4.7) 

The dependence of 13 and C on P is suppressed here be
cause it plays no role. 

From Eqs. (2.2) we see that 

(4.8) 

From Eqs. (2.2) also it follows 7 that for a function / 
of P and S 

fI(s J , '1'21 = H 2/(5) - 1(5 + 1) - r(S - 1) 1 T 2 

+ (i 2)[f(S + 1) -/(S -1) ]Tg , 

[reS), 1'3] = :i:[2f(5) - I(S + 1}- f(S - 1)1T3 

- (i 2)[/(5 + 1) -/(5 -1) ]T2. (4.9) 

Again the P dependence is suppressed because it pLays 
no role. We have 

R = Q + H-1NS+ iB(EzT 2 + E 3 T l ) + (C - W 2 )(EaT z - E2 1'3)' 

Let 

[Rj,Rkl=iEjkP" 

USing Eqs. (4.7)-(4.9), we find 

G = i2B' H(E g T 2 - E z1'3) - 2(C - Jr Z
)' H(Ez 1'z + E3 T3) 

+ f13R-"(E3Tz - Ez Tg) - (C - H- 2 )R-"(Ez1'2 + E31'3) 

+PH-l[_W 2S+2r2B(C_W2)j, (4.10) 

where' denotes a derivative with respect to p2. Since 
we assume the different components of R cOlllmute with 
each other, G must be zero. The terms involving 
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E2T2 + E3T3 and E3T2 - E2T3 must be separately zero 
because, as we already noted, these vectors are 
orthogonal to each other and to P. This determines the 
dependence of Band C _If'2 on p 2

; they must be pro
portional to H"1. Let 

B=r-1H"lb(S), C_H"2==r- 1W 1 c(S). 

For G to be zero we must have 

2b(S)c(S) ==S (4.11) 

or 

(4.12) 

for the functions of the eigenvalues s that define band 
c as functions of S. Combining Eqs. (4.6) and (4.12), 
and solVing the resulting quadratic equation, we find 

2c(s + 1) = c(s) - b(s)± [c(S)2 + b(S)2 - 3s _ 2]1/2. 

For real c(s + 1) we must have 

c(S2) + b(S)2 ~ 3s + 2. 

But from Eqs. (4.6) and (4.12) we have also 

C(S + 1) + b(s + 1) = c(s) - b(s), 
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(4.13) 

c(s + 1)2 + b(s + 1)2 + s + 1 = C(S)2 + b(S)2 - s, 

which shows that c(S)2 + b(S)2 decreases for increasing 
positive s so that sooner or later Eq. (4.13) is not 
satisfied. Thus there is no position operator for an ir
reducible unitary representation of the Poincare group 
with zero mass and variable helicity. 
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Solution of a modified Lame equation with an integral 
terma) 

P. L. Hagelsteinb) 

Research Laboratory of Electronics, Massachusetts Institute of Technology. Cambridge. 
Massachusetts 02139 
and Lawrence Livermore Laboratory. Livermore, California 94550 
(Received 5 December 1977) 

We consider an equation which occurs in the stability analysis of a passively modelocked laser system in 
which the pulses overlap. The equation is related to a Lame equation and can be written 

su (x) ={ d 2 /dx 2 - [(2 -m) - 6 dn 2 (x,rn)] }u(x) 

-E.l5~~,i u(x')dn(x',m)dx'(l +v 2 d 2 /dx 2 )dn(x,m}, 

where s is an eigenvalue and E and v are arbitrary parameters which need not be small. The 
eigenfunctions satisfy periodic boundary conditions lI(x + 2K(IIl» = lI(x). The eigenvalue s is 
proportional to the rate of growth of perturbations of the steady state pulse, and so we focus on finding 
the conditions under which no eigenvalues is positive. We find that 

€=2/{Hm)-v 2 [2E(m)-(2-m)Hm)]} 

marks the stability boundary, where E(rn) is the elliptic integral of the second kind and ~(/11) is a 
function defined within the paper. This result is exact. 

I. INTRODUCTION AND BACKGROUND 

Within the framework of the fast absorber model 
of passive laser modelockingl one can find analytical 
solutions in the case of overlapping pulses2

,3 which 
can be expressed in terms of Jacobian elliptic functions. 
The dnoidal solutions lend themselves to a description 
of the modelocked waveform from the limit of poor 
modelocking (CW operation and CW with a sinusoidal 
ripple superimposed) through the overlapping pulse 
regime to the limit of well separated pulses, in which 
case the dnoidal function becomes a sequence of 
hyperbolic secants. It has been suggested that an 
approximate solution of the transient evolution problem 
in laser modelocking could be pieced together assuming 
that the pulse shape were approximately dnoidal at 
each point in time along the buildup (see Ref. 3). 

Of central interest in the investigation of these 
simple models is the question of pulse stability. For 
example, one would expect that in a passively mode
locked system that a perturbation introduced into the 
cavity which added in phase to the steady state pulse 
would be unstable for the following reason. Increased 
pulse amplitude causes additional absorber bleaching 
thereby decreasing the net loss seen by the pulse, 
causing it to grow. In fact, the system has a funda
mental instability built into it through the nonlinear 
absorber saturation which can be stabilized only 
through an additional mechanism such as gain 
saturation. 

In this communication we are concerned with the 
solution of the eigenvalue equation which plays a key 
role in the analysis of pulse stability in passively 
modelocked systems. The equation is a second order 
integro-differential equation which upon normalization, 
takes the following form, 

alWork performed in part under the auspices of the U. S. 
Department of Energy. Contract No. W-7405-Eng-48. 

b)Work at MIT supported in part by the Fannie and John Hertz 
Foundation. 

su(x)=( tf2 _[(2_m)_6dn2 (x,m)]\u(x) 
dx i) 

(1. 1) 
where S is the eigenvalue and E and v are arbitrary 
parameters. dn(x, m) is the Jacobian elliptic dnoidal 
function of modulus m (see Fig. 1) and K(m) is the 
complete elliptic integral of the first kind. The eigen
functions u(x) satisfy periodic boundary conditions 

u(x + 2K(m)) =u(x) (1. 2) 

which are the same boundary conditions satisfied by 
dn(x,m). 

The eigenvalue s is proportional to the rate of growth 
of perturbations of the steady state as it passes back 
and forth within the laser cavity. The primary interest 
here is focussed on conditions on E and 1I under which 
there are no positive eigenvalues s. Physically, E is a 
measure of the magnitude of the effect of gain saturation 
which is required for pulse stability as discussed ear
lier. The parameter v is the ratio of the steady state 
pulse bandwidth and the gain linewidth, and is much 
less than unity wherever the model is valid. Our 
treatment of the equation, however, is valid for arbi
trary v. When E is zero, the lowest eigenfunction of 
(1. 1) has a positive eigenvalue sa, and as the gain 
saturation parameter increases (for small v), So 

decreases monotonically until some critical value 
of E there are no longer any positive eigenvalues. The 
result of the analysis of the following sections is the 
determination of the parameter E as a function of the 
modulus 117 at which So is zero. 

We now review briefly some results which have 
been obtained on this equation which are relevant. 
When E is zero, (1. 1) reduces to a Lame equation 

si\(x)=( d
2

2 -H2-m)-6dn2 (x,m)))i\(x) (L3) 
dx 

which has been investigated by Ince4 and ErdelyL 5 
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FIG. 1. Jacobian elliptic functions (a) m = 0.5, (b) m ~ 0.95. 

The lowest two eigenfunctions are 

• ()-d 2( )+ (l_m+m2)1/2_(2_m) 
HO x - n x,m 3 (1.4) 

So = (2 - m) + 2(1 - rn + m 2)1/2 
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and 

(1.5) 

where cn(x, m) and sn(x, rn) are the Jacobian elliptic 
cnoidal and snoidal functions (see Fig. 1). As € 

becomes finite and increases, we find that A1C't') is 
still a solution to (1. 1) with eigenvalues SI = 0, Phys
ically, this corresponds to a timing shift of the 
steady state pulse for which there is no stabilizing 
mechanism. It is the lowest even eigenfunction 
uo(x) which causes amplitude instabilities, and for 
this reason we shall focus on the construction of 
uo(x) in the following section. 

When the pulses are well separated, that is when 
the modulus m approaches unity, (1.1) reduces to 

su(x) =( !2 -[1 - 6 sech2x ))U(X) 

-Ef:u(X!lSeCh(X!)dY'(1 +v2 ti~2) sech(x). (1.6) 

This equation has been solved in a companion paper6 

with the result that 

2 
E == 1 _ v2 (L 7) 

marks the stability boundary. 

In the following sections we construct uo(x) from an 
expansion of the form 

uo(x) ==dn(x-, m)[ )~; An en(nx-, m)). (1. 8) 
eVf,n 

The recursion relations derived for the coefficients 
however are valid for all even eigenfunctions. This 
expansion was one form of expansion used by lnce 
in the solution of the Lame equation4 and is very con
venient here because it leads to a simple three term 
recursion relation for the coefficients An, except in 
the case of Ao and A2 where one must also evaluate a 
rapidly convergent series. When So is zero, one 
finds that 

2 
E == -:-~ ('--m-.;')-_-v""'2 [""'2E=(; m) _ (2 _ m) ~ (m )] (1, 9) 

marks the stability boundary, where E(m) is the 
complete elliptic integral of the second kind and where 
~ (m) is a function defined in Sec. IV. 

II. THE RECURSION RELATION 

In this section we derive the three term recursion 
relation for the coefficients An of the expansion of 
(1, 8), We follow Ince4 and transform (1. 1) into a more 
convenient form using the substitutions 

u(x)=dn(x, m) fIx), 

cos(e) == en(x-, m), 

which yields 

rf d 
[(2 - m) + m cos 2e] ded (e) - 3m sine de fee) 

+ [(8 - 4m - 2s) + 4m cos 2e) fee) 

- 2w(1- mv2 cos 2e) =0 

P. L. Hagelstein 

(2.3) 

1387 



                                                                                                                                    

1.0 

(b) 

FIG. 2. (a) Lowest eigenfunction u(x) at stability boundary 
(s = 0) for m = 1 and ,;. = O. (b) Lowest even eigenfunction u(x) 
at the stability boundary (s = 0) for m = O. 95. 

where we have defined Q' to be the overlap integral 

Q'=jK(m) u(x)dn(x,m)dx 
-K(m) 

(2,4) 

Under the substitutions (2.1) and (2.2) the expansion of 
(1, 8) becomes a Fourier series 
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j(8)= 1: A.rcos(ne) 
n even 

(2.5) 

which upon substitution into (2.3) leads to the following 
recursion relations: 

(2.6) 

Since we are primarily concerned with solutions of 
(1.1) when s=O, we consider solutions of (2.6) in 
this limit. We find that (2.6) becomes 

v2 

Ao==-€Q' 2' 

A 2 == 2;~ [1 + v 2 (2 - m)] 

m 
x 2 (2 - n)(3 + n) An+2 + (4 - n2 )(2 - m) An (2.7) 

+ ~(2 + n)(3 - n) A n_2 

==0 (n~ 4) 

when the modulus m is not zero. Asymptotically, An 
approaches zero in the following way, 

A;;--+-(- (2 - m) + 2,;r::rn)2n 
n ... oo m (2.8) 

for m less than unity. The convergence of the expansion 
is slow as m approaches unity and for m equal to unity 
(2,5) diverges at e == O. This behavior is not unexpected 
since when at m = 1, (2.5) becomes 

u(x)==sechx[n)' Ansech(nx)] (2.9) Iv'n 

which is an unfortunate choice of an expansion to fit 
a function like u(x) as shown in Fig, 2(al. Terms of 
higher order in n become more and more spikelike 
around x = 0 and provide poor higher order corrections 
to the series, 

In Table I we give solutions to (2.7) for v2 equal to 
zero illustrating that only the first few terms of the 
expansion are Significant for m < 1. In Fig. 2(bl we 
illustrate the lowest eigenfunction u(x) at the stability 
boundary (at s:O) for m==0.95 in the case of v 2 :O, 

III. THE OVERLAP INTEGRAL 

Ultimately we must solve for the overlap integral 

TABLE I. Expansion coefficients at the stability boundary. 

n 

o 
2 
4 
6 
8 

10 
12 

o 
0.666 

- O. 0570 
0.00732 

- O. 00105 
0.000157 

- O. 0000240 

o 
0.351 

- 0.105 
0.0483 

- O. 0250 
0.0137 

- O. 00775 
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(b) m 

FIG. 3. I(m. n) functions defined in (3.2). (a) I(m. 0); 
(b) I(m, 2). - I(m, 4). I(m, 6). 

QI self-consistently with the coefficients An. The inte
gral of (2.4) can be written as 

QI = j'7/ 2 [n~ An cos(nB)] (1 _ m sin2B)1 /2 dB 
.. y J 2 even 

where we define l(m, n) to be 

l(m, n) = [i2 (1- m sin2B)1/2 cos(nB) dB. 
_< /2 

Some of the lowest integrals l(m, n) are shown in 
Fig. 3. One observes that (3.1) converges for all 
o ~ m ,; 1 since in the worst case for An at m = 1, 

1(1 ) = 2(- l)n/2 
,n 1 _ n2 

for even n. 

(3.1) 

(3.2) 

(3.3) 

We find that the series in (3.1) converges rapidly, 
especially for small values of the modulus m. The 
lowest order integral l(m, 0) can be written 

l(m,O)=2E(m), (3.4) 
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where E(m) is the complete elliptic integral of the 
second kind. For n>-- 2 we find 

7T 57T 2 . 77T 5 • 7 • 97T 
l(m,2)=m¥+m227+m3~+m4 215 +"', 

( ) 
2 7T 3 37T 4 5 0 77T 

Im,4 =-m F-m 29-m ---vs_ oo
., 

( ) 
3 1f 4 57T ••• 

1 m, 6 = m 210 + m 212 + . 

IV. SOLUTION FOR THE PARAMETER E AT THE 
STABILITY BOUNDARY 

(3.5) 

In this section we solve for the gain saturation 
parameter f at the stability boundary, that is, when 
the eigenvalue s is zero. We begin by combining the 
recursion relations (2.7) with the expression for the 
overlap integral QI (3.1) to give 

_ 3mA2 1 _ ,,~ ) 
QI- 2E [1 + (2 _ m)v21-n~nAnl(m, n . (4.1) 

One can now solve this expression for the parameter 
f to yield 

(4.2) 

We note that 

Ao _ 3m v2 

A2 - - 4fl + (";;-2 ---m....,.)-,v2~J (4.3) 

which allows (4.2) to be written in the form 

2 
E = -:-d'-m-""')---v""2"'U;;-(t-n -, O=):---(';;;2---m~) ~""'(f-n""") ) ' (4.4) 

where we have defined the function ~ (nz) to be 

4 ~ A 
~(m)=3 6 A--.l!.. l(nz, n) 

m n=2 2 

(4.5) 

(n even) 

which is shown in Fig. 4. Noting that the function 
1(0, m) can be written in terms of E(m) through (3A) 
yields 

2 
(4,6) 

E= ~(m)-v2[2E(m)-(2-m)~(m)] 

which is the required result> 

09 

0.8 

0.7 

0.6 

0.5 0,:--'--:0"-. '~-0.J...2~-0::':.3:--'"---:'-0.-:-4 ~~0"-:-5 ~-,JOL.6-'--:OL.7~-Ol-:.8~-0l-:.9:-'--'1.0 

FIG. 4. The function ~ (m) defined in (4.5) and the approxima
tion (4.7). 
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It was found earlier that the coefficients An decrease 
rapidly with increasing order n, especially for small 
m, so that one might be tempted to approximate the 
series in (4.5) with the first few terms. For example, 
if one truncates the series after the first term, then 
one obtains 

4 
~(m) '" 3m I(m, 2) (4.7) 

which is exact for small m and turns out to be reason
able all the way to m = 1 as is shown in Fig. 4. At 
the worse case of m = 1, (4,7) underestimates the 
exact result by 11. 1 %. 

V.SUMMARY 

We have solved the eigenvalue equation 

su(x) = (~ - [(2 - m) - 6dn2(x, m)l)u(x) 

_EJK(m)u(x')dn(x', m)d."(1 (1 +v2 dxtf2 ) dn(x, m) 
-K(m) 

(5.1) 

and have determined conditions on the parameter E for 
which no eigenfunction u(x) has a positive eigenvalue 
s for u(x) which has a period 2K(m). The stability 
boundary where the lowest even eigenfunction has 
eigenvalue zero occurs when 

2 
E = ~ (m) _ v2 [2E(m) _ (2 - m) ~ (m)J 

(5.2) 

where ~ (m) is defined in (4.5) and is shown in Fig. 4 
and where E(m) is the elliptic integral of the second 
kind. We have found that the series expansion for 
~(m) can be truncated after one term to yield the 
approximation 

1390 

= ~ ~ /2 (1 _ m sin28)1/2 cos(28) d8, 
3m J •• / 2 
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(5.3) 

which becomes exact for sma1l m and underestimates 
the exact result at m equal to unity by 11.1%. 

ACKNOWLEDGMENTS 

The author takes pleasure in acknowledging stimu
lating discussions with Professor H. A. Haus at MIT. 
The work was supported at the Research Laboratory of 
Electronics by the Joint Services Electronics Program, 
Contract DAAB76-C-1400. P. L. Hagelstein was a 
Hertz Foundation Fellow. Use of MACSYMA Program 
(Mathlab Group, Project MAC, MIT) was greatly 
appreciated. The work of the Mathlab group is supported 
by ARPA Work Order 2095 under ONR Contract 
NOOOI4-75-C-0661. 

iH. A. Haus, "Theory of modelocking with a fast saturable 
absorber, " in J. Appl. Phys. 46, 3049 (1975). 

2p. L. Hagelstein, "Laser modelocking with a saturable ab
sorber," B. S. thesis MIT, Department of Electrical Engi
neering, March 1976, and "Stability analysis of a passively 
modelocked laser system," M. S. thesis, MIT, Department 
of Electrical Engineering, May 1976. 

3C. P. Ausschnitt, "Transient evolution of passive mode
locking," IEEE J. Quant. Elec. QE-13, 321 (1977), and 
"Transient evolution of passive modelocking-theory and 
experiment," Ph. D. Thesis, MIT, Department of Electrical 
Engineering, January 1976. 

4E. Ince, "The periodic Lame functions," Proc. Roy. Soc. 
Edin. 60, 47 (1940), and "Further investigations into the 
periodic Lame functions," Proc. Roy. Soc. Edin. 60, 83 
(1940). 

5A. Erdelyi, Higher Transcendental Functions, Vol. III 
(McGraw-Hill, New York, 1955). 

sp. L. Hagelstein, "Solution of a second-order integro-differ
ential equation which occurs in laser modelocking, " J. 
Math. Phys. (to be published), 

P.L. Hagelstein 1390 



                                                                                                                                    

The intelligent states. I. Group-theoretic study and the 
computation of matrix elements 

M. A. Rashida) 

International Centre for Theoretical Physics, Trieste, Italy 
(Received 4 August 1977) 

In this first of a series of papers, a group-theoretic study is presented of the quasi· intelligent states which 
are a generalization of the intelligent states satisfying equality in the Heisenberg uncertainty relation 
/::;.J?t:..J ~ ~ (l/4)kJ3~2. A method based on the knowledge of a certain generating function is given for 
the calculation of matrix elements of polynomials in the infinitesimal generators of the rotation group 
between quasi-intelligent states. Examples of such computations are also included to exhibit the 
improvement and efficiency of the present methods. 

I. INTRODUCTION 

Aragone et al. 1 have recently considered the states of 
a well-defined angular momentum which satisfy equality 
~J~~J~ =t I(J3) 12 in the Heisenberg uncertainty relation 
derived from the commutation relation [Jh J2 ] =iJ3• 

Unlike the Glauber coherent states of a linear harmonic 
oscillator, these states are not generally the minimum 
uncertainty states, i. e., ~Jl~J~ does not take a mini
mum value for them. 

In the following series of papers, we shall attempt to 
present a somewhat different but more manifest method 
of handling these states which are called intelligent 
states in the literature. Our papers will clarify the 
algebraic structure of these states and emphasize the 
distinction between them and the usual Wigner states 
Ijm). 

In the present paper, we introduce the group-theo
retic structure and present methods for the computation 
of elementary matrix elements of the generators be
tween these states. In the second paper of the series 
we examine the problem of the computation of the 
Clebsch-Gordan coefficients for the intelligent states. 
In the third paper, we hope to present certain physical 
applications. 

The present paper is organized as follows. In Sec. II, 
we repeat briefly, for completeness, the argument that 
the states which satisfy equality in the Heisenberg un
certainty relation are indeed eigenstates of a non
Hermitian operator Jf with a known spectrum. In Sec. 
III, we give the operators which together with Jf form 
the same algebra as that formed by the infinitesimal 
generators of the three-dimensional rotation group. In 
this section, we also present a compact representation 
of these states up to normalization in terms of the 
operation of the infinitesimal generators of the rotation 
group on the Wigner states. A simple expression for 
the normalization coefficients is also obtained in this 
section. 

In Sec. IV, we arrive at a manifest connection be
tween the intelligent states and the Wigner states. This 
connection also leads to another, somewhat more com
plicated, expression for the normalization coefficients 
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which is shown to be equivalent to the simpler expres
sion presented in Sec. III. 

Section V is devoted to the computation of some ele
mentary matrix elements by mentioning that a certain 
generating function is trivially calculable using our 
methods. With the use of this generating function, these 
elementary matrix elements can easily be calculated. 
This section ends with a few examples to illustrate the 
efficiency of our approach. 

II. THE HEISENBERG UNCERTAINTY RELATION 

Let us start with the commutator [A, B 1 = iC, where 
A and B are Hermitian (and hence C is also Hermitian). 
For any state I]J, defining 

(1) 

we obtain 

(~A)2 = J 1 (A - (A») 12 dT (2) 

since A is Hermitian. 

Now we use the Schwartz inequality 

Jlfl2dTJlgl2dT? JIr*gI2dn-IJ.r*gdTI, (3) 

withf= (A - (A») wand g= (B - (B») w. This results in 

(~A)2(~B)2 "'I J if!*(A - (A»)(B - (B») if! dT 12, (4) 

where the equality sign will hold if and only if 

(B - (B») I]J = A(A - (A») 1), (5) 

where, so far, A is any (possibly a complex) number. 

Next we try to relate the right-hand side in the in
equality given in Eq. (4) above to (C). We note that 

(A - (A»)(B - (B») 

=~ [(A - (A»)(B - (B») + (B - (B»)(A - (A»)] 

+WA - (A»)(B - (B») - (B - (B»){A - (A»)] 

=F + ~iC, (6) 

where 

and 

F = H(A - (A»)(B - (B») + (B - (B»)(A - (A»)] (7a) 

(A - (A»)(B - (B») - (B - (B»)(A - (A») = [A, B] =iC. 

(7b) 
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Since F and C are Hermitian operators, (F) and (C) 
are both real numbers and we find 

I (F + ~iC) 12 = I (F) 12 + t I (C) 12 ~ t I (C) 12, (8) 

where again the equality will hold provided (F) = O. 

Combining Eqs. (4), (6), and (8), we arrive at 

(AAF(~B)20tl(C)12, (9) 

which is the well-known Heisenberg uncertainty 
relation. 2 

Our interest is basically in understanding when we 
shall have an equality in Eq. (9). From the argument 
presented above, it is now clear that the equality will 
hold for those states I/J for which 

(B - (B» w = ,\(A - (A»~' 

and 

(F) =0. 

Equations (7) and (10) now lead to 

'\(~A)2 + ~ (~B)2 = 0 

and 

which imply 

I. (C) 
'\=21 (~A)2' 

(lOa) 

(lOb) 

(lla) 

(llb) 

(12) 

where since (C) and (~A)2 are both real, ,\ is indeed 
pure imaginary. This shows that the states I/J for which 
the Heisenberg uncertainty relation has an equality are 
those for which 

(A - iaB) iJ; = «A) - ia(B» 1/1, (13) 

i. e., they are eigenstates of the operator A - ia B for 
real a. (Note that we have replaced the purely imagi
nary number A-I by icY. .) 

Let us now apply the above result to the special case 
where A, B, Care Ji> J 2, J 3-the generators of the in
finitesimal rotations in the three- dimensional space. 
Then we note that the states for which 

(~d1)2 (~d2)2 = t I (d3) 12 

are eigenstates of the non-Hermitian operator d1 - iad2 

for some real a. In the following, we shall explicitly 
determine these states (called the intelligent states in 
the literature) for a given angular momentum j as a 
linear combination of the Wigner states lim) and also 
study their properties. 

III. THE OPERATORSJ~ (cd AND J: (0:) 

Though intelligent states correspond to real a only, 
we shall consider the more general situation, where a 
is any complex number (the corresponding eigenstates 
of d1 - ia.lz may be called quasi-intelligent states). 

We define3 

(14a) 
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and 

0: i 
J~(a) = + (1- (2)1/1 J 1 ± (1- (2)1/2 J, - J3 (14b) 

for any complex a "* ± 1. (This restriction will be clear 
soon.) The operators d:J(a) and J~(a) satisfy the com
mutation relations 

(15a) 

and 

[J~(O'), d~(O')] =U3(a), (15b) 

which are exactly the same as those satisfied by 
J3, d± =J1 ± iJ2• Also 

J2 =J! +d~ +J~ = ~(J.J_ +d.J.) +d~ 

= ~[d~(O') d:(a) +J~(a) J!(a)] +d31.(0'). (16) 

We try to construct the eigenstates of the operator 
d3(a) as a linear combination of the states Ijm) with a 
given j and - i ~ III ~ j, where these (2j + 1) Wigner states 
are the eigenstates of the Hermitian operator d3• Indeed 

(17a) 

and 

J± [jm/ =f(j - 1Il)(j + m + 1) lim). (17b) 

Since J 3 and J2 are Hermitian operators, the states 
Ijm) can be orthonormalized in the form 

(j' m' Ijm) = 0jj' 0mm" (18) 

which is what one conventionally does, 

Noting that 

expU38P1 exp(- d38) = d1 cosh8 + id2 sinh8, (19) 

we realize that the right-hand side will be proportional 
to d1 - ifYd2 provided one chooses 8 such that 

or 

C8=(I-a) 1/2 =7 
l+a 

(20) 

(21) 

and then the right-hand side of Eq, (19) is just d3(a). 
With the above choice of 8, we find 

In particular, 

exp(- d 38) d3(0') exp(38) =d1• 

Noting also that 

exp(±i~1Td2)dl exp(1'd1Tdz)=±.]3, 

we immediately see that the state 

Ijma)' = exp(8d3) exp(- i ~1T d2) Ijm) 

(22a) 

(22b) 

(23) 

(24) 

(25) 

is indeed an eigenstate of the operator d:J(a) with the 
eigenvalue m. The prime on Ijma) is indicative of the 
fact that the state as defined may not be normalized. 
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Since 8 is not necessarily pure imaginary (this re
quires I T I = 1 or a = pure imaginary-for intelligent 
states 8 is definitely not pure imaginary4) the above 
state does not, in general, correspond to a rotation 
of the Wigner state Ijm). In fact, as we shall see, the 
above state is not normalized and the (2j + 1) states 
Ijnw)' for - j ~ m ~ j are not orthogonal unless 8 is 

purely imaginary. The basic reason for this is the non
Hermiticity of the operator JHa) of which these are 
eigenstates. 

Next we attempt to compute the overlap 

'Um'a'ljma)' 

= Urn' I exp(i~1T J2) exp(8'* J3) exp(8J3) exp(- i~1T J2) Ijm) 

= (jm' I exp[ - (8 + 8'*) Jdljm). 

(26) 

The above matrix element can immediately be computed 
using the 2 x 2 representation 

~ 1 1 [0 IJ J1 =20"1=:2 1 0 

of Jil in terms of which 

exp[- (8 + 8'*)Jl1 

_ lCOSh (8 +2
8
'* ) 

. (8+8'*) - smh --2-

Thus we find 

'(jm'a'ljma)' 

( 8 + 8'*)] - sinh --2-

(
8 + 8'*) cosh --2-

= (jm' I exp(- (8 + 8'*) Jtll ;m) 

(27) 

=: [(j+ m)l (j - m)l (j + m')l (j_ m')l ]1/2(_ 1)2J+m+m' 

[cosh«8 + 8'*)/2)]-m-m'+2r[sinh«8 + 8'*)/2)]2j+m+m'-2r 

x~ rl(j+m -r)l(j+m'-r)!(-m- m'+r)! 

(28a) 

=: ((j+ mH (j - m')I) 1/2 [Sinh (8 +2e'*)~m'-m(_1)2J+m+m' 
(j-m)l(j+m')! ~ 

(2; - r)' [cosh«8 + 8'*)/2)]2J+m-m'-2 r 
X6 (- l)r '. . 

r r!(J+m-r)I(J-m'-r)! 

In particular, if we define the normalized state by 

l;mO') = (aj 
m (a»-II;ma)' 

(28b) 

= (aJ m(a »-1 exp(8J3) exp(- d1T J2) I;m), (29) 

then the normalization coefficient aJ m (a) is given by 

J ()_[(.+ )1('- .),,,[COSh«8+8*)/2)J-2m+2r 
amO'- 1 m J /11.L.J 1('+)' . r r J m-r. 

x [sinh«8 + 8*)/2)]2J+2m_2r] 1/2 (30a) 
(j+m-r)!(-2m+r)1 

=: [6 (_ l)r (2; - r)! [cosh«8 + 8*)/2)j2J-2r J 1/2 
r rl(j+m-r)I(j-m-r)1 (30b) 

In Eq. (30a), since sinh«/} + 8*)/2) is raised to an 
even power, every term in the sum is nonnegative 
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(8 + 8* is a real quantity) and hence the square root is 
well defined. 

Since the angle 8 in everything we consider appears 
as a function of exp(8/2) =: Tl/2, we shall choose the T 

complex plane to be cut from - co to O. The relationship 
between a and T now is 

T= G~~) 1/2 

In particular 

2 4r 
1 - 0' = (1 + 1-)2 

and we choose 

1- r 
or 0'=1+7. 

(1 2)1/2 _ 2T 
-a -1+7. 

(31a) 

(3Ib) 

(31c) 

Thus any expression in terms of 8 and O! can im
mediately be expressed in terms of the variable T. For 
real a (L e., when we are considering intelligent states 
only), T will be taken as positive real or positive 
imaginary. Indeed, all the 0' plane is obtained from the 
upper half-plane of T. 

We end this section with a few remarks. 

(1) The matrix elements (jrn' I exp(- 8J1) Ijm) are 
evidently [see Eq. (28a) with 8 in place of e + Ii'*] sym
metrical in the interchange m - m'. For real 8, these 
are also real. Th,t! expression in Eq. (28b) is not 
manifestly symmetrical under this interchange, but it 
is presented on account of its simplicity and usefulness. 

(2) The matrix elements (jm' I exp(- IIJ1) Ijm) for 
real 8 cannot be zero except when II = 0 since every 
term on the right-hand side in Eq. (28a) is positive for 
8 < 0 and is positive (negative) for II> 0 whenever 
2j + nz + m' is even (odd). This shows that the states 
I;ma), - j '" m '" i, for given j and O! are not orthogonal 

unless real e = O. The quasi-intelligent states for a 
given j and 0' are thus necessarily nonorthogonal unless 
I T I = 1 or 0' pure imaginary. 

(3) The normalization factors aJ m (0') for a given j 
and Cl' are only I when real e = He + e*) = O. Indeed 
whenever real 8=:0, [a J

m(a)]2=1 as is obvious from 
Eq. (30a). For real /} 0{. 0, we can differentiate the ex
preSSion for [aJ m(O')f obtained from Eq. (30a) and note 
that the derivative has the sign of tanh«e + e*)/2). Thus 
the norms ajm(O')~ 1 for e + e*~ O. 

Aragone et aZ. 5 could not find the properties men
tioned in remarks (2) and (3) above, since they lacked 
simple analytic expressions for the matrix elements 
of the form (jm' I exp(- eJj ) Ijm). 

(4) In the next section, we shall rewrite Eq. (29) 
expressing the states Ijma) for any given m as a lin
ear combination of the (2j + 1) Wigner states Ijm'), 
- j <'. m' '" j. This process can also be inverted, i. e. , 
we can express any Wigner state Ijm) in terms of the 
(2j + 1) quasi-intelligent states Ijm'O'), - j '" m' ~ j for 
a given O! 0{. ± 1. (This inversion will be presented in 
the second paper.) In this sense, therefore, the (2j + 1) 
quasi-intelligent states Ijm'a), - j ~ m' '" j for a given 
(]Io{.±l are complete. For 0!=:+1(-1), J 3(a)=Jt -iJ2 
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(J1 + iJ2 ) is the usual lowering (raising) operator for 
the Wigner states. The only eigenstate it has is the 
Wigner state Ij, - j) (Ij, j» with the eigenvalue O. Thus 
for a == ± 1, the analysis presented above completely 
breaks down. The question of completeness for Ijma), 
a == ± 1 is just not there. This is the reason why in the 
beginning of the present section we restricted our
selves to a * ± L 

IV. RELATIONSHIP BETWEEN THE QUASI
INTELLIGENT STATES AND THE WIGNER STATES 

We have seen that the normalized quasi-intelligent 
states for given j, a are given by 

Ijma) == (aJ m(a»-1 exp(8J3) exp(- drr J2) Ijm). (29') 

Again we can use the 2 x 2 representation J j ~ iUj for 
the operators J j 6 and employ the standard techniques 
to arrive at 

x [(j+m)I(j-m)I(j+m')I(j-m')I]1!2 (32a) 
rl(j+ m - r)l(j +m' - r)! (- m - m' +r)1 

= (aJ m (a »-1 2-J ~ Ijm') exp(m'8) 2'(_ 1)' 
m'r 

[
(j-m)I(j+m')1 Jl/2 (2j-r)! 

x (j+m)I(j-m')1 rl(j-m-r)I(j+m'-r)1 

(32b) 

= (aJ m(a»-12-J~ Ijm') exp(m'8) 2r(_l)m'-m+r 
m'r 

[
(j+m)!(j-m')!J 1/2 (2j-r)1 

x (j _ m)! (j+m')! r! (j+m - r)1 (j- m' - r)1 

(32c) 
U sing the above results in various combinations, we 

obtain several equivalent expressions for the inner 
product Um'a' Ijma). Thus, for example, from Eqs. 
(32b) and (32c), we find 

(jm'a'ljma) 

( J J ( ,)-1 [(j+m)!(j-m')!] 1/2 
== am(a)am,a) (j-m)!(j+m')! 

x ~ (_ 1)n-m+r+5 2-2,+r+5 exp[n(8 + 8'*)] 
nr5 

(2j-r)!(2j-s)1 
x rl (j + m _ r)1 (j - n - r)1 s 1 (j - m' - s)1 (j + n - s) 1 • 

(33) 

Though the above expression is not manifestly sym
metrical under the interchange m - m' (a symmetrical 
expression is obtained using the same representation 
for both Ijma) and Ijm'a'», yet it is useful in estab
lishing its relationship with the expression given earlier 
in Eq. (28b) when multiplied with [a'm(a)a'm,(a,)]-I. In
deed, we can perform the n- summation immediately. 
[Note that n in Eq. (33) need not be an integer though 
j ± n, m ± n are so. ] This allows us to rewrite the above 
results as 

(jm'a'ljma) 

J J ,_t[(j+m)!(j_m,)!]1/2 
==(a m(a)a m,(a» (j_ m)!(j+m')! 
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x~(_1)j+m-rexp[_ (j-s)(8+8'*)] 
rs 

x [i(l- exp(8 + 8,*))]21-r - s 

(2j-r)I(2j-s)! x 
r! (j + m - r)! s! (j - m' - s) 1 (2j - r - s)! 

Using the transformation 

F2 (a, P, (3', a, a; x, y) 

where 

F ( P (3' , ) ~ (a )m+n({3)m (W)n xmy" 
2 a, , ,Y,Y ;x,Y = m," m!n!(Y)m(Y')n 

(34) 

and 2Ft is the usual hypergeometrical function, 7 we 
reproduce the expression for (jm'a' Ijma) mentioned 
above. 

V. COMPUTATION OF THE MATRIX ELEMENTS 
BETWEEN QUASI-INTELLIGENT STATES 

In this section, we present a method, essentially 
based on the knowledge of a generating function, for 
computing matrix elements of polynomial functions of 
the infinitesimal generators of the rotation group be
tween quasi-intelligent states. We first define a gen
erating function 

C(j, 1171> 1112; at, a 2 ; a, b, c) 

= (jm2 a 21 exp{c[J3(a 2)r}exp(bJ3) exp[aJ3(a t)] Ijmtat)· 

Using 

J3(a) lima) == m limo), 

and its adjoint3 

Uma I [J3(a)Jf == (jma 1m, 

we can rewrite the above generating function as 

CU, 111j, 1112; CY t , a2; a, b, c) 

(35) 

== exp(amt + cnl2)(jn12a21 exp(bJ3) lill1j(lt). (36) 

Now we use the method presented in Sec. 111 to arrive 
at [see Eq. (28)1 

X (_1)2j+mt+m2~ [cosh~(8t + 8r + b)]-mt-m2+2r 
r 

x [sinhi(8 t + fir + b)j21+mt+m2-2r/r! (j+ n1t- r)! 

x (j + n12 - r)! (- 1111 - nl2 + r)! 

_ exp(an1 1 + cm2) [U + ml)! (j - 1I12)!J 1/2 
- aJml(O't)a'm2(a2) (j-mt)!(j+m2)! 

x [sinhi(81 + 8r + b)lm2-mt(_ 1)2 j
+mt+m2 

(2 ' r)! [cosh-2' (81 + 8*2 + b)]2 j +mj-m2-2T 
X ~ (_1)r ~J :...:.....!,+~~~~~!.....--T.--~ 

r! (j + nit - r)! (j - in2 - r)! 
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This generating function immediately gives the matrix 
element 

(jmcxzl (V3(a2WfZ[Ja]n[JHcxl)tl!jmlal) 

x (- 1)2J+ml+m2 :;'1 [ ~ [cosht(e1 + em-ml-m2+Zr 

x [sinht(e1 + en ]2J+ml +PIIZ-Z, / r! (j + ml - r) I 

x(j+mz-r)!(-m1 -mz +r)l] (38) 

In particular, 

(jzm2aZ!J3Iitmlal) 

= [(j + ml)! (jJ ml) 1 (jt m2)! (j - m2) 1 ]1/Z (_ 1)2J+mj+m2 
a "11 (a 1) a mz (oz) 

x 2:; {[cosht(e1 + ei)]-ml-mZ+Zr 
, 

x [sinht(e1 + enJ2J+mj+mz-2r} 

x [r I (j + mj - r)! (j + mz - r) 1(- ml - mz + r) 1 ]_1 

X t[(- ml - mz + 2r) tanht(e1 + en 

+ (2j + mj + mz - 2r) cotht(e j + ei)]. (39) 

The diagonal matrix elements of J a are much more 
interesting. We find 

(jm a !J3!jma) 

= - j cosO [ 1 + i 
x L:rsinZO(cosO)Zr-2/rl (r- 1)1 (j+ m - r)! (j- m - r)l J 

L:r(cos5)Z'/(r!)2(j+m-r)l(j-m-r)! ' 

where we have used the notation 

in terms of which 

tanhWe + e*» = - cosO, 

coshz We + e*» = (sinO)-z. 

(40) 

(41a) 

(41b) 

(41c) 

Equation (40) above is a generalization of the special 
results given in Eq. (40) of Ref. 1 with 0 in our result 
corresponding to the e in this reference. One has only 
to go through the two calculations to appreciate the 
simplicity and clarity of our methods. Also we have 
manifested the part which goes to zero when 0 - 0, 
i. e., when a-I when m can only take the value - j 
and the state Ijma) can be none but the Wigner state 
Ij(- j». Incidentally this also shows that the results in 
Ref. 1 are wrong by a factor of 2. 

Next we calculate the matrix elements of J j and Jz 
between the quasi-intelligent states. 

From 

(jmzCi z !J1 - ia j Jz ljm j a j)=mj(1- ajZ)j/Z = ~:W (42a) 

and 
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where 

I-J 1-~ 
0'1 = and CXz = 1 + -2 , 

1 + j T2 

we conclude 

(jm2a2IJjljmjal) 

_ mjCii(I- a/)I / Z + mzal(1- azZ)I/a 

- Ci 1 +ai 

_ mlTl(l- T~*) + m2Ti(l- Tj) 
- 1- TF~* 

and 

(jmz a 21 J2 lim l a l> 

_ . ml(l- alZ)I/Z - m2 (1- a z
Z)1/ 2* 

-t * a 1 + a z 

_. mlTj(I+~*)-m2Ti<I+Tj) 
-t 1-71~* 

In particular 

and 

<. IJI' )_m(Tj+Tn ]maz 1 ] mCi I - 1 -* + Tjl'i 

If we also wish to consider the special case where 
a 1 = az' we shall have 

and 

(43a) 

(43b) 

(44a) 

(44b) 

(45a) 

(45b) 

In Eq. (18) of Ref. 1 we note the factors ReT and ImT. 
The remaining part of the above very simple answer is 
hidden in uncomputed derivatives of certain generating 
functions. With very little work, we have been able 
to compute even the nondiagonal matrix elements. We 
remark that since J j and Jz are Hermitian, our matrix 
elements in Eq. (44) must be invariant under the com
bined operation of mja 1 - mzaz and complex conjugation 
and indeed they are evidently so. The same property 
demands that the matrix elements in Eq. (46) be real 
and these are as expected. 

As another example of our method, we now obtain the 
matrix elements of JL J 1JZ + JzJi> and J~. We shall be 
able to express these matrix elements in terms of those 
of J a which have been given earlier in Eq. (39). 

Starting from 

(jmzCizi (J1 - i O j J 2)ZijmjCi l) = mW - O'f), 

(jmza 2 1 (J1 + i a 2 *Jz)Zljml ( 1) = m~(I- a z
Z)*, 

and 

(jmzazl (J1 + iaz * Jz)(Jj - i a 1J Z) Ijml aj) 

=mjmz(1- O'jZ)I/Z(I_ CiZZ)I/Z* 

we arrive at 

M.A. Rashid 
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(jm2a2IJ~ Ijmtat) 

= [mt(l- aj2)j/2aZ* + ::2a j(1- azZ)1!h] 2 
at + (liz 

(jm 2(l121 ~(JtJ2 + J2J t ) /jmt(llt) 

(48a) 

=i[(mt(l- (lIj2)t/2 - m2(1- (lI22)t/hHm t(llz*(1- at2)t/2 

+m2at(1- a z
2)t/a)]/a t +(lI2* 

and 

(jm2(l12IJ2
2 /jmj(llt) 

= _ [mt (1- (lIj2)t/2 _ ~2(1 - (lI22)1/2*1 2 
(lIj + (lI2 J 

_ 1 * (jm 2(l12!J3 Ijm t(llj). 
(lIj + az 

(48b) 

(48c) 

Note that the parts on the right-hand side of Eqs. (48) 
above, which are independent of J3, could have been 
obtained from the matrix elements of J j and J2 given 
earlier in Eqs. (43) and (44), as should be the case, 
since these are the values of the corresponding matrix 
elements provided J j and J2 commuted. Also defining 

(jmzazl c.J~ /jmt at) 

= (jm2(l12!J1Ijmj(llj) - «jm2(l1Z!Jj Ijmj(llj»Z (49) 

for i = 1, 2, we obtain 

(50a) 

and 

(jmz(llzl c.Jll jmt (lit) 

=_ 1 * (jm z(llz!J3 Ijm t(llj). 
(lit + (liz 

(50b) 

In the above results, the m-dependence of the matrix 
elements on the left is entirely given in terms of the 
m-dependence of the matrix elements of J3• 

From Eqs. (50), we conclude 

(jmz(llz) I c.J~ Ijmt (lIt)(jm2azl c.J~ Ijmt (lit) 

= ( (lIt(ll2**)2 «jm2(l12IJ3 Ijmj(llj»2. 
(lit + (liz 

(51) 

Considering the diagonal matrix elements, the above 
result implies 
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(jmal c.J~ Ijma)(jm(lll c.J~ lima) 

= 41~e~ 12 «jm(lll J3 Ijm(ll»2, (52) 

which will be H(jma IJ3 Ijma »2 only when !Y. is real. 
Thus we have verified that from amongst the quasi
intelligent states, only the intelligent states satisfy 
equality in the Heisenberg uncertainty relation and for 
all other quasi-intelligent states 

as expected. 

Since in the above example, our interest was first to 
exemplify the efficiency of our method and second to 
reproduce equality in the Heisenberg uncertainty rela
tion as a check on our methods, we have not tried to 
express our results in terms of the T'S though it could 
be done trivially. 
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by a physical rotation. But this result is obvious since with (Y 

= 0, J3 (0) = J I wh ich could obviously be obta ined from J 3 by ro
tation. This special case has no features different from those 
of the Wigner states and is ignored in the sequel. 

5See, e. g., footnote 8 in Ref. 1. 
6The usual representation for the a matrices is given by 

fo 1l [0 -il f1 OJ 
al = L1 oJ' a2 = i oJ a3 = Lo -1 . 

TH. Bateman in Higher Transcendental Functions (McGraw
Hill, New York, 1953), Vol. I, P. 238, Eq. (3). 
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M. A. Rashida) 

International Centre for Theoretical Physics, Trieste, Italy 
(Received 8 August 1977) 

In this second of a series of papers on quasi-intelligent states, we give a general method for the 
computation of the Clebsch-Gordan coefficients for these states. In a special case, these coefficients are 
found to be closely related to the Clebsch-Gordan coefficients of the rotation group. We also discuss the 
non uniqueness resulting naturally from the overcompleteness of these states. 

1. INTRODUCTION 

In the first paper of this series1 (this paper will 
henceforth be referred to as I) we introduced the group
theoretic formulation for the study of the quasi-intel
ligent states which are generalizations of the states 
(called the intelligent states) satisfying equality in the 
Heisenberg uncertainty relation tlJi tl~ '" il (J s> 12

, In 
particular, we presented a method based on the knowl
edge of a certain generating function for the computa
tion of matrix elements of polynomials in the infinitesi
mal generators of rotations in three dimensions be
tween quasi- intelligent states, 

In this paper, we continue this study and compute the 
Clebsch-Gordan coefficients for these states, Not 
surprisingly, these come out to be very closely related 
to the Clebsch-Gordan coefficients of the rotation 
group, 

The present paper is organized as follows, 

In Sec, 2, after redefining, for completeness, the 
various operators we compute their effect on the quasi
intelligent states, We utilize the results of this section 
in the next section to show that any Wigner state can be 
expressed as a linear combination of the quasi- intelli
gent states for any given complex number O';t ± L 2 This 
is effectively the inversion of the expression for a 
quasi- intelligent state in terms of the Wigner states 
which was given in I, Indeed in Appendix A, we verify 
the correctness of this inversion, In Sec. 4, we derive 
the Clebsch-Gordan coefficients for the quasi-intelli
gent states and show that, up to a normalization inde
pendent of the magnetic quantum numbers, these 
Clebsch-Gordan coefficients for the same a are very 
closely related to the Clebsch-Gordan (CG) coefficients 
of the rotation group, In Appendix E, we show that this, 
so far, unknown normalization coefficient is indeed L 

We emphasize that the quasi-intelligent states are 
eigenstates of a non-Hermitian operator having the 
same finite spectrum as the operator J 3 for a given 
angular momentumj, The non-Hermiticity of this 
operator makes the quasi- intelligent states non
orthogonal, thus some steps in the computation of the 
CG coefficients have to be handled rather carefully, 

In Appendix C, we exemplify a consequence of the 
nonorthogonality of the quasi- intelligent states by show-

a)On leave of absence from Department of Mathematics, 
Ahmadu Bello University, Zaria, Nigeria. 

ing that we only obtain a generalization of the expan
sion of the unit operator commonly known as complete
ness. Thus the quasi- intelligent states are, perhaps, 
not complete in this sense, though they are definitely 
complete in the sense that any Wigner state can be ex
pressed as a linear combination of them, 

2. THE OPERATORSJ; (a),)', (a) AND THEIR 
EFFECT ON A QUASI-INTELLIGENT STATE 

As in I, the normalized quasi- intelligent states cor
responding to a given angular momentum j and a com
plex number 0 ;t ± 1 are given by3 

where 

and 

ee=(1- 0')1/2 
1+0 

aim(o)={UlJli exp[- (8+ 8*)J11ijlll)P!2. 

These states are eigenstates of the operator J3(o) 
= (Jl - i oJ2)/ (1 - 0'2)1/2. Indeed 

J 3(O') ijmO') = III ijmO'), 

(1) 

(2) 

(3) 

(4) 

Thus for a givenj and a complex number a;t±1, J3(o) 
has the spectrum - j z: III Z:.i, exactly the Same as of the 
operator J 3, 4 

The basic difficulty in handling the quasi- intelligent 
states is the result of the obvious non-Hermiticity of 
the operator J3(a), As an immediate consequence, 
the corresponding eigenstates I) III a) JJliglzt not be 
orthogonal, Indeed it was explicitly verified in I that 
these states are not orthgonal for real 8,* 0, We also 
showed in I that for real 8,* 0, the normalization coef
ficients a i m(a) '* 1. 

We define the operators 

J;(o) = l' (1- ~2)1 /2 J 1 ± (1- ~2jD2 J 2 - J 3, (5) 

which together with Js(a) defined above satisfy the com
mutation relations 

[J3(o) , J~(o) 1 = ± J~(o), 

[J~(o), J~(o) 1 = 2J3(O') , 

which are exactly the same as those satisfied by J 3, 

J± = J 1 ± iJ2, 

Also 

(6) 

(7) 

1397 J. Math. Phys. 19(6), June 1978 0022·2488/7811906·1397$1.00 © 1978 American I nstitute of Physics 1397 



                                                                                                                                    

J2 =JI +~ +J~ = HJ.J_ +JJ.l + J~ 

= HJ~(a)J~(a) +J~(o)J:(a)] +Ja
2(a). (8) 

Now we wish to compute the effect of J;(o) on Ijma), 
This can be immediately known from 

and 

exp(d7TJ2)(± iJ2 - J 3) exp(- d7TJ2) = J 1 ± iJ2 = J., 

Thus, 5 

J;(a) Ii m a) = [aim (a) ]-1J; (a) exp (eJ3 ) exp(- i 57TJ2) Ii Ill) 

= raj m(a)1-1 exp(eJ3) exp(- ihJ2)J.I.iIll) 

(9a) 

(9b) 

= a(>:(~~) [(j'f m)(j ± m + 1)]1/21.j(m± 1), (10) 

We can immediately verify that Eqs. (4) and (10) are 
consistent with Eqs. (6)- (8). 

In the following, we shall also require use of the 
states lima"), Here aC is defined such that a - - a*, 
whereas (1 - 0'2)1/2 - r (1- ( 2)1/2]* or in the language of 
e, e ~ - e*. Using the variable T, this operationS is 
expressed as T- (T*t1

• The state Ijma) is orthogonal 
to Ij'm'a C

), Indeed, 

(j'm' n C 1.1 m a) = Oji,Omm'[ a i m(n) 1-2 

since 

ai m(n) =a i m(a C
), 

(11 a) 

(Ub) 

as can be deduced from Eq, (3) above or one may see 
it manifestly in Eq, (30b) in L 

3. EXPRESSION FOR A WIGNER STATE IN TERMS 
OF THE QUASI-INTELLIGENT STATES 

In I, we derived the manifest expressions7 

. (U - 111) ') 1/2 1.i llln )=[a1
m (a)]-1 ("+ ); 0IjmJexp(m1e) 

.1 m. m1. r 

x ----(~-~----
r! (j - In - r) ! (j + In 1 - r)! 

x ((~ - 1II1)! ) 1 /2 2-i.r(_ l)m1-m+r 
(}+1Il1)! 

(2j - r)! 
x -r-! c-U-+-rn - r) ! U - rnl - r)! ' 

(12a) 

(12b) 

which are equivalent to the concise Eq, (1) in terms of 
the operation of the infinitesimal generators of the rota
tion group, Our purpose, in this section, is to utilize 
the results of the previous section to invert this equa
tion to obtain an expression for any Wigner state as a 
linear combination of the quasi- intelligent states for 
any given complex a *± L 

To achieve it, let us go back to Eq, (1) which results 
in 
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(13) 

which is a nonmanifest form of the inversion we are 
seeking, Since we do know how J3((Y), J;(a) operate on 
the quaSi-intelligent states Ijma), we attempt to ex
press the operator exp(i ~7TJ2) exp(- eJ3) in the form 
exp[aJ~(a)] exp[bJ3(a)] exp[cJ:(a)]. This can be done 
using the 2 x 2 representation a /2 of the operators J io 
We find 

a=-1, 

or 

Thus 

1 
e b=- c= T, 

2T' 

(14) 

Ii Ill) = a j m ((Y) exp[ - J~((Y) ](~7) J
3 

(ex) exp[ TJ: (a) ]1.1 111 a), 

(15) 

where for the operators on the right, we have already 
understood thelr operation on Ij III (Y) in the previous sec
tion. utilizing Eqs, (4) and (10), we arrive at 

. (U-III)!) 112 ." (U_IIl")!)1/2 
1.7 111)=exp(-lIle) -('+--)' 0 IJIlI a) ('+ ")' 

Jill. m'm" J m . 

X n j ,,(n)(- 1)m'-m"2-m' U + 111/)! 
m (j _ 1/1')! (111'_ m)! (m'- III")! ' 

(16) 

In Appendix A, we shall explicitly verify the correct
ness of the above inversion, 

In Eq, (16), we have expressed a given Wigner state 
Ijnz) as a linear combination of the quasi-intelligent 
states Ij m n) for a given complex a.p ± 1 and - j ~ III ".i, 
This shows that the quasi- intelligent states are indeed 
complete in the sense that any Wigner state can be ex
pressed as a linear combination of them, 

4. THE CLEBSCH-GORDAN COEFFICIENTS FOR 
THE QUASI-INTELLIGENT STATES 

Now we have all the machinery at our disposal to 
enable us to compute the Clebsch-Gordan coefficients 
for the quasi- intelligent states, These coefficients are 
defined through the equation 

Ihlnl (Y 1) 1.i2 111 2(Y2) 

(17a) 
im 

where we have used round brackets to distinguish them 
from the usual Clebsch-Gordan coefficients of the 
rotation group, Equation (17) above expresses the com
pleteness of the states I.i nz a) for any complex n * ± 1 in 
the sense that any Wigner state Ij 1/1) can be expressed 
as a linear combination of them, Note particularly that, 
in general, the sum in Eq, (17) above is over both j and 
m where Ij1-.i21 ~j"jl +h and -j" 111 ~ j for a given). 

The Clebsch-Gordan coefficient (jill a 1J1I/lta;)z11l2(\'Z) 
can be expressed as an inner product using the states 
Ijmn C

), Indeed 
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(jill 0 IJ111l101;hIll2(2) 

= (jill 0"1 (lil1//10'1) Ij21112a~»[ai m(a)12 (17b) 

on making use of Eq, (llaL The inner product on the 
right above can be computed uSing Eqs. (12) and hence 
we can obtain a general Clebsch-Gordan coefficient for 
different values of 0' 10 (liz, and o. This coefficient is, 
however, very complicated and cannot be simplified 
except in special cases, In the following, we discuss a 
rather special case where 0'1 = az = 0, Now the defini
tion of OC has been chosen such that from 

J 3(O') 1.1/110') = 1I11.i1110) 

one concludes 

(jIIW c iJ3(a) = 1I7<.i mac 10 

Thus Eq, (17b) implies, for the special case when 
a=oj=O'z, 

(jIl1O' I.ij/l/10'1;hIll20Z) 

= Om,mj+m2 (j1l1 0 l.ijllll 0 j;.izm 2( 2), (18) 

or the summation in Eq, (17a) over 111 can be omitted 
with the understanding that m = 11/1 + 1112, 10 eo , 

Ihll1 j o'j) Ihmz( 2) 

= 6 (i(mj + m2)O' l.il I11 10 1;.izm2 ( 2) l.i llla), 
j 

Note that since the a's are kept the same throughout 
J(1) . J<1l J(2) . J(2) 

JI(Il( )+1'(2)()- 1 -zo 2 + 1 -/.n 2 
3 n '3 (1 - (1- (2)1/2 (1- (2)1/2 

(JjU + Jj2» - in (Ji u +J?» 
(1- Cl2)1/2 

J j -iaJ2 I 

= (1- 0'2)1/2 =J3(n), 

(19) 

which results in the Simplification given in Eq, (18) 
above and the ones which follOW. Similar results hold 
for the operators J~(n). 

Next we operate both sides of Eq. (19) by J:(n) 
=J:(1J(a) +J:(2)(CI), Using Eq. (10), this operation gives 

aJ 1 (ml +1 ) ( (\' ) 

ah
m1 

(n) [(.it - 1/11H.il + ml + 1)]1/2 1.Uml + 1)0) 1.i2m 2(\') 

+ ai2 (mz+u (a) 
ai2 (CI) [(.iz- m2)(.iz+ m 2+ 1)]1/2 

m2 

X l.ilI111a) 1.i2(m2 + l)CI) 

=0 aijm+u(n) W-m)(.f+m+l)]l/2 
i a m(o) 

x (jll1al}lJI'11C1;jzm2C1) 1.i(1I1 + 1)0'), 

Next we use Eq, (17) again for l.il (1111 + 1)0) l.izm2n) 
and If1n/1(\') 1.iz(m2 + 1)0') which appear on the left-hand 
side of the above equation, This results in 

ai1 (ml+j)(n) 1 2 

ai lm (n) Wl- 1I1 1H.il+ rn l+ 1)]/ 
1 

X 0 (j (m + 1)0' If 1 (l11j + l)CI ;}2m2a) l.i (m + 1)0') 
i 

+ ai2 (m2+1l (0') 
ai2

m 
(a) ((j2 - m2)(f2 + 1n2 + 1)]1/2 

2 
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x 6 (i(m + 1)0' lilmlO';.iz(1I12 + 1)0') li(m + 1)0') 
j 

=6 ai~m+t)(a) [(j-m)(f+m+1)p/2 
i a m(n) 

x (jma Ihml n;,izm2a) I.Hm + l)n). 

In order to remove the sum over f we take the inner 
product of both sides with (j'(m + 1)0' 1 and use 

(20) 

(j'(m + l)n If(m + 1)0') = Ojj" [Note that this orthonormal
ity involves.i and not 111 and hence does not depend upon 
the non-Hermiticity of J3(a), 1 We also multiply by 
ailml(o)ai2m2(a)[ai(m+j)(o)]-1 to arrive at 

ai1 (m .o(o)ai2 m (CI) 
1 j ()2 [(h- m l){}1+ l1I j+l)F/2 
a (m.ll Ci' 

X (j(1/I + 1)0 l.il (Ill 1 + 1)0' ;f2m 2a ) 

ailml(a)ai2(m2+j)(O) 1 2 
+ ---aY--(n-)-- W2 -rnz)(h + 111 Z + 1)1 / 

m+l 

X (j(rn + 1)0' Ifln11a;,iz(m2 + 1)0') 

ail (n)ai2m (n) 
= ml 2 [(j_m)(j+n1+1)]t/2 

a'm(O) . . 

X (jl11a l.ilI111n;,izm20), 

which shows that the quantities 

aijmj(cr)ahmz(o). . . 
ai m(O) (Jma IJt Jn l o ;.Jz rH2 a ) 

(21) 

satisfy the same recursion relation as the one satisfied 
by the CG coefficients (jm Ihml;hn1~ of the rotation 
group, Hence we conclude that 

Un/a \flm10;hm2Cl') 

{3 ( . ..) a
j 

m ( a) <. I' . _ \ 
= Jt.JzJ; 0' il (u)ai2 (n).7 m .7t rn j;h 1l1y, 

a"'1 m2 
(22) 

where the coefficient (3(jljzf; 0') will have to be fixed by 
normalization and choice of phase. 8 These coefficients 
are independent of the magnetic quantum numbers. In
deed, in Eq. (22) we have been able to separate the 
dependence of the CG coefficient for the intelligent 
states into the corresponding CG coefficient of the rota
tion group and the normalization factors of the involved 
intelligent states. 

To calculate the {3's, it is clear from the above equa
tion that if we could obtain the coefficient on the left for 
some special values of the magnetic quantum numbers, 
we would be able to obtain the {3 in this equation, Note 
that Eq. (19) implies that the CG coefficient 
(jnw IjjI111n;jz1112n) can be obtained by taking the inner 
product of Ijlml n) Ih'l12a) with (.in1 n I. In Appendix B 
we shall carry out this program and show that the (3's 
can, in fact, be chosen to be just one. Thus we find 
finally 

UmCl!.ijn1 1n ;j2m2n ) 

_ aim(u) ..•. 
- ai1m (o)ai 2m (0') (pI? \Jllnb.72m~, (23) 

1 2 

where both sides are identically zero if In oft Inl + m2. 

At this stage, we wish to remark on the possible 
nonuniqueness in the expansion for the product 
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lijll/ja j) Ij2H12(2) in terms of the states 1j1l10). Already 
in Eq, (17a) wherein we defined the Clebsch-Gordan 
coefficients, we have the built- in nonuniqueness since 
the complex" a" appearing on the right is at our dis
posal. Note that the states Ij JJ/ 0) are complete for each 
CI '" 1. Considering the set of all "0" at our disposal, we 
possess a highly ol'enolllplefe set of vectors which 
should naturally result in the nonuniqueness expressed 
above, In the special caSe expressed in Eq. (19), we 
have restricted ourselves to 0 = Clj (note that OJ = 0'2)' 
Using the states IjIllCl') and Eq, (IIt 6) in Appendix C 
we can rewrite Eq, (19) as 

lijll/j (1) lizJi/20) 

im 

(24) 

which is an expansion as a linear combination of IjIllCl') 
and reduces to Eq. (19) in case Cl' = c/ on using Eq, (lla). 
Note that the expression on the right in the above equa
tion has the additional (perhaps artificial in this special 
case) summation over JII, 
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APPENDIX A: EXPLICIT VERIFICATION OF THE 
INVERSION IN EQ. (16) 

We proved Eq, (16) in Sec. 3 by using the knowledge 
of the effect of the operators J~(a) on Ijma). Now we 
verify that Eq, (16) indeed provides an inversion to Eq, 
(12). For this purpose, we substitute for lim fI 0) in Eq, 
(16) from Eq, (12), This makes the expression E on the 
right- hand side of Eq, (16) become 

(Al) 

Though 111 1, /112' 1113 summations may not be over integers, 
before performing any summation, we shall ensure that 
the variable we choose is indeed an integer, Now the 
1112 summation can be performed [by first replacing say 
(Jilt - IIIZ) by a new variable in place of 1112 and summing 
over it L This gives 

X exp(1I1 8) .. 3 . [u - m ) 'J t /2 
3 (}+ 171 3)! 

(A2) 

The r summation can now be done which results in 

[u - /11) !Jl /2 
E=exp(-m8) (- )1 0 liln~(-l)m3-mjexp(m38) 

.7 + 111 • mj m3 

x [Ci + 1113) ! J I /2 1 
(j - 1113)! (ml - Ill)! (- 1111 + 1113)! • 

(A3) 

Now the iJl 1 summation produces omm3 which finally gives 

E= lim), 

exactly the Same as on the left-hand side of Eq. (16). 

APPENDIX B: EVALUATION OF THE NORMALIZATION COEFFICIENT (3 v,i2i;a) 
In this Appendix we wish to compute the j3's that appeared in Eq. (22) relating the CG coefficients for the quasi

intelligent states with those of the rotation group, As remarked earlier, we should be able to compute {3's from 
the knowledge of the CG coefficient on the left for some special choice of values of the magnetic quantum numbers. 
From the representations for ijH1Cl) given in Eq, (12) we can, indeed, give an explicit answer for these CG co
efficients in terms of the CG coefficients of the rotation group, In general, however, manifesting the factorization 
expressed in Eq. (22) must be a formidable task, For a very special case, we might, hopefully, be lucky. This is 
fortunately the case for the special choice ))/1 =jj, 1/12 = - h, ill =il -h. Note that since ljl -j21 ~jcSjl +h the value 
i l -i 2 is indeed a permiSSible value, From the representations in Eq, (12) we obtain 

I· . > [i ()1-12-it[(2· )TJI/2~ I· ') exp(lI1j8) 
7t710' = alii CY .11·,;,i .lim I [Uj+mj)!(jl-mj)!11!2' (BI) 

I· ( .) [j2 ()1-12-h [( . )' 11/2 "I· ') ( 1)j2+m2 exp(m2 8) 
h -72 0' = a (-i2) a . 272' ~ }z1l12 - [(h+mf)!(h-lI1f)!11/2, (B2) 

and 

.: . 1_ i -I -JU-il+.hlJ.J I
/

2 I·. rU+ IIl ')!J I/2 
r exp(m'8*)(2j-Y)! 

(}(h-}z)a -[a (ici2)(a)1 2iU+il-h)! ~ J1I1')U.i-m')! (-2) Y!(j-jl+h- Y)!(j+m'-Y)!' (B3) 

Thus 

(j U 1 -i 2)0' Ij Ij 10' ;iz(- .i2)0') 
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_[ il ( ) i2 ()aJ ()]-12-<JI+J2+J)~(2jl)!(2h)!(j-h+jg)! )1/2 '\' (J'm'I)' (m'-m2')'J'2m !'\ - a i (]I a <-J l a <i -J l a ( . + . .) ! U 1 ,21 
1 2 1 2 ) 11-)2 mimir 

f J m • 2T(_ 1)Jz+m:l+r exp[ (m'(8 + 8*)] ( . + ')' ] 1/2 
XL (jl + m' - m2)! (jl- m'+ m2)! (h + m2)! (h - m2)1 (j- m')! 

(2j - r)! (B4) 

where knowing that the CG coefficient (jm' Ijlm; ;jgm2) can be nonzero only when m' = m; + m2, we have eliminated 
the summation over m1 by replacing m1 by m' - m2 everywhere. Now we use9 

Um 'jjl(m'- m2);hm2) 

_ [(2j + 1)(j - it + h) 1 (j 1 + m' - m2)! (it - m' + m2) 1 (h - mn 1 (j + m ') 1 ] 1 /2 
- (j+jl+h+1)I(-j+it+h)!(j+jl-j2)!(jg+m2)!(j-m')! 

xL:; (_1)-J+Jj+J2+s (h +m2+ s)! (j +h - m2 - s)! 
s s! (j 1 + m' - m2 - s)! (jg - m2 - s) 1(j -j j + m2 + s)! 

(B5) 

for the CG coefficient of the rotation group which appears above in Eq. (B4). This results is 

(jUt - j2)a/jtjt a ;jg(- jg)a) 

-[ J () J () J ()rt [ (2j+1)(2jl)!(212)! J t/2{(j-it+12)! 6 (_1)"J+Jj+2J2+m2ms2-<J+ij+J2l+r 
-alJtO!a2(_J2)aa(Jl_J2)a (j+it+jg+1)!(jt+jg-j)! (j+1t-jg) m'mirs 

U+m')! , * (2j-r)!(h+m£+s)!(j+h-m2-s)1 
x U - m ')!(jg + m2)! exp[m (8 + 8 )] r 1(j - jl + h - r) 1 (j + m' - r)! s! (jl + m' - m2 - s)! (j2 - m2 - s)! (j - it + m2+ s) 1 

(B6) 

The expression within the curly brackets is called S in the following. To Simplify S, we replace iz - m2 - s by s, 
i. e., we replace s by jg - m2 - s. This gives 

( . . . )' ( . + ')' 
S= ~ - ~1 +~2' L:; 2-(J+Jj+J2l+T(_1)"J+i 1-J2+r+s . J, m.. , exp[m'(8 + 8*)] 

(J + 11 - h)! m'",' TS (12 + m2)! () - m )! 
2 

(2j - r)! (212 - s)! (j +jl - 12 + s)! 
x r! (j _ jt + iz- r)! (j + m' - r)! s! (jj - jg + m' + s) 1 (iz - m2 -s)1 (j - il +iz - s)! 

The m2 summation now gives 22J2 -S/(2jg - s)! This results in 

x r! U - j 1 + jg - r) ! (j + m' - r) ! s ! (h -jg + m' + s) ! (j - it + jg - s) ! 

To put S in a form which can be recognized, we replace j - h + j2 - s by a new variable s which results in 

S = (~- ~1 +12)! L:; (~+ m:)! exp[ m '(8 + 8*)]2-2J+T+S(_ lr+s 
(J+Jl-J2)! m'rs (J-m)1 

(2j - r) 1 (2j - s)! 
x r! U -.i1 +jg - r)! (j + m' - r)!s! (j -it +jg - s)! (j + m' - s)! 

Comparing the above form of S with Eq. (12a), we immediately conclude 

S = [a i 
(J

j
-J

2
) (a) J2. 

Now we return to Eq. (B6). Recognizing that 

(" (. _ . ) I' . . . (_ . » - ( (2j + 1) (2j 1) ! (2j2) ! ) 1/2 
J 11 h 1111,12 h - (j+it+jg+l)!Ul+h-j)! ' 

we find 

(B7) 

(B8) 

(B9) 

(BlO) 

(Bll) 

which on comparison with Eq. (22) shows that (3(.it.i2.i; a)=l. Note that it has been fixed completely by the phase 
convention used in defining the relationship [Eqs. (12)] between the quaSi-intelligent states and the Wigner states. 
This equation has a built in phase convention which cannot be fixed by knowing only that Ijma) is an eigenstate of 
the operator J3(a). 

In the above computations, we have used the fact that the Clebsch-Gordan coefficient (j(jl-jg)a Ijtila;h(- jg)a) 
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is just the inner product (j(jl - j2)a I Wli2a) Ij2(- j2)a»). We could have also used that this coefficient is also equal to 
the inner product (j (jl - h)a C I (Ijljla) Ih(-h) a») [a'h_J2(a)]2 • It is obvious from (B9) above that the 5 corresponding 
to this new inner product would have been I and we would be able to reproduce the previous results. 

APPENDIX C: AN ANALOG OF THE EXPANSION OF THE UNIT OPERATOR 

In this Appendix, we shall prove that 

6\jma)(jma! raj m(a)]2 = 0 Ijm)(jm \ exp[m(8 + 8*)]. (CI) 
m m 

Using Eq. (12a) for Ijma) and Eq. (12b) for (jma I we get 

(C2) 

Now 

'" (_ I)J-m-r 1 (; t;: (j -m - r)! (j + m - s)! = 2j-r-s,O' 
(C3) 

From the above two equations, we obtain 

Ijm )(jm I exp(m e + m 8*). I.. 2' (_ l)i+m2-r [
(J' + m )' (j - m )'] I /2 

I 2 I 2 (J - Inl)! (J + In2) ! 

1 x----
(j + Inl - r)! (- j - m2 + r)! (C4) 

On performing the trivial r summation, we obtain a delta function (;mlm2 and finally arrive at Eq. (Cl) which is a 
generalization of the expansion of a unit operator in the sense that if we restricted ourselves to real 8 = 0, we would 
obtain as a special case of Eq. (Cl) 

o Ijma)(jma! =0 Ij111)(jml =J, (C5) 
m 

which is indeed an expansion of the unit operator. We did use the fact that for real e = 0, aJ m( a) = 1. But in this 
case, the states Ijma) are indeed orthonormalized by just writing 

!jma) = exp(8J3) exp(- ihJ2) Ijm) 

and Eq. (C5) should be obvious. 

Incidentally, a proof similar to the above results in 

'0ljma")(jma I (a J m(ry)F = 0 Ijm)(jm I =oj, 
m m 

IM.A. Rashid, J. Math. Phys. 19, 1391 (1978), 
2This restriction is explained in Ref, 1. 
3See Eq. (29) in Ref. 1. 
4The normalization of the operator Ji (a) has been chosen to 
have the same spectrum as that of J3• 

5Note that our normalization of the operators makes the an
swers of their effects on the quasi-intelligent states as very 
simple. 

6Note that Ji(a C ) = [Ji(a)lt, whereas J;(a C ) = [J;(a)]t. 
7See Eqs. (32b) and (32cl in Ref. 1. 
8We shall make this choice by invoking consistency with 
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I 

(C6) 

Eqs. (12). 
9(jm' Ijt (m' - mp;hmf> 

= (_l)Jj+jz-J (-I)iz+mi G11: ~) <jzm{; j (- m') I il (- m' + m2l> 
on combining Eqs. (3.5.15) and (3.5.17) in A. R. Edmonds, 
in Angular Momentum in Quantum Mechanics (Princeton 
U. p., Princeton, New Jersey, 1957). Finally we used 
Eq. (3.6.10) for the CG coefficient on the right. This prema
nipulation of the CG coefficient has reduced the size of the 
Append ix considerably. 
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Three- and four-wave interactions in plasmas 
T. J. M. Boyd and J. G. Turnera) 

UlIiversity of Wales, U.CN. w., Ballgor, Wales 
(Received 31 May 1977) 

The nonlinear interaction of three and four waves in a warm magnetized plasma is studied using the 
Lagrangian formalism. General expressions for the coupling coefficients are obtained in each case. 
Coupled-mode equations describing four-wave interactions have been derived and solved. The extension of 
the theory to the interaction of random phase waves and weak inhomogeneity is also discussed. 

1. INTRODUCTION 

The study of nonlinear plasma wave interactions is of 
fundamental importance in understanding the dynamics 
of a weakly turbulent plasma and since Sturrock1 first 
investigated the interaction of three one-dimensional 
plasma oscillations, increasing interest has focused on 
this aspect of plasma research. Applications of these 
nonlinear processes include studies of nonthermal plas
ma radiation, plasma diagnostics, and parametric decay 
processes. The latter are of current interest in connec
tion with laser fusion studies. 2 

The literature now abounds with studies of three-wave 
interactions where the usual approach adopted is the 
examination of specific triads of interacting waves uSing 
either conventional perturbation analysis of the govern
ing equations of motion (whether a fluid or a statistical 
mechanical description) or, less commonly, the alter
native based on the Lagrangian density for a plasma 
first formulated by Low. 3 

Many references to work adopting the former ap
proach are to be found in the monograph by Davidson. 4 

A particularly clear account of the role of the Lagran
gian approach to problems in nonlinear wave theory has 
been given by Whitham5 and its particular application to 
problems involving plasma waves may be found in the 
work of Boyd and Turner6

,7 and of Dougherty. B,9 

Conservation of energy and momentum for these in
teractions demands that the frequencies W j (w j > 0), 
j = 1,2,3 and corresponding wave vectors k j satisfy the 
synchronism conditions 

where W j(kj ) is the solution of the appropriate linear 
dispersion relation. In the linear regime the solution 

(1) 

(2) 

of the governing equations of motion for the electric 
field E is given by the superposition of plane waves of 
the form E=Re[Eoexpi(k,x-wt)] with Eo constant. An 
important assumption of the theory is that the fields 
described by the nonlinear equations can be approxi
mately represented by E(x, t) = Re[E(x, t) expi(k· x - '.VI) 1 
where E(x, t) is a slowly varying function of x and t, for 
which only the first derivatives with respect to x and t 
need be included. This description is equivalent to the 
Bogoliubov-Krylov lO multiple scale expansion of the 

alpermanent address: Polytechnic of Central London, 115 New 
Cavendish Street, London WIM 8JS, England. 

independent variables. In the well defined phase 
approximation (WDPA) corresponding to the criterion 
.:lwT« 1 where .:lw = W3 - W2 - W 1 is the frequency mis
match and T is some characteristic time of the physical 
process, the analysis leads to a set of coupled-mode 
equations 

( a l' r*, . iW~~2 at +vg1 ,z· V E 1 ,2 = TEt,l E 3 • 
1,2 

La )' r ,. 
iW;\,at+Vg3'''i7 E3= r

3

c 
E,E2, 

(3) 

where vgn=awn/akn is the group velocity of wave nand 
r weir ',2,3 are coupling coefficients. 

It is now logical to include all existing work on wave
wave interactions within a general theory of nonlinear 
wave coupling and in this paper we derive coupling 
coefficients for arbitrary three- and four-wave inter
actions in a warm magnetoactive plasma. In Sec. 2 a 
brief outline of the Lagrangian approach to nonlinear 
wave processes is presented and a general expression 
for the coupling coefficient r wc describing three-wave 
interactions is given in Sec. 3. In Sec. 4, the corre
sponding results for four-wave interactions are derived. 
Coupled-mode equations are also obtained using quantum 
mechanical conSiderations, and solutions of the 
coupled-mode equations are found. The paper concludes 
with a discussion in which the results are applied to the 
interaction between four longitudinal waves in a warm 
isotropic plasma. 

2. LAGRANGIAN THEORY 

In this section a brief account of the Lagrangian ap
proach to nonlinear plasma wave interactions is pres
ented. A detailed account of the procedure is to be 
found in Boyd and Turner. 6 The Lagrangian, first for
mula ted by Low, 3 for a warm plasma in a magnetic field 
Bo is 

L=J J Ldxdv, 

where L is the Lagrangian denSity given by 

L= ~.no"fo"(X'V)jn21<l! (Do"r"y-q,,(rp- VOA)} 
();-e,t l c 

+ X(v) ~(Vrp+..!.~)2 -("i71\AY], (4) 
87T ~ c at 

where a=e,i denotes the electron, ion contributions, 
n oOl is the equilibrium number density, and foOl is the 
equilibrium distribution function normalized to unity. 
mOl and qOl are the mass and charge of species a re-
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spectively, r", is the particle displacement, and ¢ and A 
are the electrostatic, and magnetic vector potentials, 
respectively. The operator D g " = a/at + V· 6. + v.i\ [2" 

• a /av, where n" = q "Bo/ In "e and I [2" I, is the particle 
cyclotron frequency. X(v) is an arbitrary function of 
velocity such that f X (v) dv = 1. The electric and magnetic 
fields are related to the potentials by the relations 

1 aA 
E= - VrP ---, B= VAA, 

e at 

The generalized variables for the Lagrangian density 
are r", rb, and A. The associated energy density His 
given by 

H=aLla(arc.\.~ +aL/ (a.A\.~.A -L at) at ry fJI7 ,,/ • 

Following Low's procedure we write r=ro+Er(ll, d,J 
= E rP( 1), and A = Ao + EA (1), where the subscript 0 refers 
to the equilibrium state and the superscript (1) denotes 
the perturbation of this state due to the waves. A formal 
expansion of Land H may now be made in powers of the 
perturbation E, 

L=Lo+eLl+E2L2+E3L3+e4L4+'" 

with a corresponding expansion for H. Lo involves 
equilibrium quantities only and L 1 has no effect on the 
equations of motion for the first-order quantities. The 
variation of L 2 with respect to the generalized variables 
yields the linear Vlasov -Maxwell equations describing 
plasma wave propagation. Wave-wave interactions are 
then described by third and higher order terms. For 
three -wave interactions, the perturbation series is 
truncated after L3 whilst the inclusion of L4 allows a de
scription of four-wave interaction processes. Dropping 
the superscript (1) for convenience, the expressions 
for L3 and L4 are given by 

L3 = ~ no", foa (- tq ,,(r a' V)2d,J + ~~ V· (r O!' V)2 A 

+ qe" Do",r,,' (r"'V)A)' 

L=?;no",folY. (-iq",(ra·vpcP 

+!lJLv'(r .V)3A+'l..!:..D r ·(r 'V)2A). 
6e '" 2c g"" " 

(5) 

(6) 

In the case of a linear wave, for some parameter of 
wave n 

(7) 

with Un constant in space and time. To describe wave 
coupling it is now assumed that solutions of the nonlin
ear equations have the form (7) but with Un now being 
regarded as a slowly varying function of x and t, so that 

(8) 

The perturbations are now separated into their in
dividual wave components, so that for general three-, 
four-wave interactions, 

3;4 3;4 3;4 

r,,=Z r n", d,J=L rPn' A=Z An, (9) 
n:::l n=l n=l 

with each r nc" riJ n , An given by expressions of the form 
(8). We now introduce a space-time averaging proce
dure (denoted by a bar) taken over intervals of space 
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and periods of time which are long compared with the 
periods of oscillation k~l, W~l, but short compare.d with 
intervals and periods over which the amplitudes Un vary 
appreciably. Choosing gauge potentials such that the 
scalar potential in the transverse waves vanishes, then 

EL=_V¢ ET=_..!.~, B=VAA. , e at 

Finally from L2 we derive the linear equations of 
motion which enable us to express the {rna" CPn, An} in 
terms of one wave parameter. In our case, we choose 
this to be the electric field wave amplitude of each wave 
En' The variation of L with respect to r a yields the 
first-order Lorentz equation 

With this substitution, we find that 

H 2n '= r li2n dv = r i: n i! , (10) 

(11) 

where the asterisk denotes complex conjugate (c. c. ), 
The expression for the fourth order wave coupling ener
gy per unit volume will be deferred until Seco 4. The 
expression of H2 in terms of the electric field wave 
amplitude enables the coefficients r n to be calculated 
directly from the linear dispersion relation for wave n, 
since with our gauge for the scalar potential, the ener
gy per unit volume of a longitudinal (L), transverse (T) 
wave is given respectively by 

H;;= l~JT(i): [weL(k,w)ltowJ~nI2, 
where wn is a solution of the dispersion relation EL(k, ,-,-,) 
=0 and 

H:= l~JT C a~ [w
2
e

T
(k,w)lt_w IEnl\ 

- n 

where Wn satisfies ET(k,w)=e 21l/w2
o It follows imme

diately that 

(12) 

and 

(13) 

3. THREE-WAVE INTERACTIONS 

For three-wave processes, in view of the frequency 
conservation relation (1), any interaction is possible 
in which a high frequency wave decays into a low fre
quency wave together with a wave of the same type as 
the high frequency one. For example, in a warm iso
tropic plasma where electron plasma oscillations (L), 
ion-acoustic waves (fA), and transverse waves (T) 
exist, any of the following interactions are possible: 

(a) T~T+L, (b) L~L+IA, (c) T=T+IA, 

(d) L+L~T, (e) L+IA~T, (f) T+IA~L. 

It is clear that (d) will only occur for transverse waves 
whose frequencies are near 2w pe where wpe is the elec-
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tron plasma frequency, whilst (e) and (f) are possible 
only if the frequencies of the transverse waves are near 
wpe- In a magnetoactive plasma, further types of inter
action process can occur, e. g., T:;:= T + T since a 
magnetized plasma is capable of supporting a larger 
variety of wave motions. 

The form of the coupling coefficient r we describing 
the interaction of three arbitrary plasma waves whose 
frequency and wavevectors satisfy (a) and (b) is ob
tained from Eq. (5) where, following (9) we write 

cfi = cfil + cfi2 + cfi 3, 

A=Al +A2 +A3 • 

Substituting these expressions into (5), defining Xn 
= E~ /1 E~ I, Sna~ Dnc,z. na and us!ng the gauge potential 
relations (Pn = iE~ /kn, A" = - i cE~ / wn' then the space
time average of L3 is given by 

L- '\' {. [( A k )( A* k )(if (v' xJEi ) 3=t.-;; tlo",q",fo", t r 2a ' 1 r 3 o<' 1 ~+ WI 

4. FOUR-WAVE INTERACTIONS 

Use of the Lorentz equation, together with the other 
small-signal equati0lls of motion, enables 1'nato be ex
pressed in terms of En so that (14) may be cast into the 
required form 

(15) 

We observe that the effect of the averaging has been to 
separate synchronous terms, i. eo, those which have no 
net phase dependence, from those with nonzero phase 
which vanish. The physics of the wave interaction is 
contained in r we = r u)c.c'n' k n}, 11 = 1,2,3, and the space
time evolution of the electric field wave amplitudes of 
the interacting waves is then prescribed by (c). For any 
specific interaction, an expression for r we is obtained 
by inserting the appropriate {rna'! into (14), and in 
Appendix A explicit results for particle displacement 
vector amplitudes r"", and the corresponding coefficient 
r n are given for a number of plasma waves. 

Although at first sight, L 3 contains a large number of 
terms, many are absent for a particular interaction, 
e. g., in the case wi = wf + wJ, then i;= 0= if and 
ii = 0, Terms may also vanish if a one- or two-dimen
sional analysis is performed, rather than the general 
three-dimensional one presented here. For a plasma in 
a constant magnetic field Bo=(O,O,Bo) referred to a 
Cartesian triad Oxy z where v = (11 1 cosciJ ,1)1 sinl)! , 1),), 
the operator Dn",,,,,alat+v,v+V/ln,,, oa/av 
= - i(w - k· v) - n",il /a1/!. Note also that for a warm 
isotropic plasma n", = ° while for a cold plasma foOl 
= 6(v) and Dna"" - iw. 

The form of the coupling coefficient given by (14) and 
(15) agrees with that obtained by Larsson and Stenflo. 11 

To date, theoretical treatments have concentrated mainly on three-wave interactions Since in many practical 
Situations, higher order processes produce no measurable effect on plasma behavior. This is no longer always the 
case, however, with the intense power sources now available and for this reason it is timely to examine the general 
problem of four-wave interactions in a homogeneous plasma. For example, although two electron plasma oscilla
tions (plasmons) cannot interact to produce a third, conservation of energy and momentum permit four plasmon 
processes. 

For these quadruple processes, the synchronism conditions are 

(16) 

(17) 

The coupling coefficients for these four-wave interactions are obtained from the space-time average of L4 where 
L4 is given by (6). From Sec. 2, we recall that these variables are now separated into their individual wave 
components 

4 4 4 

1' Ol =6 1' nOl , rp=~ rD n, A=6 An n=l n=l n=l 

with each wave variable given by expressions..£>f the form (8). Use of the gauge potential relations then leads after 
some algebra to the following expression for L4 , 

[4 = i2~ no",q alOOl(X, v) {- 2 [(1'2' kJ(r:· kJ(ft . kl)(!f + (v' :1)Eir (rj . k2)(1't . k2)(1\ . k2)(¥ + (v· X2)iJ) 

+ (1': . k3)(1' I' k3)(r2 . k3)(Ef + (v 'X!~ir* ~+ (1'11. k4)(r2 . k:)(r: 'k4)(if + (v . ::)iI*~} :i((1'2 . :I~(rj . kl)(S! . Xl) ~ 
A A A F;T A iT A iT A iT 

+ (1'2 . k 1)(r! • kl)(Sj . Xl)_l + (r; . kl)(r! . kl}(S2· X)_l + (r 1 • k2)(r; . ~ )(S: . xJ-2- + (r 1 • kl)(r: . k2)(Sj' . X2)_2 
WI WI W2 W2 
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A A i;H .'1;!... A A A E T* 4 4 A A A i;T* } 
x(rj'. kj)(Sj . xn =.L- - 2/ ~ LJ (r i ' k)(r; ·k)(Sj· x7) _, - - 2i,0 ,0 (r i' k)(r

j
• k)(S;· x7) -'- + c. c., 

Wj 1=1 J=1 Wi t=1 ;=1 Wi 
i tj it} 

(18) 

where the subscript ()I has been dropped from the rnOi and Sn", for brevity. The terms included in the sums over i and 
over i and j are the "self-energy" terms, of which more will be said later, 

Use of the small-signal equations of motion derived from L 2 gives 
_ 4 1 

J L 4 dv = I '111'c E /i2Ej Et + r:wc E'; E: E3E 4 + I) ~ Q ijE iE ; E ir , 
t=1 )=1 

i~j 

(19) 

where the coefficients Q ij are real functions of w
n

, kn (II = 1,2,3,4). 

An interesting feature of (19) is the appearance of the terms 
4 4 

.0 LQijIEiEY. 
!=l J-::1 

i~ i 

These are the so-called "self-energy" or "forward scattering" terms which arise when particles in the oscillation 
interact with the potential of the wave itself and are discussed in Fukai, Krishan, and Harris, 12 As will be observed 
below, these self -energy terms produce no effect on the power flow between the interacting waves. It should be 
noted that these self-energy terms are analogous to the quadratic Kerr effect terms which arise in the study of four 
interacting intense electromagnetic waves in nonlinear crystals. 13 

Having obtained the interaction energy per unit volume, we now derive coupled-mode equations describing four
wave interactions for which a formulation in quantum mechanical terms is particularly convenient. 

A. Coupled-mode equations 

In the quantum mechanical approach to nonlinear plas
ma wave interactions one considers the plasma consist
ing of the plasma particles together with quasiparticles 
which are the individual quanta of the waves. The inter
action between waves can then be thought of as effects 
involving the emission and absorption of certain quasi
particles by others. Introducing the normalized field 
amplitudes Bn where En= (liwn/rn)I/2Bn where 27Tn is 
Planck's constant, then from (10) and (19), the nth wave 
energy density and wave coupling energy density become 

Hzn = trwnB~Bll= trwnNn' (20) 

f 1/2 

-L 2(W1W2W 3W 4) [r B B BtBt rt BtBt 
4 dv = Ii r r r r 4wc 1 2 3 4 + 4w c 1 2 

1 ~ 3 q 

x B3B41 
·1 4 

+ ftE L WiWj Q .. BBtB Bt (21) 
i=l j=l rir

j 
11 t t } J' 

i~i 

where t denotes Hermitian conjugate. From (20) it can be 
seen that the energy density for wave 11 is equivalent to 
N n independent quantum oscillators, each with energy 
liw n. The transition from classical to quantum mechan
ics can then be made by interpreting Bn and B~ as anni
hilation and creation operators respectively for quasi
particles of wave 11, so that, apart from sign, (21) now 
represents the interaction Hamiltonian. This transition 
from the classical to the quantum mechanical Hamilton
ian is the familiar second quantization and it is via this 
process that the particle nature of the waves arises, 
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I The creation and annihilation operators satisfy the 
commutation relations for bosons 

where the commutator [A,B}=AB-BAo PhYSically, we 
observe that the product of operators appearing in the 
first term of (21) corresponds to the creation of waves 
1 and 2 and the destruction of waves 3 and 4. The second 
term describes the inverse process. A fuller account 
of the quantization of waves in dispersive media and the 
application to nonlinear plasma wave interactions can be 
found in Askne. 14 

The equations of motion for the Bn follow from the 
Heisenberg equations 

ili
dBn 

=[B ,Hint] (n=1,2,3,4), elf n 

where Hint = - J L4 dv is the interaction Hamiltonian. In 
order to obtain the equations, the following commutator 
relations are needed: 

and 

if n = 1,2, 
ifn=3, 
if 11 = 4, 

ifn=l, 
if 11= 2, 
if 11=3,4, 
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where t denotes the Hermitian conjugate and 15ij is the 
Kronecker delta. The resulting equations obtained after 
a little algebra are now reinterpreted as classical dif
ferential equations for the normalized wave amplitudes. 
If we reintroduce the electric field wave amplitudes via 
Bn = (r nllfwn)1/2En' define real constants CiJ by 

Cii=2QiP Cij=Cji=Qij for i<j, i,j=1,2,3,4, 

and note that dldl '" i1/Cit + vg ' V', these equations produce 
the required coupled mode equations 

These equations can be cast into canonical form by 
defining 

E=(.!::l)1/
2
F . r = iv(rlr2r 3r 4 )1/2, 

J \rj J' 4wc W 1W 2W 3W 4 

and (22) becomes 
4 

[)I,2 F l,2= V*F~,IF3F4 +Fl,22/il,2iFiF; 

4 

* ~ * [)3,4F 3,4 = - VFlF 2F 4,3 + F3,4f; g3,4jFjFi . 

(22) 

(23) 

Multiplying these equations by Fi',2,3,4 respectively, 
adding its complex conjugate and noting that the coeffi
cients gjl are pure imaginary, produces the action 
transfer relations in the form 

where Cn IW n = (r jw n) I Enl2 is the action density of wave 
n (energy density divided by frequency) and 8 
= VFlF 2FjFt + c. c. From (24) we observe that the self
energy terms which appear in the coupled-mode equa
tions have no effect on the rate of transfer of energy 
between the waves participating in the interaction. 

B. Solutions of the coupled-mode equations for four
wave interactions 

We now obtain analytic solutions of the coupled-mode 
equations (23) and in order to simplify the analysis, we 
assume that the electric field wave amplitudes vary only 
with time. Writing 

(25) 

with ail {3j real and V = I V I e i6
, separation of the real 

and imaginary parts of (23) gives 

(26) 
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2~3'4 =_ I Vlala2a4,3cos(e+ 15), 

and 

respectively, where e= {34 + {33 - {32 - {3l and gji = ill jj so 
that hjj is real. Adding these last four equations pro
duces an equation for the temporal evolution of the 
phase difference ti, 

il ti ();) [ 1 at = - tan ti + 15 at In a la 2(13a4 

4 

+ L (lZjj +h 2j -h3' -lz4)(1~. (27) 
i= 1 

The Manley-Rowe relations, derived from the action 
transfer relations (24) are 

with Ill' 1l2' and 113 constants. Equation (27) can be 
integrated directly to give 

ap2a3a4sin«(;I+ 6) 

=0-+ (41 vi )-1 (Pla;+ 1)2a~ -P3(1~ -jJ 4a!), 

(28) 

(29) 

where 0- is an integration constant and j) i = II I 1 + h2 i - h:3 i 
-11 41 , From (26) 

:, a;(t) = - 21 V I (1l(12a3(14 cos( e + 6) (30) 

(32) 
where (]II' (]I2' (]I 3 , (]I4 are the roots for a~ of Q = 0 and 

Q '" a!(a! - Ill)(a! - 1l2)(a! - IlJ -(0-+ 4 /V I [PI (a~ - 11,)2 

+ p2(a~ - IlY -P3(a! - 1l3)2 -P4a!lY. 

For bounded solutions corresponding to the transfer of 
energy continuously among the modes taking part in the 
interaction, the roots of Q satisfy 

0"" (]II "" (]I2 "" (]I3 "" (]I4 with (]Iz '" a!(t) .<; (]I3' 

In the general case where (]Il,2,3,4 are all distinct, 
solution for a!(t) is given by 

2(t) _ (]I 2 «(]I 3 - (]II) - (]II «(]I 3 - (]I 2) sn2 (A, y) 
~ - ( , 

Q/ 3 - (]II) - (Q/3 - (]I2) sn2 (A, y) 

T.J.M. Boyd and J.G. Turner 
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FIG. 1. Plots of the individual wave amplitudesaj(t) for 0'2/0'1=5,0'3/0'1=6,0'4/0'1=9 (1'2",0.4),0'2=5.103, andal(0)=10, az(O) 
=30, a3(0)=50. 

where 
A. == I V I [(0'4 - 0' )(0'3 - 0' 1) ]1/ 2 (t - to), 

The solutions for the other normalized wave amplitudes 
are then 

'Y == [(0' 3 - 0' 2)(0'4 - 0' 1) /( 0'4 - 0' 2)(0'3 - 0' 1) ]1/2 

is the modulus of the Jacobian elliptic function sn, and 
10 is a constant defined by 

sn[1 V 1[(0'4 - 0'2)(0'3 - 0'1»)1/ 2/°' 'Y1 

_l(0'3 - O'I)[a!(O) - 0'21 J1/2
• 

- [(0'3 -0'2)[a;(0) - O'IJ J 

cIt) 

<lJ 
U 
:J 

a. 
E 
o 

"0 
<lI 
N 

o 
E 
(; 
z 

20 

10 

ai(O = ai(O) + a!(O) - a!(t), 

a;(t) = a~(O) + a~(O) - a~(t), 

a;(I) = a;(O) - a!(O) + a~(t). 
The behavior of these wave amplitudes aj(t), j 
== 1, 2, 3, 4, for two sets of initial conditions is shown in 
Figs. 1 and 2. For convenience we have set I VI = 1 and 
to=O so that a4 (0)=.;a;-. 

........ 

-- IN2 
•••••....•. IN3 

-- IN4 

Initial distribution 
0,10) = 700 0210).10.0 

03(0)= 200 °4(0)=70.7 

~~------------------~--~-------------------L--~~--t 
Time 

FIG. 2. Plots of the wave amplitudes for a1 (0) = 70, az(O) = 10, a3(O) '" 20; other parameters as for Fig. 1. 
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WI + W2 + W3 = W4 • 

ki +k2 +k3=k4' 
We conclude this section by noting that the results 

presented here are readily adapted for the quadruple 
process where three waves merge into one or one wave 
splits into three. The synchronism conditions for these 
processes are 

and in Appendix B the corresponding expression for L4 
is given together with the relevant coupled-mode 
equations. 

5. DISCUSSION 

In this paper we have derived general results for the nonlinear interaction of three and four waves in a warm 
homogeneous plasma. For a particular interaction the rnOl for each of the interacting waves is calculated explicitly 
and inserted into the averaged Lagrangian. The coupling coefficient for the interaction is then obtained directly as 
described in Sec. 3 and 4 while the coefficients r n which are also required in the coupled-mode equations describing 
the interaction are derived from the relevant dispersion relation. A detailed, but not exhaustive list of expressions 
for r no< and r n for a variety of plasma waves in cold and warm plasma is tabulated in Appendix A. As an illustration 
of the general theory, consider the interaction between four longitudinal waves in a warm isotropic plasma. The 
synchronism conditions (16) and (17) permit three distinct nonlinear processes: interaction between four electron 
plasma oscillations (L), between four ion-acoustic waves (IA), and between two L-modes and two lA-modes. From 
Table I of Appendix A, substituting r", = -q",Ek/m",kw '2 where w' = w -k·v into (18) gives 

L- - i" q; j ( ){t2(~' kl )(k3 • kl)(k4 • kl) + 2(k3 • k2)(k4• k2)(kl . k2 ) + 2(k4 . k 3)(k1 • ~)(k2' k3) 
4 - 32 f.J nolY. 3 0", V k k k k ( I I ')2 k k k k ( I , ')2 k k k k ( , , ')2 "m" I 2 3 4 W2W3W4 I 2 3 4 W3W4WI I 2 3 4 W4W1W2 

+ 2(k1 • k4 )(k2 • k4 )(k3· k4 ) J E E E* E* + t (k;' k;)3 (E .E*)2 + 2 t t (k;' k;)(k;' k;)2 E .E'f E E*} + c C 

klk2k3k4(W~W~W~)2 1 2 3 4 ;=1 kjw;6 I I i=~ ;=1 k~k~(w;WJ2)2 I I j J •• 
t~j _ 

For the interaction wf + wr = w~ + w~, (17) implies that ki + k~=k; + k; and the ion contribution to L4 may be ne
glected. Assuming a Maxwellian distribution and noting that w~"" wn , the coupling coefficient r 4we , and Q ii and Qij 
may be written immediately, i. e. , 

(
(k1 • k,)(k1 • k3)(k1 • k4 ) + (k2 . kl )(k2• k3)(k2 • k4 ) + (k3· k1)(k3· k2)(~ . k4 ) + (k4 • k 1)(k4 • k2)(k4 • k3) ) 

(W2W3'»4)2 (W 1W3W4 )2 (W1W2W4)2 (W IW2W3)2' 

These results, agree with those obtained by Zakharov 15 for a cold plasma. For the process where four ion-acoustic 
waves interact, so that W~A + W~A = W~A + W~A, both electron and ion terms are retained. On noting that w~ "" Wn, knve 
for the ion, electron contribution respectively, the coupling coefficients become 

r _ e2w~; ((ki . ~)(ki . k3)(kl . k4 ) + (k2 • kJ(k2 • k3)(k2 • k4 ) + (k3• kl)(k3 . k2)(k3 . k4 ) + (k4 • k I )(k4 • k2)(k4 0 k3) ) 
4wc - 6417m~k Ik2kSk4 \; (W2W3W 4)2 (W IW3W4)2 (WIW 2W4)2 (W IW2W3>' 

+ e2W~ev~6 ((ki . k2)(k1 • k3)(kl . k4 ) + (~ . kl)(~ • k3)(k:a 0 k4 ) + (k3 • k l)(k3 • k2)(~ . k4 ) + (k4 • k I )(k4 • k2)(k4 • k3») 
6417m;kIk2k 3k4 \; (k2k3k4)2 (kIk3k4)2 (k Ik2k4)2 (kIk2k3)2 

Also from Table I, we note that r L 
"" (817t 1 and rIA"" W;/817WiA' Corresponding expressions for the nonlinear 

interaction between ion-acoustic and electron plasma oscillations can be Similarly obtained. 

The theory presented here can be readily 8::..:tended to include nonlinear coupling in plasmas with particle drift 
motions, linear damping of the individual modes, frequency and/or wave-vector mismatch and weak inhomogeneity. 
Wave damping can be taken into account by the transition 

a a at + v gn • V' - at + Y n + V gn • V' 

in Eqs. (3) and (22) where Y n denotes the linear damping of wave n. 

In the case of frequency/wave-vector mismatch, denoting k3 -k2 -kl by ~k and W3 -W2 -WI by ~w for three-wave 
interactions (with corresponding expressions for quadruple processes), the coupled-mode equations are modified 
by making the transformations 

rwe - r we expi(~wt - ~k' x), r 4we - r 4we exp[i(~wt - ~k' x)]. 

Weak inhomogeneity may also be included within the framework of the theory by amending the space-time behav
ior of the nonlinear wave parameters given by (8). For a spatially inhomogeneous plasma whose properties vary 
with x, the nonlinear waves are now described by 
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(34) 

with ok n(O) == kl + k2 - k3( - k4 ) = ° = W 1 + w2 - w3 ( - w4 ). Thus at x == 0, the local frequency and wave vectors satisfy the 
synchronism conditions in a homogeneous plasma. The quantity okn(x) is found from the local dispersion relation 
for wave n in the inhomogeneous plasma. We have shown that the equations describing the evolution of three (four) 
nonlinearly interacting waves in a weakly inhomogeneous plasma (denoted by I) are given by the coupled-mode equa
tions (3), (22) for the homogeneous plasma (denoted by H), with the inhomogeneous coupling coefficients r~co riwc 
being given by 

r~c - r~c exp[i r K(x) dx], r{wc - r~wc exp[i r K' (x) dx], 
° ° 

where K(x) == okl + Ok 2 - Ok3 and K'(x) = Ok l + ok 2 - Ok3 - ok 4 • Rosenbluthl6 has examined a three-wave parametric in-
stability in connection with laser plasma interactions for a weakly inhomogeneous plasma using these coupled-mode 
equations. 

APPENDIX A 

The particle displacement vector r a' dispersion relation, and wave polarization are determined from the small
signal equations of motion derived from L. Variation of L with respect to r", produces the Lorentz equation 

m"D~ara==qa(E+~V"'B)+~'" Dnar","Bo. (AI) 

Variation of L2 with respect to rf> produces the first-order Poisson equation 

'V' • E == - 41T '£ q", J rloa / o",( 'V' • r ",) dv (A2) 

'" whilst variation with respect to A produces the Maxwell equation 

I ClE 41T r 
'V' " B = - ~t + - 6 q", dv[no",/oa(Dnar a) - v'V" (noafoa r ",)]. cue a • 

(A3) 

For longitudinal waves, use of (AI) and (A2) produces the dispersion relation EL(k, w) = ° from which r L can be cal
culated [see Eq. (12)] while for transverse waves, the dispersion relation and wave polarization for a speCific mode 
are determined by (AI) and (A3). 

Solutions of the appropriate equations then produce an expression for the linear wave of the form 

r" = Re[i' '" expi(k· x - wt)]= Re[F(w,k, v)E expi(k· x - wt)] (A4) 

with r a' E constants in space and time and where the function F(w, k, v) is determined by the particular plasma 
wave. In accordance with the theory presented in Sec. 2 we now assume that the solutions of the nonlinear equations 
.describing wave coupling have the form (A4) with r a , E now being treated as slowly varying functions of x and t. 
Hence omitting the exponential factor in (A4), the slowly varying particle displacement vector r", which will be 
placed into (14) or (18) can be expressed in the form 

ra=F(,.tJ,k,v)E. 

Tables of results for a number of plasma waves are presented and we define the following parameters: 

Electron/ion plasma frequency wpe. i = (41T11 oe . i e2 /me.)1 f 2, 

electron/ion temperature 

electron/ion thermal speed 

electron/ion Debye length 

TABLE I. Warm isotropic plasma. 

Mode 

Longitudinal 

Electron plasma 
oscillation 

Ion-acoustic 
wave 

Transverse 
electromagnetic wave 

Te. i> 

1}e.1 = (KTe .Jme • i )1(2, 

Dispersion relation 

l '<'Z[/ogdv 0 
-~wpaJ-(w-k'v)2 = 

1410 J. Math. Phys .• Vol. 19. No.6. June 1978 
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rj=O 

re=eElmewz 

~ ~ 2 
rj=-eE/mjw 

re = eEl mek2v~ 
rj=o; 
re= eElmewz 
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TABLE II. Cold anisotropic plasma-longitudinal waves. 

I 

Mode 

Upper-hybrid 
wave 

Electron 
plasma wave 

Lower-hybrid 
wave 

Dispersion 
relation 

upper-hybrid frequency 

lower-hybrid frequency 

r 

as above 

( 2 1"'\2)1/2 WUH=Wpe+"e , 

WLH= Wpe( I ne I 51;)1/2 /WUH' 

Alfven speed 1) A = Bo/(4rrnoemy/2, 

ion-acoustic speed c s = (me/mj)1/2ve' 

as above 

We take Bo= (0, 0, Bo) referred to a Cartesian frame Oxyz with Bo constant and 8= cos-1(k' z/k). We also define 
k=(k1cos/3,k1sin/3,k ll ), v=(v1cosljJ, v1sinljJ, 11,,); 

vi.R = 2w2(W 2 - w;e) - w2n! sin2 fI ± 2w I ne I (w 2 - w;e) cos e, 

b _ w;.(w 2 
- w~) cos2 fI cote 

1- w2[n;sin2e+(w2-W:e)cos2ej 
b = In, I W~e sin2 e cote [w(w2 - wpe) - wn! sin2e] 

2 w[n;Sin2 e+(W2_W!e)cos2 eJ 'g= Inel(w!e-w2cos2e) , 

TABLE III. Cold anisotropic plasma-general waves. 

Mode 

Fast Alfven 
wave 

Slow Alfven 
wave 

Ion cyclotron 
wave 

Dispersi.on 
relati.on r 

:rr (1 <i ) sec
2
0 

c4k4 

r", 

~ -q",E(1 + ng/w) (1 . 0) 
r", - m (2 2 , - t, 

v2m", w -n" 

as above 

Whistler or 
helicon wave 

W~e I fie I cosO eE . 
rj =0 ; re mew(w cosll- I fie 1)(1 +b 2)1/2 (cose, z, 0), 

Electron 
cyclotron wave 

LCP/RCP 

Electron 
mode 

Ordinary 
mode 

W~ 
W(W - I n. I cosO) 

1 a ( 2 T ) 16rrwaw W €L,R 

~fl 8rr, wte sin2 Ocos2 0 ) 
(",2 _ wk cos2 0)2 

Extraordinary c2k 2 (1- w$e/w2)2 - (n~/w2)sin2 e 
mode 7- (1-w$./w2) - (n~/w2)sin2e 

1411 J. Math. Phys., Vol. 19, No.6, June 1978 

where b= (w- I n. I cose)/(wcos9-1 nel) 

as above 

rl =0 

~ eE 
r. mew2 (l+d2)1/2 (bl , -ib 2• 1) 

~ eE(1+i)-1/2. 2 
re - (2 2 2 e) (sm Ii. ih, 0) me wpe-w COS 
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TABLE IV. Warm anisotropic plasma-Longitudinal waves. 

Mode 

Bernstein 
modes 

Cyclotron 
harmonic 
waves 
(k,,=O) 

Electron 
and ion 
cyclotron 
waves 
(k,,= 0) 

Dispersion relation 

EL (k, w) = 0 where 

E
L

= 1 -{ ~ (kAD,,)-2 C dv"io" (v,,) 

x ~ (k"v" + nQ")CTn,, } 
n=-~ (w - kllvlI - nQ,,) 

(n,," 2) 

r 

h=(w2 -w;e)/w)Oe) , il"=k1vjO,,, iI.,,=k~v~/O~. Qp=(w-k"v,,-pO,,), un",=exp(-il.")In(iI.,,,), 

and I n, In are Bessel functions of the first kind. 

APPENDIX B 

The nonlinear process where one wave decays into three, and three waves coalesce to produce one are described 
by the synchronism conditions 

The space-time averaged Lagrangian density describing the interaction is given by 

14= i2~no"fo"(X'V)q,,{-2[(r2'k1)(1'3'k1)(1':'kr>(~: + (v'~~Ei)+(1'3'k)(r:'k2)(r1'k2)(~! + (v'
X
;:[ j 

+ (r:· k3)(r1· k3)(r2 , k3)(~: + (v ':3;E[)+ (1'1' k4)(1'2 ' k4 )(1'3 ' k4)(~:* + (v ·x~:r* )J+2i~1'2 ·k1)(r3· kJ(S: 'xJ~~ 

~ jj;T* _ ET* - ET* J 4 , [EL* 
- (1'1 . k

4
)(r2' k4)(S3 'X:) _4_ - (1-1' k4 )(r3 , k4)(S2 'X:)_4- - (1\· k4)(r3 • k4)(Sl . xt) _4_ -.0 (1' i . k)2(r:. k j) -L-k 

W4 W4 W4 ,=1 i 

(v *)i;T*] 4 4 [EL* (v X*)E~J 4 - i;n 4 4 + 'Xi i -2~'£(rj.k)(1'j.ki)(r;'kj) _i + . i i -i.0(ri'kij2(Si'xn-i--2i~.0(ri"kj) 
Wi 1::1 j=l k i Wi i=l Wi t=1 J=1 

i tj 

_ ~ ET* ~ 4 ~ ~ ~ ET* 4 4 _ ~ ~ E!* } 
x(r*·k)(S,·x*)..=.L..-2iD .0(r·k)(r*·k)(S·X*)-'--2i.0.0 (r,·k.)(rj.k.)(S*'X*)-'- +coc. 

t J J ) W j i=l j=l t J 1 } 1 Wi i=l j=l t t t ) t Wi 
I#j it} 

The self-energy terms are identical for the two types of quadruple process. Using the small-signal equations of 
motion, the integrated Lagrangian density will be of the form [cr. (19)J 

fL4dV =Y4wcE1E2Ei£! +Y:wcEfEiEjE4 + t t QjjEiE; Ei E: 
1=1 j=l 

i~j 

and the corresponding coupled-mode equations are 
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Path integrals for solving some electromagnetic edge 
diffraction problems8

) 

S. W. Lee 

Electromagnetics Laboratory, Department of Electrical Engineering, University of Illinois at Urbana
Champaign. Urbana, Illinois 61801 
(Received 8 November 1977) 

Electromagnetic edge diffraction problems involving parallel half-planes are traditionally attacked by the 
Wiener-Hopf technique, or asymptotically for a large wavenumber (k---loo) by ray-optic techniques. This 
paper reports a novel method in which the electromagnetic wave equation is first converted to a heat 
equation via the Laplace transform. The heat equation together with the original boundary condition is 
next solved approximately in terms of a path integral over the Wiener measure. For several examples 
involving two parallel half-planes, the path integral is evaluated explicitly to yield an asymptotic solution 
of order k 0 for the field on the incident shadow boundary. Those solutions agree with the ones derived by 
traditional techniques, but are obtained here in a much simpler manner. In other examples involving 
multiple half-planes, the use of a path integral leads to new solutions. We have not succeeded, however, 
in generating higher-order terms beyond k 0 in the asymptotic solution by path integrals. 

1. INTRODUCTION 

Path integrals were introduced independently by 
N. Wiener in 1924 and by R. P. Feynman in 1948. They 
have since been used extensively in quantum mechanics 
and studied rigorously as a new branch of mathematics. 
An introduction to path integrals can be found in Ref. 1 
and in the first three chapters of Ref. 2. 

In the present paper, the path integral technique is 
applied to the calculation of the time-harmonic electro
magnetic field on the incident shadow boundary in 
several edge-diffraction problems involving parallel 
half-planes. The solutions thus obtained are asymptoti
cally valid for a large wavenumber h (27T/wavelength) 
and include only the dominant terms of order k O re
lative to the incident field. Those solutions do agree, 
when available, with the exact asymptotic ones derived 
by analytical techniques"-7 and/or by a uniform asymp
totic theory of ray-optic techniques. B The latter tech
niques involve complicated mathematical manipulations. 
In contrast, the path integrals yield the asymptotic 
solutions in a few elementary steps. 

All of the edge-diffraction problems treated in this 
paper depend only on two spatial variables (Y, z). 
Consequently, the complete electromagnetic fields 
are derivable from a scalar II(\" z), which satisfies 
a scalar wave equation. Following Buslaev,9 we con
vert the problem of solving II to that of solving K(x, z, I), 
which satisfies a heat equation. The asymptotic solu
tion of /I as f;o ~ co is related to that of f{ as / ~ 0, as 
shown in Sec. 2. Next, the heat equation for K to
gether with the appropriate boundary and initial con
ditions is approximately solved in Sec. 3, with its 
solution expressed in terms of a path integral. In the 
next three sections, this path integral is evaluated for 
examples, and their results compared with rigorous 
ones whenever the latter are available. Finally, a con
clusion is given in Sec. 7. 

a)This work is supported by National Science Foundation 
Grant ENG7:1-08218. 

2. HEAT EQUATION FORMULATION 

To introduce the path integral, consider the two
dimensional diffraction problem in Fig. 1. A conducting 
half-plane L; located at x < a sine, Z = 0 cose is il
luminated by the incident field from a time-harmonic 
line source at Q where (x = 0, 2 = 0). The problem is 
to determine the total field at an observation point B 
which is located exactly on the incident shadow boundary 
AB, and has coordinates [x= (a + b) sinG, 2 = (0 + b) 
xcosG]. The incident as well as the total fields may be 
resolved into two modes: E wave (with nonzero field 
components E y, H" and Hz) and H wave (H y, Ex, and 
E z)' We will treat both modes simultaneously with the 
help of two notations: 

for E wave: II=E" R=-l, (2.1a) 

for Hwave: II=H" R=+1. (2.1b) 

It is convenient to associate R with the reflection co
efficient of /I from a conducting plane. All of the fields 
have the same temporal variation exp( - iwT) as the 
source, and this common factor will be omitted through
out this paper. The present boundary value problem 
can be exactly formulated in terms of the wave equation 
for the total field II 

x 

Q 

( 
22 22 ) 

;:;-;2 +~ +1<2 II(X,2)=-6(x)6(z), 
eX c'Z 

(2.2) 

A 
0 

e 

ll: 
I 

B 

b 
FIG. 1. A half-plane L illum
inated by the incident field 
from a line source at Q. 
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the boundary condition 

for E wave: 
u=o 1 
Oll/OZ = 0 ' 

for (x,z) on l:, (2.3) 

for H wave: 

and the radiation condition. In (2.2), k=w/c is the 
wavenumber and 0(') is a Dirac delta function. The ra
diation condition can be enforced by allowing k to be 
slightly complex with 

Rek ;-. 0, Imk > 0 (2.4) 

and requiring that It decays exponentially as (x2+z2)1/2 
- 00. As formulated above, this problem can be solved 
exactly by the Wiener-Hopf or other analytical tech
niques, with its solution given in terms of two integrals 
[see Sec. 11.7, Eq. (20) of Ref. 10]. At high fre
quencies, these integrals can be asymptotically evalu
ated to yield the total field at B: 

11 (B) = ~lli (B) + R sec e g(kb)u i (A) + O(k-2
), k - oc, 

(2.5) 

valid for e away from 7T/2. In (2.5), u(B), for example, 
means u(x,z) evaluated at pOint B, andg is a cylindri
cal wave factor 

g(kx) = (87Tkx)"1 /2 exp[i (lzx + 7T/ 4)]. (2.6) 

The incident field 1I i in (2.5), which is identified with 
the field radiated from the line source in the absence of 
l:, is given by 

It i (X, z) = (i/4) Hri0 [k (x 2 + z2)1 /2] 

=g[k(x2+Z2)1/2]+O(k-3 / 2 ), k- oo • 

(2.7a) 

(2.7b) 

The solution in (2.5) can be also obtained by the uni
form asymptotic theory,11 a refinement of Keller's 
geometrical theory of diffraction. 12 

Now for the same diffraction problem sketched in 
Fig. 1, let us consider a different formulation which 
will be later solved by a path integral in Sec. 3. This 
formulation, described first by Buslaev, 9 is related to 
the procedure for solving the time-independent 
Schrodinger equation (see Sec. 6 of Ref. 1). Consider 
the auxiliary problem for an unknown field K (X, z, t), 
which is zero for t < 0 and satisfies the heat (diffusion) 
equation 

:tK = (-6- +-6-) K, for t> O. (2.8) 

Furthermore, K satisfies the same boundary condition 
as 1l: 

for E wave: 

for (x,z) on l:, (2.9) 
for H wave: 

and an initial condition 

K(x, z, t= 0+) = o(x)o(z). (2. 10) 

To relate K to u, let us take the Laplace transform of 
(2.8) and obtain 

( 
a2 a2 ) A 

a?+a?-S K(x,z,s)=- o(x)o(z), (2. 11) 

where 
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(2.12) 

A comparison of (2.11) with (2.2) leads to the con
clusion that 11 =k after replacing s by _k2, or 

u(x,z)= r~K(x,z,t)ek2tdl, 7T/4< argk< 37T/4. (2.13) 
. 0 

Thus, the diffraction problem in Fig. 1 has been con
verted to the problem of solving the heat equation in 
(2.8) subject to the conditions in (2.9) and (2.10). Once 
K is found, II is determined from (2.13). 

For later applications, we will now derive an 
asymptotic version of (2.13). In the present high-fre
quency diffraction problem, we are interested in the 
asymptotic solution of II as 1< - 0() or, more specifically, 
as 

1"I-cO, 0<argk<17/2. (2.14) 

It is well known (Sec. 4.1 of Ref. 13) that the behavior 
of /I defined in (2.13) as k - 00 is governed by that of 
K as 1 - O. In all the later applications, it turns out 
that the leading term of J( as 1 - 0 assumes a special 
form, namely, 

K(x, z, t) - i\(x, Z)(4170-' 

x exp{ (- 1/ 4/)[(x2 + Z2)1/2 + IN, 1- 0, (2.15) 

where i\(x, z) and constant I are known. Inserting (2.15) 
into (2.13) and using the identity (formula 8.421(8) of 
Ref. 14) 

r ~ (4171)-1 exp{ - (1/4t)[{x 2 + Z2)1/2 + IF + k2 t} dt 
. 0 

= (il 4)H6U (k(x2 + Z2)1/2 + kl), 7T / 4 < argk < 37T I 4 

one obtains 
1/2 . [(X2 + Z2)112 ] 

u(x,z)-i\(x,z)[exp(lkl)J (? 2)1/2 I x- +z + 
(2.16) 

which is valid for 

Ikl- oo ,17/4<argi?<317/4. (2.17) 

A study of (2.16) reveals that (2.17) may be replaced 
by (2.14) by an analytical continuation argument, and 
without violating the radiation condition in (2.4). 
SummariZing, once K is determined and has the special 
form of (2.15), the desired solution 1/ is given in (2.16) 
valid in the range (2.14). 

3. SOLUTION BY PATH INTEGRAL 

Using the path integral technique, K(x,z,t) will be 
solved from (2.8)-(2.10) in two steps. First, we ignore 
the boundary condition (2.9), which is equivalent to the 
removal of the half-plane L: in Fig. 1. The solution ob
tained in this simplified case is next modified to yield 
the solution in the original problem where L: is present. 

Ignoring the boundary condition on K, (2.8) and (2.10) 
have an exact solution 

(3.1) 

We have alternatively written Ko(x, z, I) evaluated at 
B as Ko(B;Q) to emphasize the observation point Band 

the source point Q. The subscript 0 of Ko signifies the 
absence of L:. The solution in (3 0 1) may be expressed 
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T 

x 

FIG. 2. Path y is a three-dimensional space curve from Q' to 
B'. Its projection in (x, z)-plane is y. 

in terms of a path integral over the Wiener measure. 
Let X(T) and Z(T) be two single-valued continuous func
tions of "time" T with end conditions 

T=O, (x,z)=(O,O), 
(3.2) 

T=t, (x,z)=[(a+b)sine, (a+b)cose). 

Then [x( T), z( T), T) represents a space curve 1" going 
from Q' = (Q, T= 0) to 8' = (B, T = t) in three-dimensional 
(x, z, T)-space, 15 as shown in Fig. 2. The projection 
of y' on the (x, z)-plane is a planar curve y. The set 
of all possible three-dimensional paths from Q' to B' 
is denoted by r. F or a path 1", a functional S[ 1", t) is 
defined in the following manner. Let the interval (0, t) 
be divided into N equal parts, each of length (tIN). 
Denote (x, z) at T=ntiN by (xn, zn), for n = 0,1,2, ... , 
N. In particular (xo, zo) coincide with the coordinates 
of Q, and (XN' ZN) with those of B. As N - 00, the poly
gonal curve formed by connecting (xn_u zn_1) to (xn, zn) 
for n= 1,2, "', N is an approximation of path 1". Then 
S along 1" is defined by 

N 

S[y', t) = lim :0 4
N
t [(xn - Xn_1)2 + (zn - zn_1)2). (3.3) 

N"ao "=1 

The solution Ko in (3.1) can be rewritten as a functional 
integral over all paths in r, namely, 

Ko(B;Q) 

= lim (!!.\Nl~ ···f~ dX1dx2···dxN_1dz1···dzN_1 
N-~ 41ft) -~ -~ 

xexp{-: ~ [(Xn-Xn_Y+(Zn-Zn_1)2J} (3.4) 

The fact that (3.4) is identical to (3.1) may be verified 
by repeatedly using the integration identity 

C~t r/2 

(4::mr
/2 f: dx exp { -4~ [(x4 - X)2 

+!(X-Xb)2)} 
(3.5) 

( 
N \ 1/2 [- N 2] = 41ft(m+1)} exp 4t(m + 1)(X4 -Xb) ,form>O. 
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In fact, the expression behind the limit symbol in (3.4) 
is equal to Ko(B, Q) for any N. Hence (3.4) is the limit 
of a sequence of identical terms. Alternatively, (3.3) 
and (3. 4) are written as 

1 (t [(dX)2 (dZ)2] S[Y',t)=4"jo dT + dT dT, (3.6) 

Ko(B,O)=ir exp{-S[y',t]}Dy'. (3.7) 

Several remarks about (3.6) and (3.7) are in order: 

(i) Under the assumption that x( T) and z( T) are dif
ferentiable, (3.6) arises as the limit of the Riemann 
sum in (3.3). 

(ii) (3.7) is a symbolic representation of (3.4), in
troduced first by Feynman. The integral is over all 
paths from Q' to B' in the three-dimensional (x, z, T)
space. 

(iii) Note that S in (3.6) is a functional of the three
dimensional path 1", which depends on both the planar 
path I' and its parameter T. Different parametriza
tions of the same path I' may yield different values of 
S. More speCifically, when replacing T by a new param
eter T1 = f( T) subject to f(O) = ° and f(t) = t, it is easily 
seen that S evaluated from (3.6) generally changes. 

T 

x 
)2 

(a) 3 -0 View 

T = t 

a 
r=t'=a+b t 

J----.z 

(b) Projection on (x,z)- plane 

FIG. 3. All paths from Q' to B' may be grouped into two sub
sets. One contains all paths from Q' to a point A't on the in
finite line A' A;, and the other contains all paths from Al to 
B'. 
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(iv) If one compares the present results with the path 
integral used in solving the Schrodinger equation, e. g. , 
Eq. (1. 5) and (1. 6) in Ref. 1, 5 in (3.6) may be identified 
with the "action" of a free particle with mass m = to and 
the Ko in (3.7) with the "propagator" with the Planck's 
constant h = - 1. We will adopt these two names for 
Sand K o• 

The path integral in (3.4) may be put into a dif
ferent form. Consider two sets of paths: r 1 contains 
all paths from Q' = (Q, T= 0) to A{ = (Au t1 ) such as 
y{ in Fig. 3, and r 2 contains all paths from A~ to B' 
= (B, t) such as path y~ .• Point A~, which is a point on 
the infinite strip P 10 has coordinates (x = a sine + Y10 

z =a cose, T=t1). Following (3.7) and (3.1), we find 
the propagators from Q' to A~ and from A~ to B' to be 

= (47Tt1t 1 exp{( - 1/ 4t1)[(a sine + Y1)2 

+ (a cose)2]), 

Ko(B;AI) = f {exp( - S[y', t2 J )}Dy' r 2 

= (47Tt2)-1 exp{( - 1/4t2)[(b sine - Y1? 

+ (b cose)2]). 

(3. Sa) 

(3. Sb) 

(3.8c) 

(3.8d) 

Note that the position of A~ depends upon two param
eters: Y1 and t1 whose ranges are, respectively, 

-00<Y1<00 andO<t1<t. (3.9) 

If Y1 and t1 are allowed to take all possible values in 
(3.9), the union of r 1 and r 2 recovers r. Based on 
this argument, one should expect the following result: 

K o(B:Q)=(47Tt)-1/2 JT dt1 (47Tt1)112 (47Tt2)1/2 g(t1) 
o 

(3.10) 

where t2 = t - t1 and g(t1) = 1. The three factors (47TT)1/2, 
7= t, t1 , and t2 in (3.10) are normalization factors simi
lar to that used in Eq. (2.31) in Ref. 2, p. 37. We 
substitute (3. 8b) and (3. 8d) into (3.10), evaluate the 
integrals [similar to (3.5)], and expect that the exact 
solution in (3 01) should be recovered. It is found that 
this is so only if 

g(t1) =0 (t1 - a: b t), ( 3. 11) 

where 0 is a Dirac-delta function. Then (3.10) becomes 

Ko(B;Q) = (4ntt1 /2( 47Tt1)1 /2 (4nt2)1 /2 

x f: dY1K O(B;A)Ko(A 1;Q), 

subject to the condition that 

a b a +b 
t; =t; =-t-

(3. 12a) 

(3. 12b) 

The implication of (3.12) is as follows. In evaluating 
the path integral in (3.4), it is permissible to group 
the paths into two sets: one including all paths from 
Q to an arbitrary point on the infinite line AA1 (Fig. 2b) 
and the other including all paths from that point to B, 
provided that all points on line AA1 are reached simul
taneously at T = 11 given in (3. 12b). Referring to 
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the three-dimensional space in Fig. 2a, we note that 
A~ must be on the infinite line A'A~, instead of the in
finite strip PI defined by (309). 

Return to the original problem where ~ is present. 
As indicated in Ref. 1, the method of path integral can 
be again used provided that the space (x, z) is con
sidered to be made of two sheets joining at~. Such a 
formulation should lead to a rigorous solution to the 
problem posed. However, in this paper, we adopt a 
different approach which appears simpler and yields 
only the dominant asymptotic solution of u. 

To calculate the total field at B (Fig. 1) to the order 
of k O by conventional techniques, it is well known that 
the problem can be simplified by treating ~ as an 
"absorbing" screen (an opaque screen, or a screen 
whose reflection coefficient is zero). In the path inte
gral formulation, we postulate that this simplification 
is equivalent to neglecting paths intersecting ~ such 
that the asymptotic solution derived from (2.8)-(2.10) 
is given by 

K(B;Q) - (4nt)-1/2( 4nt1)1/2( 4nt2)1/2 

x ~~ dY/(o(B;A 1 )Ko(A 1;Q), t- 0, 
(3.13) 

where t1 and t2 again satisfy (3. 12b). Compare K in 
(3.13) with Ko in (3.12), the exact solution when I; is 
absent. We note that the integration limit of Y1 is from 
o to 00 in (3.13) instead of from - 00 to 00. Using (3. 8b), 
(3.8d), and (3. 12b) in (3.13), one obtains 

K(B;Q) - i( 41Tt)-1 exp{( - 1/4t)(a + b )2}, t - O. (3.14) 

A comparison of (3.14) and (2.15) leads to the result 
that A = i and l = O. Then the total field at point B for 
the diffraction problem sketched in Fig. 1 is determined 
from (2.16), namely, 

(3.15) 

which agrees with the dominant term in the rigorous 
asymptotic solution given in (2.5). This simple result 
in (3.15) is expected as the presence of ~ "blocks" 
half of the paths from Q to B. The contribution of the 
present section, however, lies in the deduction of 
(3. 12b) and (3.13) which will be used later in more 
complex diffraction problems. 

4. TRANSMISSION THROUGH TWO STAGGERED 
HALF-PLANES 

As an application of the path integral developed in 
the above two sections, consider the transmission of 
an electromagnetic wave through two staggered con
ducting half-planes ~1 and ~2 shown in Fig. 4(e"* 0). 
For a given incident field u i in (2.7) from a line source 
at Q, the asymptotic solution of the total field u at C 
is to be determined. The pOint C, located on the line 
connecting Q, A, and B, is exactly on the incident 
shadow boundary. 

Let us denote an arbitrary point in the aperture of 
6 1 byAl with coordinates (x=asine+y1O z=acos8), 
and that in the aperture of ~2 by B2 with coordinates 
[x=(a+b)sin8+y2 , z=(a+b)cos8] (Fig. 3). All of the 
paths from Q at T=O to C at T=l are grouped into 
three setsill; 
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,=0 

FIG. 4. Two staggered half planes kj and k2 illuminated by 
the incident field from a line source at Q. 

Set r I : all paths from Qat T=O to Al at T=t1' 

Set r 2 : all paths from Al at T=t1 to B2 at T=t1 + tz , 

Set r 3: all paths from B2 at T= tI + t2 

to C at T = t = tl + t2 + t3' 

As in (3.1), the propagators calculated from rl! r 2 , 

and r3 are 

K o(A 1; Q) = (41Tt l t l exp{( - 1/ 4tl )[(a sine + Yl)2 + (a cose )2}, 

(4.1a) 

K o(B2;Al) (4.1b) 

= (41Tt2)"1 exp{( -1/4t2)[(b sine + Yz - Yl)Z + (b cose)Z)}, 

Ko(C;B2) (4.1c) 

= (41Tt3 )-1 exp{( - 1/4t3 )[(c sine - Y2)Z + (c cose)2]). 

As in (3.13), we postulate that the asymptotic solution 
of the propagator from Q to C is given by 

K(CiQ) - (41Tttl/2 [bl (41Ttn)I/Z] fo'" dYl fo'" dyz 
(4.2) 

XKo(C;B2)Ko(BZ;AJKo(Al;0), t - O. 

The condition corresponding to (3. 12b) is 

(4.3) 

Substituting (4.3) and (4.1) into (4.2), one obtains 

1/ 
[
_(a+b+c)2] 

K(C;Q)-(41TWZ(a+ b+c):>'Z(abc)- 2exp --'--4:-:-t---'-

f .. f'" {- (a + b + c) 
x 0 dYl 0 dyz exp 4t 

(4.4) 

[
1 2 1 ( )Z 1 zJ} 

X a- Yl + iJ YZ - Yl +c Yz 0 

The double integral in (4.4) can be exactly evaluated 
(Eq. (II. 54) in Ref. 8). The result is 

{
II [ac ] lIZ} 

K(C;Q)- "4 +21T tan-
l 

b(a+b+c) 

x (41Tt)-1 exp [ ~: (a + b + C)z], t - O. 
(4.5) 
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Then it follows from (2.15) and (2. 16) that the total 
field at C for the diffraction problem sketched in Fig. 4 
is 

. { 1 1 [ ac 11/z 
} u(C) -u'(C) "4 + 21T tan-

l 
b(a + b + c)J ,k - 00. (4.6) 

This solution agrees with the dominant term in the 
asymptotic solution derived by the uniform asymptotic 
theory6,B and for the special case a - 00 agrees with that 
derived by rigorous analytical methods. 5,7 

Consider the diffraction problem sketched in Fig. 5, 
whose configuration is obtained by moving ~2 in Fig. 4 
to its complementary pOSition. Using the path integral 
technique, it is readily seen that the propagator K(C;Q) 
is again given in (4.4) except that Yz is replaced by 
- Y2' This leads to a solution for the total field at C in 
Fig. 5, namely, 

. {I 1 [ac ] 1/ Z} u(C) -u'(C) "4 - 21T tan- l 
b(a + b + c) ,k - 00, 

(4.7) 

which differs from (4.6) only in the sign of the arc
tangent term. As expected, note that u( C) in (4.7) re
duces to zero as b - O. 

5. TRANSMISSION THROUGH TWO UNSTAGGERED 
HALF PLANES 

The field solution given in (4.6) is asymptotic to the 
order kO as k - 00. When half-planes are unstaggered, 
(4.6) becomes imcomplete to that order. As shown in 
Ref. 8 by ray-optic techniques, the field contribution 
from the interaction between two half-planes is of 
order k-l in the staggered case, and is increased to 
order kO in the unstaggered case. Thus, additional 
terms of order I~o must be added to (4.6) in the unstag
gered case. Those, additional terms will be calculated 
by the path integral technique in this section. 

Let us reconsider the staggered case in Fig. 4. 
Among all paths from Q to C, only those in the neighbor
hood of path QABC contribute significantly to the asymp
totic solution of propagator K(C;Q). This is evident 
from the fact that as t - 0 the main contribution of the 
integral in (4.4) comes from the neighborhood of 
;'1=0 and Y2=0. Path QABC, of course, is precisely 
the incident ray in the geometrical theory of diffrac
tion. 11,12 The fact that there is no other ray contributing 
to the field of order kO at C justifies our approximation 

I 
~21 

c C 

T 
y\ b 

a J: 
Q 

FIG. 5. Same diffraction problem as that in Fig. 3 except for 
the pOSition of ~2' 
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[, 
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L 
• 

Q C 

I 
I 

FIG. 6. A ray from Q to C after two specular reflections at 
l:j and l:2' 

in Sec. 4 that paths intersecting :E1 or :E2 can be ig
nored. 17 

When the plates are unstaggered, there exist addi
tional rays which give rise to field contributions of 
order k O at C. One of these rays is shown in Fig. 6. 
This ray emanating from the source at Q reaches C 
after two specular reflections at :E1 and :E 2• Since a 
specularly reflected field is of the same order as the 
incident one, the field at C on this ray is also or order 
k O

, the same as that on the direct ray from Q to C. 
Corresponding to the ray in Fig. 5, one has to consider 
path QA1B:i\3B4C in Fig. 7 for the evaluation of K(C;Q) 
in the present unstaggered case. Let us assume that 
points AI' B 2, A 3, B 4, and C are reached at 7=t1' 
tl + t2, tl + t2 + t3, t1 + ..• + t4, and t1 + ... + t5, re
spectively. Following (3. 12b) or (4.3), the following 
relation holds: 

a + 3b + C 

t 

The propagators associated with those points are 

KO(AI;Q) 

= (41Tt i t l exp[( - 1/4tI)(a2 + yD], 

K O(B2;A1) 

= (41Tt2)-I exp{( - 1/4t2)[b2 + (Y1 + Y2)2]}, 

K O(A 3 ;B2 ) 

= (41Tt3 )"1 exp{( - 1/4t3)[b2 + (Y2 - Y3)2]), 

KO(B4;A3) 

= (41Tt4t 1 exp{( - 1/4t4)[b2 + (Y3 + Y4)2)}, 

Ko(C;B4) 

= (41Tts)"1 exp{( - 1/ 4t5)(C2 + y~)}. 

(5.1) 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

As in (3.13) or (4.2), the asymptotic solution of the 
propagator from Q to C arising from paths as the one 
shown in Fig. 7 is given by 

K(2)(C;Q)-(41Tt)"1/2rn (41Ttn)1/21J~ dYI' • • J"'dY4 L n=l J 0 .. 0 

XKo(C;B 4)Ko(B4;A3)'" Ko(AI;Q), t-O. 

(5.3) 
The superscript of K(2) signifies the contribution to K 
from those paths which are twice reflected from :EI and 
:E2• Substituting (5. 1) and (5.2) into (5.3), one obtains 
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X exp Tt a YI + b (Y1 + Y2) + b ~ (Yn - Yn'I) {
-d [1 2 1 2 1 21' 2 

} 

(5.4) 

+!; (Y2P.I + Y2P'2)2 + ~Y~P'2] , t - 0, 

where d = a + (2p + l)b + c and P = 1. The integral in 
(5.4) can be Simplified by the following manipulations. 
First, we perform a change of variables by letting 

(4~tr/\-Yn' n=I,2, ••• , 2p+2. (5.5) 

Second, we simplify the integration with respect to 
Y2P'2 with the help of the identities 

J "'F(a)da=J"" F(-a)da-J"F(-a)da, (5.6a) o _110 0 

'" { ~(; c ) 1/2 (b + c) 1 12j2}_ ( 1TC ) 1 /2 J da exp - -- i3 - -- a - -- , 
-'" b + C c b + c 

(5.6b) 

where a = Y2P'2 and i3 = Y2P'I' After these manipulations, 
(5.4) becomes 

K(2P)(C;Q) 

-e~rl(b~ cr /2J2
P+l(£' b~C) 

-J2P'2(~' %)}41TWleXp(-cfl/4t), t-O, (5.7) 

where 

J (a i3)=(1T)-n/2 J"" d" J" dy .. , J" dl' 
n , 0 Jl a 2 0 ~ n (5.8) 

n-I 

X exp{- [aYi +(YI + y2)2 + ~2 (Ym - Ym.Y + ;3y;] }. 

With p = 1, (5.7) gives the final asymptotic solution of 
K(2) contributed from the twice reflected paths. 

In addition to the twice reflected paths, there are 
paths going from Q to C after 2p reflections between 

QI~----____ ~r+L-~~~~ ________ ~C 

FIG. 7. Two unstaggered half planes l:j and l:2 illuminated by 
the incident field from a line source at Q. 
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An 

Q 

LZ L 3 •••• Ln 
I I I 
I I I 

FIG. 8. n equally spaced staggered half planes illuminated 
by the incident field from a line source at Q. 

~ 1 and ~2' Their contributions are precisely K(2P) 
given in (5.7). Then, the propagator K(Q; C) is the 
superposition of all {K(2 P)} with p = 0,1,2, ... , namely, 

-I 00 (bd)1/2 [( c \ 1/2 (b b \ 
K(C;Q)-(47Tt) 'Eo ac b+c} J2P+I~' b+C} 

(5.9) 

A comparison of (5.9) and (2.15) determines A and l. 
The asymptotic field solution at C for the diffraction 
problem sketched in Fig. 5 is found from (2.16), 
namely, 

. { 1 1 [ ac ] 1/2 
u(C) - u'(C) 4'+ 27T tan-

I 
bra + b + c) 

+ f( eXPi2Pkb)[b(a + b + C)]1/2 
P=l ac 

x [(b~cr/2J2p+l(~' b~C) -J2P+2(~' ~)]}, 
k - 00. (5.10) 

For the special case when the source is at an infinitely 
large distance away from ~H L e., a -00, (5.10) is 
identical to the dominant term of order k O in Eq. 
(11.62) of Ref. 8 obtained by the uniform asymptotic 
theory. [Note the equivalent notations in (5.10) and 
(11.62): b - a, c - r o' and In(O, b/ c) - I n o(c).] Further
more, if both the source and the observation points 
are far away, Le., (b/a) and (b/c)-O, the integral 
In(O, 0) in (5.8) can be explicitly evaluated by several 
methods: one involving transformation of variables in 
the n-dimensional space and generating-function tech
niques, one USing the Wiener-Hopf technique, and one 
based on probabilistic interpretation (random walk) 
of the integrals. Details of this evaluation are given 
in Ref. 18, while only the relevant final result is quoted 
below: 

I n(0,0)=1/27TVn-1, n=2,3, .... ( 5. 11) 

Using (5.11) in (5.10), one obtains the asymptotic field 
solution at C when both Q and C (Fig. 6) are far away 
from ~l and ~2: 
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u(C) -ui(C) {.!. +~tan-l (~,/2 +~ (b(a+ C))1/2 
4 27T \b(a+c)) 27T ac 

x E [(2pt I/2 - (2P + 1)-1/2] eXPi2Pkb}, k - "', % - 0, 

b 
- -0. (5.12) 
c 

For the special case that (a/c)>> 1, (5.12) recovers the 
asymptotic expansion of the exact solution obtained by 
the Wiener-Hopf technique (see Eq. (II. 68) or (A6) in 
Ref. 8). 

6. TRANSMISSION THROUGH AN ARRAY OF 
STAGGERED PARALLEl HALF·PLANES 

As a final example, consider the transmission through 
n equally spaced staggered parallel half-planes as 
shown in Fig. 8. For an incident field ui from the line 
source at Q, the asymptotic solution of the total field 
at e is to be determined, where C falls exactly on the 
incident shadow boundary. Steps for solving this prob
lem are very similar to those used in connection with 
Figs. 4 and 7. The final solution is found to be 

k- 00 , (6.1a) 

where 

Ln(a, f3) = [a + Il + (n - 1 )all]1/27T -n/2 t' dYI fooo dy 2 ' •• fooo dYn 
a 

n-I (6 1b) 
Xexp{ - [ayi + L (Ym - Ym+I)2 + IlY~n. . 

m=l 

The solution in (6.1) is valid for n = 1,2,3, .... The 
symmetry in a and c in (6.1) confirms the reciprocity 
principle of the electromagnetic field, namely, the 
field at e due to a source at Q is identical to the field 
at Q due to the same source at e. The integral Ln has 
been studied by J. Boersma in an unpublished note, 
the essence of which is summarized in the Appendix. 
We quote below some of his final results: 

LI(a, Il)=~, 

L 2(a, f3)= i+ (l/27T)tan-l(1/Va + Il + all ), 

(6.2) 

(6.3) 

L
3
(a, {3)= t + (l/47T)[tan- I (1/n')') + tan-I(v'a + 1/,),) 

+ tan-I(v'i3+T Jy)], (6.4) 

where y=v'a+{3+2aj3. The use of (6.2) and (6.3) in 
(6. 1a) recovers the known results in (3.15) and (4.6). 
The use of (6.4) in (6. 1a) gives a new result for dif
fraction by three staggered parallel half planes (11 = 3 
in Fig. 8), namely, 

ute) -/li(e) {~ + 4~ tan- I [2b(:~ 2b + cJ 12 

+~tan-I[ (a+b)c ]1/2 
47T b(a+2b+c) (6.5) 

1 _1[a(b+C) ]1/2} 
+ 47T tan bra + 2b + c) • 

For a general n, Boersma has shown that 

Ln(a, (3)= ~-n/2r(~n)Sn' 

where Sn is the surface area of the spherical n-gon that 
is cut out in the n-dimensional unit sphere by Gn , and 
G n is a certain polyhedral cone where it is bounded by 
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n hyperplanes through the center of the sphere. It ap
pears that 5n cannot be determined in a simple closed 
form. For some special values of O! and {3, Ln in 
(6. 1b) has been explicitly determined as given in 
(A9)-(A13) in the Appendix. Using those results, we 
obtain the following field solutions which hold for any 
n for the diffraction problem in Fig. 8. 

(i) If a = 00 and c = 00 (far-away source and observa
tion point), 

(6.6) 

(ii) If O! =00 and c = 0 (far-away source, and observa
tion point at the edge of the last half plane), or a = 0 
and c = 00, 

() r(n - t) I() 
uC -2(n-1)!r(t)u C. (6.7) 

(iii) If a=b and c=O, or a=O and c=b, 

(6.8) 

(iv) If a=O and c=O (source and observation point 
at the edges of the first and the last half planes), 

u(C) - 4(n
1
_1)ui (C). 

(v) If a=b=c, 

u(C) -~1 ui(C). 
n+ 

(vi) If a=oo and c=b, or a=b and c=oo, 

( ) r(n + t) I ) 
u C - n! r(t) U (C . 

(6.9) 

(6.10) 

(6.11) 

All the results given in (6.5)-(6.11) are new results 
for the diffraction problem under consideration. It 
appears that these results cannot be simply obtained by 
other methods known to us. 

7. CONCLUSION 

In the present application of path integrals to the 
edge diffraction problems, the key is the postulate in 
(3.13). Loosely speaking, this postulate states that in 
determining the dominant asymptotic solution of prop
agator K(B;Q) in Fig. 1, the presence of the obstacle 
.0 is accounted for by ignoring the contributions from 
the paths that intersect .0. Based on this postulate, 
we have been able to derive known results in (4.6) and 
(5.12) in a much simpler fashion than those reported 
in the literature, and to derive new results in (4.7), 
(5.10), and those presented in Sec. 6. 

Our success with path integrals so far is restricted 
to the following two cases: (i) The observation point for 
the field is located exactly on the incident shadow bound
ary, and (ii) only the leading term of order k O in the 
asymptotic field solution has been determined. Further
work must be done in order to relax these two restric
tions. 
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APPENDIX: EVALUATION OF INTEGRAL Ln (0!,{3) 

The integral Ln(O!, (3) is defined in (6.1b). Its evalua
tion is an interesting mathematical problem, which 
has been studied by J. Boersma and is presented in an 
unpublished note. Some of his results are summarized 
below. 

(i) The evaluation of L1 (O!, (3) is trivial, and that of 
L 2(0!, (3) is very similar to that of J 2 o(ro) in Eq. (II. 54) 
of Ref. 8. The final results of L1 an'd L2 are given in 
(6.2) and (6.3). 

(ii) To evaluate L 3(a, (3), we introduce the new vari
ables 

" -~=z (0!+1)-1/2 
-'1 O! + 1 1 , 

(Ala) 

_ [(O! + 1)«(3 + 1)J 1/
2

Z Y2- 0!+(3+2a{3 2' 
(Alb) 

v - -..1.L = Z «(3 + 1)-1/2 
-3 (3+1 3 • 

(A1c) 

Then Lg(a, (3) is reduced to 

L g(a,{3)=rr-g/2 J J J dZ1dz2dz3exp(-z~-z~-z~), 
G 

where the domain of integration is given by 

with 

p= (O! :(3++l2a(3Y/2, q= (a +~:~a(3r/2. 

(A2) 

(A3) 

(A4) 

If spherical coordinates are introduced,' then the r-de
pendence part of the triple integral becomes 

J ~ r2 exp( - r 2) dr = hl/2 . 
a 

Thus, Lg(a,(3) reduces to 

(A5) 

(A6) 

where 5 is the surface area of the spherical triangle 
that is cut out in the unit sphere by the planes defined 
in (A3). From spherical trigonometry, it is found that 

5 = rr /2 + tan-1p + tan-1q + tan-1[pq(1 + p2 + q2)-1/2]. (A 7) 

Substitution of (A 7) and (A4) into (A6) gives the final 
answer in (6.4). 

(iii) The same method described in (ii) is used to 
evaluate Ln(a, (3) for general n. The result is given in 
the equation after (6.5), where the surface area Sn has 
not been explicitly determined. 

(iv) Ln( O!, (3) may be expressed in terms of In(O!, (3) 
defined in (5.8), namely, 
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Setting a = (3 = 0, one finds 

Ln(O, 0) = ±, 
which is used to derive the field solution in (6.6). 

(A8) 

(A9) 

(v) Ln(l, 1) is identical to (n+ 1)1(2 In o(a) determined 
in Ref. 18, viz., ' 

1 
Ln(l, 1)=-1 ' (A10) n+ 

which is used to derive (6.10). Ln(O, 1) is identical to 
In,o(oo) determined in Ref. 18, namely, 

Ln(O,l)=r(n+t)jnlr(±), (All) 

which is used to derive (6. 11). Furthermore, from 
(6. 1b) it can be shown that 

The relations in (A. 10)-(A. 12) are used to derive 
(6.7) and (6.8). Finally, the result 

Ln(oo, 00) = %L n_2 (1, 1) = 1/4(n - 1) 

is used to derive (6.9). 
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Cylindrically symmetric dust distributions in rigid rotation 
in Brans-Dicke theory 

Nikhilendu 8andyopadhyay 

Physics Department, Presidency College, Calcutta, India 
(Received 18 May 1977) 

A solution for the field equations of Brans-Dicke theory for the case of a cylindrically symmetric dust 
distribution in rigid rotation has been obtained. The exact solution shows the existence of closed timelike 
lines as also infinities of mass density, B - D scalar, etc., at finite proper distance from the axis of 
symmetry just as in the corresponding general relativistic case. 

1. INTRODUCTION 

It is usually held that the Brans-Dicke (BD) theory is 
more consistent with Machian ideas than the general 
theory of relativity. Some support for this may be found 
in Banerjee's resultl that there exists no analog to the 
Godel solution in BD theory. However, there is another 
well-known solution due to Van Stockum2 in general 
relativity where again the matter is in rotation. Here 
we address ourselves to the question whether a similar 
solution, i. e., a cylindrically symmetric (nonuniform) 
dust distribution in rigid rotation is consistent with the 
BD theory. The exact solutions to the field equations 
obtained below show the existence of closed timelike 
lines as in Van Stockum' s solution. Here there is also 
a singularity corresponding to infinite density at a 
finite proper distance from the axis of symmetry. 

2. THE FIELD EQUATIONS AND THEIR INTEGRATION 

We consider a stationary cylindrically symmetric 
line element, 

ds 2 =goo dt2 - exp(21b)(dr2 +dz 2) - L dCP2 + 2111 dCP dt, 

(2.1) 

where all the metric tensor components are functions 
of r alone. In our discussion, the coordinates t, r, z, cP 
will be numbered as 0,1,2,3, respectively. The BD 
field equations for a distribution of incoherent matter 
are: 

R,,=!i!!..(T"_lT6")+ W .+."'+' 
v ¢ v 2 v 17 'I" 'l"v 

B7Tp 
D¢=3+2w' 

(2.2) 

(2.3) 

(2.4) 

where ¢ is the BD scalar, other symbols having their 
usual meaning. 

We assume the coordinate system to be moving so 
that v" = 6~ gar} 12. 

As there is no nongravitational interaction, the 
velocity vector is geodesic (as indeed follows from the 
divergence indentity involving the energy-momentum 
tensor): 

and so goo = constant. Without loss of generality one can 
put this constant equal to unity, 

(2.5) 

Using the notation 

(2.6) 

the field equations can now be written explicitly as 

(

} J/} lit) _ r.::g 4 _ III JJlI 2J.l-r::;; u¢ 
2D I - ¢ 7Tp 2D ¢ + 2 g ¢ , (2.7) 

(
L+1l111l1) =_ V-i 47Tp_L1 +l1llll j h+l.r-;:gD¢ 

2D 1 ¢ 2D ¢ 2 ¢' 

(2.8) 

.£u. 5I!.L 1 ~ D¢ 
+D ¢ -Dlb1 ¢ -zv-gT' 

(2.12) 

where the subcript 1 indicates differentiation with re
spect to r. 

Equation (2.10) readily gives the first integral 

!!!.1. b 
2D = ¢ (b = const). 

Again from Eqs. (2.7) and (2.8) one has 

(D 1¢)1 =0o¢, 

whereas from the definition of D¢ one has 

0rJ¢=- (D~b1)1' 

(2.13) 

(2.14) 

(2.15) 

Combining Eqs, (2,14) and (2.15) one has the relation 

D¢=ar, (2,16) 

a being an arbitrary constant. 

Using Eq. (2.13), Eq. (2.7) yields 
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(2.17) 

Equation (2.17), in conjunction with Eqs. (2.13), (2.15), 
and (2.16) gives 

2b
2
r ( ¢ \ 

- T=(2+w)(¢-) l' 

which reduces to 

2b2 

~xx=-2+w exp[-2(~-x)], (2.18) 

with the substitutions 

¢-exp(~), r-exp(x), (2.19) 

the subscript x indicating differentiation with respect 
to x. To integrate Eq. (2.18), let 

y = ~ - x. 

Then Eq. (2.18) reduces to 

2b2 

Yxx=- 2-- exp(- 2y}, 
+w 

with the first integral 

2b2 
yi=A +-2-- exp(- 2y), 

+w 

A being the constant of integration. With the 
substitutions 

2b2 
z2=A+--exp(-2},), A=li2, 

2+w 

Eq. (2. 21) integrates to 

f.l +z =:oexp[21i(x+v)], 
Ii - z 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where v is the constant of integration. Returning to 
original variables, ¢ has the form 

( 
2 '\ tl2 b 

¢=i 2+w-) I7rcosh{liln(r/a)}, (2. 24) 

where v=-lna. 

In expression (2.24) one must choose Ii =± 1 in order 
that ¢ remains finite at the origin. For definiteness we 
choose Ii = 1. Again to make ¢ real we let a = - i(3, 
where (3 is real. Thus ¢ has the form 

1 ( 2 \ 1/2 ( r2) 
¢ =2 2 + w) b(3 1 - [32" • (2.25) 

Normalizing ¢ to unity at the origin we have 

(2.26 ) 

Obviously with w - 00, ¢ -1, corresponding to the gen
eral relativity condition. 

zp is now obtained from Eq. (2.11), which has the 
first integral 

ZPI = (1 + w)~. (2.27) 

Here the constant of integration has been put equal to 
zero to avoid singularity in the metric at the origin. 
Equation (2.27) further integrates to 
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(2.28) 

where the constant of integration has again been put 
equal to zero in accordance with the argument given by 
Som and Raychaudhuri. 3 Here also with 

( 
r2b2) 2+", 

w- oo
, zP-~~ In 1- 2(2+w) =_ir

2
b2. 

To find m, one makes use of Eq. (2.13) and (2.16) 
to get 

/1/1 = 2abr (1- 2~~b~ wJ -2 , 

with the integral 

11/ 
2a(2 + w) ( r 2b2 )-1 

b 1- 2(2+w) +const. (2.29) 

The constant is chosen such that rn - 0 as r - 0, i. e. , 

t 2a(2 +w) 
cons =- b • 

Now, choosing a = 1 to obtain correspondence with 
Van Stockum's results in the limit w- 00, 

. . 2a(2+w)[ r 2b2 
11m In= 11m b 1 +2(2 ) 
w .... oo w .. oo +w 

+( 2 (;2!2W») 2 + ... _ ~ 
= abr2, 

111 takes the form 

(2.30) 

An expression for L is obtained from Eq. (2.16) as 

(1 - b2r2)r2 
L = 1- (r2b2)/2(2 + w) • (2.31) 

With w - 00, L - (1- b2r2)r2. Also from Eq. (2.4), P 
comes out as 

87Tp 
2(3+2w) b2(1_ r 2b2 )-<4+2W) 

2+w 2(2+w) . 
(2.32) 

With w- 00, 

CONCLUDING REMARKS 

As we have already noted, in the limit w - 00, the 
solution passes over to that of Van Stockum in general 
relativity. Also similar to that case, there are closed 
time like lines for r> l/b which have a singularity at 
r=r'=[2(2 +w)]1/2/b, where the denSity, the curvature 
scalar, and the BD scalar, etc., are infinite. This 
singularity evidently occurs at a finite proper distance 
from the axis of symmetry, since f;;' exp(zp)dr is con
vergent. A similar singularity in the general relativistic 
case has been pointed out by Shepley. 4 However, in the 
general relativistic case w - 00 and hence the radial 
coordinate r' of the singularity is infinite, notwith
standing the finiteness of the proper distance of the 
singularity from the axis of symmetry. 
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However, the present solution cannot be considered to 
be a representation of the real universe as it departs 
seriously from homogeneity and isotropy and on account 
of its stationary character cannot exhibit any isotropic 
red shift as is actually observed. 
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A method for computing scattering phase shifts and 
eigenvalues of the Schr6dinger equation with singular 
potentials 

Friedrich F. Naundorf 

Institut fur Angewandte Mathematik der Universitiit Heidelberg, 69 Heidelberg, Germany 
(Received 3 January 1977) 

An algorithm is given for computing the scattering phase shifts and eigenvalues of the Schrodinger radial 
equation with singular potentials. As an application we treat the hydrogen atom with fine structure in the 
nonrelativistic theory. 

1. INTRODUCTION 

In the nonrelativistic theory of the hydrogen atom 
with fine structure one is interested in the eigenvalues 
of the Schrodinger radial equation with the potential!,2 

V(r) = - (2/r + w/r3). 

Here w = - Q2{j(j + 1) -l(l + 1) - n, Q' = 1/137 is Sommer
feld's fine structure constant and j =l ± t As w is a 
small number, the eigenvalues of the problem 

~ + (2E + ~ _ I (I + 1) +~) = 0 dr r r r3 X , 

fo ro i (r) dr = 1 

are usually (if I > 0) approximated by 

(1. 1) 

E,,""'- 2(1+~+1)2 -w fo ~ ;3 [XI,v(r)]2dr (1.2) 

where Xt," are the normalized eigenfunctions of the 
unperturbed potential (w = 0). 

Noww=Ci2(l+1)ifj=I-~andw=-Ci21 ifj=l+t In 
Sec. 9 we remark that for positive w the spectrum 
consists of all E, and thus the formula (1. 2) does not 
apply in this case. 

In this paper we generalize the problem: 

r2x"+«E,b;ri)) X=O, (1. 3) 

J["'O<N and b,\/<O if ;1,[<:0. 

In the case of scattering problems we have N = 2 and 
b2 = 2E = k 2 > O. In the case of eigenvalue problems we 
have N?o 2 and bz = 2E, E being the eigenvalue param
eter, and bN <0. An example is the differential equation 
(1.1) with N=2, M=-1, b!=2, bo=-I(I+1), and b_1 
=W. 

The differential equation (1. 3) has two singular points: 
r = 00 an irregular singular point with rank N/2, r= 0 is 
an irregular singular point with rank I M I /2, if M < 0 or 
r=O is a regular singular point, if M=O. 

Besides special cases, not discussed here, there are 
two power-series solutions of (1. 3), 

XJ(r)=r·J"'0c~rn, j=1,2, (1. 4) 
-= 

which are independent of each other and converge in the 
complex r plane, 0 < I r I < OG. If r = 0 is a regular 

singular point, then c~ = 0 for n < O. Algorithms for 
computing the coefficients c~ and the characteristic 
exponents Pj were given in Ref. 3. and an algorithm 
for the special case that {b i , i ~ O} are small numbers 
is given in Sec. 5 of this paper. It is useful for Eq. 
(1.1), because b_l=w is small. 

Having found the series (1.4), most of the computing 
work has been done. It is easy to determine their 
asymptotic behavior at r=oc' and 1'=0, using the 
technique described in Ret 4, which generalizes 
Kohno's work5 to the case of two irregular singular 
points. 

2. CONNECTION COEFFICIENTS 

Specializing the rank = 1 at ]' = 00, the method to com
pute the connection coefficients 1'1 and 1'2 in Eq. (2.1) 
becomes particularly easy. Because of its interest in 
scattering problems, where N = 2 and rank = 1, we will 
demonstrate the method. 

A series solution X (1') = Z; C "1'
n+. behaves asymptotical

ly at r - oc like 

X(r) - 1'1x!.sy(r) + 1'2x;"y(1'), (2.1) 

where 

X!..y(r) = exp(>"kr)r"k"'0 h~r-S, ,,= 1, 2, 
s=o 

The lis are given by the recursion formula 
-I 

2>..sh s =hs_l l(s -1- ~)(s -~) + hal + ~ bihs_I +; 
i:aM 

and ho = 1, lis = 0 if s .-:: O. Here we have written >.., ~,hs 
in place of Ak) ~k' h:. Then we introduce 

Ok = P - ~k' g~ = (>"k)n+ok/ (n + Ok) 1, 

The larger n, the better this series will converge, The 
convergence rate is like that of a geometric series. 

Finally we get the connection coefficients 1'1 and 1'2 
by the two linear equations 
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Ttf;+ Td;=c m 

Ttf;+1 + Td;+1 =cn+l 

for sufficiently large n, 

We may take n so that (ReL 4, p. 162) 

M 

L:; Ibil < l(n+H+p)(n+N-1+p)l· 
i=M 

Example 2.1: Scattering problem for the Coulomb 
field: It is well known6 that the solutions X (r) of 

1/ + (k2 _ 2kK _ I (l + 1)) = 0 
X r r2 X , 

which are regular at r=O, behave like 

x(r) - const Xsin[kr - K In(2kr) -11T/2 + 1h], 

where 111 =ph[(l +iK)l]. 

To apply our method, we start with the series 
solution 

AI =ik =- A2, 111 =- iK=- 112, 

01=1+1+iK, 02=1+1-iK, 

and, dropping the index 1 or 2, we have ho = 1 and 

hs =hs_1[s -1 + 0- (2p -1)J(s -1 + 0)/(2AS), 

f n= [>..n+6/(n + o)!]F(- (2p -1) + 0, o,n + 1 + 0; ~), 

where F is the Gaussian hypergeometric series. 

Using F(a,b,b;x)=(1-xta, we get 

f_l = [(>..r1
+6 / (- 1 + o)! J2-21 - 1.5. 

From the first equation of the linear system 

Ttf_\ + T2f_21 = c_l = 0, 

Ttfo1 + T2fl = Co = 1, 

we get just up to a constant A 

(2.2) 

(>.. )-1+62 
Tl =A 2 2-1+62 

(- 1 + (2)! 
(2,3) 

(A )-1+61 
T2 =-A 1 2-1+6 1 

(- 1 + (1)! 

An easy computation shows that 

X(r) - Tl exp[ikr+ 111In(r)] + T2 exp[- ikr+ 1l2In(r)] 

gives formula (2. 2). 

Example 2.2: Eigenvalues of the hydrogen atom: We 
consider solutions X(r) of 

X" + (2E + ~ _ I (I ~ 1) ) X = 0 

that are regular at r = O. We have to find eigenvalues E 
for which a regular solution at r=O also vanishes at 
infinity. 

X(r) =r'+l(l + c 1r + ... ) 

has the asymptotic behavior 

X(r) -T1 exp(>"lr)r~1 
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AI =,;- 2E, 111 =-1/>"1 =- 1/';- 2E= - 1l2. 

AI is positive, and we have to compute the zeros of 
Tl (E), 

According to Eq. (2.3), Tl (E) = 0 if (- 1 + (2)! = 00; 

hence, 02 =- v=O, -1, - 2"", 1 + 1- 112 =- v gives the 
well-known formula 

E=-1/2(1+1+v)2. 

3. EIGENVALUE PROBLEM FOR THE CASE, WHEN 
r = 0 IN AN IRREGULAR SINGULAR POINT 

This case appears if :1-1 -:: 0 in Eq. (1. 3), bM < 0, and 
b N < O. At first we compute the series (1. 4), Xj(r), 
j = 1, 2. Having obtained the connection coefficients Ti, 
T~ we know Xi (r)- Tf. X~y(r) for r - 00, Hence we have 
found the combination 

AjXl (r) + A2X2 (r) - 0, y- oc , (3.1) 

where Ai = TL A2 = - Tl. 
The transformation r = 1/ s (or r = 1/ S2, if the rank 

IJll/2 is not an integer), applied to the differential 
equation (1. 3), and the computation of the connection 
coefficients at s =00 give us the right combination of 
Xl(r) and X2(r) at r=O: 

(3,2) 

E is eigenvalue, if both combinations (3,1) and (3.2) 
agree; hence the eigenvalue condition is 

(3,3) 

For example (1.1) these two ratios are plotted as func
tions of E in Fig. 1, and an analytic approximation is 
given in Sec. 8. 

4. SCATTERING PROBLEM FOR THE CASE, WHEN 
r = 0 IS AN IRREGULAR SINGULAR POINT 

This case appears, if ;1-1 c-: 0 in Eq. (1. 3), bM < 0 and 
N = 2, b2 = 2E is positive. For a given positive E we 
first compute the combination (3.2), which vanishes at 
r = 0, The scattering phase shift then follows from the 
asymptotic behavior of this combination at r = 00. 

E 

FIG. _1. computation of eigenvalues for Example 8. I, by 
the method of Sec. 3: Ai/Ai ___ dark line; 
A"j/Ai __ ____ dotted line. These ratios are computed as func-
tions of E. 
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5. COMPUTATION OF POWER SERIES SOLUTIONS 

Iteration methods for computing the series solutions 
(1. 4) can be found in Ref. 30 If the coefficients bi with 
i < 0 of the differential equation (1 0 3) are small, these 
methods can be improved, as is done in this section. 

As an example we treat the differential equation (1. 1)0 
Using x(r) = r-1 12X (r), we transform (1. 1) into 

x" + .!: x' + (2E + ~ _ (l + 1/2)2 + W \ = 0 (501) 
r r r2 r 3} • 

More generally we transform (1. 3) into 

r 2x" + rx' + (~bjrl)x = 00 

with 

bj=bj if i*O and bo=bo- t 
For the purpose of the following sections we write b j 

instead of bjo 

We treat the differential equation 
N 

r 2x" +rx' + ~ bjrl x=o 
M 

and compute the series 

(5.2) 

(5.3) 

A substitution r-ar changes b j - b/a
j 

and c n - cian, 
while bo and the characteristic exponent p remain un
changed. Then 2:~#0 I bi I is changed to 

£=~' Ib/ajl 
For the following method we choose a so that £ becomes 
small. This is possible if b l are small numbers for 
negative i. 

We now assume this transform has been done already 
and write 

E=0'lbj l. 
For the following theory we use the following notation: 
OJ,1 Kronecker symbol, 

a=±1, 1/=a..r::7io, 

Rd={P; Ip-1/1 <d}, p complex, 

Q(p) = max 11 I (n + p)2 - 1/2 1, 
n*O 

Q(p)=max In+pI/I[(n+p)2-1/2J21. 
n*O 

With the differential equation (5.1) we have 
1/ =±(l + t) and Q(1/) = <XJ if 1 is half-integer valued. But 
if 21/ is no integer, then there is a positive d and 

Qd=maxIQ(p) 1< <XJ, 
_ERa 

Qd=maxIQ(p)1 <<XJ. 
_ERd 

Inserting the series (5.3) into the differential equation 
(5.2) gives the following problem: Find (p,c); c={cn}, 

co= 1, 

lie II = max len I < co 
_a:o<n<oo 

and 
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N 

gn(P,c) :=[(n+p)2+bolc n+ 6' bjcn_I=O. (5.4) 
I=M 

Lemma 1: There are constants a, b, so that the only 
bounded solutions (p, c) of (5.4) behave like 

cn =0 (a"/(n!)2 1 N) 

c_
n 
=0 (bn/(n 1)21 1M I) 

for n- 00 

Proof; This follows from a well-known theory of 
Perron-Kreuser difference equations (Ref. 7; see also 
Ref. 4, p. 171). 

Corollary: Bounded solutions of (5.4) define con
vergent power series solutions (5 0 3). 

Algorithm 1; 

iterate: 

n:=1,-1,2,-2,0 •• ; 

go to iterate; 

end. 

Lemma 2; If 21/ciz\{0}, £Qd<l, and pERd, then 
Algorithm 1 converges and has a bounded solution 
{cn(p)}, 

lie II < 1/ (1 - £Qd)' 

Proof: Obvious. 

(5,5) 

II 
In Algorithm 1 co(p) = 1 and Eqs. (5.4) are consid

ered for n*O. We mean bygo(p) the value of go(p,c(p». 
Hence Algorithm 1 defines a mapping 

p - go(p), 

and we have to find the zeros of go(p), becausego(p)=O 
if and only if p is the characteristic exponent 

We write go(p) = p2 + bo + 2:' bjc_j(p) = 0 in the form 
p= T(p) with 

(5.6) 

and look to see if T is a contraction mapping of Rd into 

Rd' 

Theorem 1: If 21/ Etc Z and £ is small enough to satisfy, 
with appropriate d> 0, the conditions 

£Qd<l, 

£/(l-£Qd) < Ibol, 
E/(I1/ I (1- £Qa» <d, 

(5.7) 

(5.8) 

(5.9) 

E2Qd /{ minlp I· (1-£Qa)2}< 1, (5010) 
_ERa 

then T is a constraction mapping of Ra into Ra. The 
iteration of T converges o 

Proof: We first show that T(p) ERa if p E Rd' From 
T( p) - 1/ = 1/{(1 + [2;' b1c_ i (p) lIbo)1 12 - 1} and the estimate 

1(1+x)1/2-11"" Ixl if Ixl""1, 
we get, using (5.8), 

I T(p) - 1/ I <d[ 11/ 1(1- EQa)l; 
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hence, using (5,9), we have T(p) E Rd' 

Next we show that IdT(p)/dp I < 1, 

dT(p) _ ---=.L 6' b dC_I(p) 
dp - 2T(p) I dp , 

Differentiating the equationsgn(p,c(p»=O, n*O, we 
get an inhomogeneous system of linear equations for 
dcjdp: 

dco=O 
dp , 

(5.11) 

dCn - 1 '>" b dCn_f _ n * 0 
dp = (n + p)2 + bo LI i dp Yn• 

with 

Yn= 2(n + p)cn(p)/[(n + p)2 + bol, 

From (5. 5) we get 

IiY II '" 2EQd/(I- EQd) 

and conclude from the estimate 

that 

I d T
dP

( p) I '" _---.:;Ec-
2 

Q:lcJjd'--__ 
IT(p)I(1-EQd)2, 

which is less than 1 by assumption (5.10), II 
Most of the problems occur if bo is negative, because 

Qd then may become large or even infinite, 1) is real if 
bo is negative. We write 

1) = m/2 + 6.1], mE: OZ, 

0'" I 6.1] I '" t 
Theorem 2: If 21] is not an integer, 11) 1 > i, E < t l6.ry I, 

and d is c hos en to be d = t I 6.1) I, then T is a contrac tion 
mapping of Rd into Rd' 

Proof: We introduce 6.p by p = 1) + Ap, and get 

(n + p)2 _ 1)2 = «n + Ap) + 1)2 - 1)2 

= (n + Ap)(n + Ap + 21)) 

= (n + Ap)(n + m + 2A1) + 6.p), 

IfpERd , we have IApl<::tl6.1)I. Using Iryl>t, hence 
I m I ~ 2, we get 

Qd < V I 6.ry 1 and Qd < 11 1 6.1) 12, 

With these estimates the conditions of Theorem 1 are 
fulfilled. II 

The method can be summarized by the following: 

Algorithm 2 (to be used if 21) is not an integer); 

start: 

a :=± 1, 1] :=a~, 

inner loop: 

cn : = (- 0' b1cn_I)/[(n + p)2 + bol, 

n:=1,-1,2,-2,"'; 
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outer loop: p:= T(p); 

end. 

We take the sign a = 1 or 0 = - 1 of the square root in 
(5.6) during the whole iteration process and thus get 
two independent solutions, if the characteristic expo
nents do not differ by an integer. If b i = 0 for negative 
i, then the characteristic exponents are 1]=a~ and 
Algorithm 2 without the outer loop is the usual way of 
computing the series solutions (5.3), setting c n = 0 for 
negative n, 

We now consider the case that bo is close to zero. If 
bo ::;0, we do not iterate the operator T(p), but we solve 
go(p) = 0 by Newton's method: Replace 

p - p - go(P)/dgd~P) • 

We should no longer use 1] as a starting value for p; 
instead we notice that 

p"'a(- bo + 0' b;b_/i2)1/2 

is a better approximation if bo::; 0, as will be shown in 
Eq. (6.1). 

The method can be summarized by the following: 

Algorithm 3 (to be used if bo ::; 0): 

start; 

a:=±I, p:=o(-bo+0'bl b_/i2)1/2, 

inner loop; 

c n : = (- 0' blcn_i)/[ (n + p)2 + bo 1, 
c~: = - [0' biC~_i + 2(n + p)cnll[(n + p)2 + bol, 

n:=1,-1,2,-2,"'; 

outer loop; 

go :=p2 + bo + 0' biC_1t 

g~ : = 2p + "0' biC~i' 
p:=p-golg~; 

end. 

Now we treat the case, that 21) is close to an integer 
m * O. If 21]::; m * 0, then the denominator in (5, 5) will 
become small or even zero at n = - m and the assump
tions of Theorem 1 are hurL We then modify the 
algorithm 2: 

Algorithm 4: (to be used, if 21]::; m * 0); One has to 
compute the zeros of G(c_m ), which is the result of the 
following procedure, 

procedure: G(c_m); 

start; 

o:=±l, 1]:=oJ-bo, 

inner loop: 

cn: = (- 6' b;cn_I)/«n + p)2 + bo), 

if n * 0 and n * - m. 
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outer loop; p: =T(p); 

result; G; =g-m(P, c); 

endo 

6. AN APPROXIMATION OF THE POWER SERIES 
SOLUTIONS 

We assume that 21) is different from ± 1, ±2,'" and 
EQd' < 1. We notice that 

c_k =- "0'b ic_k _;![(-!?+p)2+bol=0(E) (1(*0), 

because the denominator does not become smalL 

Hence, using Co = 1, we get 

C -k '" - b -il (- " + p)2 + b 01 
and from 

p=a(- 110 - "0' b
k
c_

k
)I/2 

we derive the following improvement for a first esti
mate of p: 

(6.1) 

where 1)=a~. 

With this approximation (6.1) we now replace Eqso 
(5.4) by 

(6.2) 

This system has characteristic exponent ± p. We notice 
that the bounded solutions of the original system (5.4) 
depend continously on boo Hence the solutions of the sys
tem (6.2) approximate those of (5.4), because bo + p2 

=0 (E2
), 

We conclude from Lemma 1 that we may neglect the 
right- hand term of 

,",I -1 

[(n+p)2-p2lcn+0 1I iC n_i =0 bicn_; 
i=1 bll 

for n ~. 0 0 Thus we approximately split up the system 
(6.2) into 

c~=- 6 b;c~_/[(n+p)2-p21, /I' 0, 
;>0 

and into 

c~=- 0 bic~_/[(n+p)2-p21, n<O, 
;<0 

c:n=O 

with c5 = 1. The recurrence relations for c~ can easily 
be computedo In Table I we show how good the 
approximation 

cn"'c~ifn'O, 

cn"'c~ifn:O (6.3) 

agrees with the exact solution of the origina~ system. 

Expressed in terms of differential equations, we had 
replaced 

(6.4) 

by 
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TABLE I. Example 7.1 is computed with Algorithm 2 and the 
approximation of Sec. 6. 

Al h Igorit m 2 Approximation 
l. step 4. step (exact sol.) of Sec. 6 

p~ 1.2 1.200098 1. 200098 

n-
-20 0 0.479276 E - 64 O. 479246E - 64 
-10 0 O. 125559 E - 25 O. 125549 E - 25 
-2 0 O. 699805 E - 3 0.699559 E -:1 
-1 0 - 0.1991106E-l - O. 199972 E - 1 

0 1 1 1 
1 0 - O. 588167 E-2 - O. 588201 E - 2 
2 0 0.172977 E-4 0.172990E-4 

10 0 O. 136660 E - 28 O. 1:J6615 E - 28 
20 0 0.101006E-62 O. 101018E - 62 

and by 

/_2 Z "+1"Z'+(-p2+ 0 b ;r i)z=0 for IrI 1 (606) 
i<O 

(6.4) has two irregular pointso (6 0 5) and (6,6) only 
have one irregular singular point, 

There are solutions 

.1' (1") = r' 0 C~yn 
n:O 

and 

o 
z (1-) = r' 6 c~rn 

of Eq. (6, 5) and (6 0 6). 

As ct = 1 we finally approximate 

x(r) '" 1'(r) + z(r) - r'. 

We always use formula (6.1) for p. 

7. EXAMPLES 

(6.8) 

We treat the differential equation (5,1) for the param
eters E, 7, and w arbitrarily chosen, but w small. As 
w is small, we substitute I' - 1001' and thus get small 
numbers b_b bb and b2 , while bo remains unchanged. 

EXllm/)lc 7.1: We choose 1 =0. 7, (> =0, 02, E 

= - 0.173. After the substitution l' - 1001' we obtain with 
w = - o2l 

h2 = - 0.0000346. 

We apply Algorithm 2. 1) =± l- bo =± L 2 is the starting 
value for p. With sgna = 1, the characteristic exponent 
has been computed in Table I to be p = L 200098, 

Example 7.2: The example 

b2 = - 0,000025, hI = 0.02, 

bo = - 2,25, b_1 = - 0.000106559 

must be solved by Algorithm 4, because I) =± (7 + 1/2) 
=± 1. 5 is half- integer valued. If 1) = L 5, correspond
ing to a = 1, we use Algorithm 4 with III = - 30 The re
sults are 
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1. solution: p = 1. 500017, c_3 = - 0,002887, 

2, solution: p=L499983, c_3=70, 53, 

On the other hand, with 1) = - 1. 5 corresponding to a 
=-1, wegetm=3and 

2. solution: p = - 1. 500017, c3 = 0.1432, 

which, of course, agrees with the former second solu
tion up to a constant factor, because the characteristic 
exponents differ by an integer number. 

We recall that the sum of the characteristic expo
nents of the first and, the second solution is equal to an 
integer fsee Ref. 4, formula (1.5)1. 

EX(llIIjJle 7.3: We transform the differential equation 
(5,1) into 

" 1 I ( 1 K (l + ~)2 B) x +-x + -- +- ---~-+- x=O 
r 4 l' 1'2 1'3 , 

K=1h'-2E, B~=w,J-8E'/O, 

(7, 1) is split up as done in Eqs, (6, 5) and (6,6) into 

" 1 I ( 1 K p2) V +-v + --+--- 1'=0 . y 4 y y2. , 

which is related to Whittakers differential equation, 
and into 

" 1 I ( p2 B) z +-z + --+- z=O 
y 1'2 1'3 , 

which is related to the mOdified Bessel equation, 

The solutions are 

v (1') = 1~-1 12 AI (1') - yP if l' is small 
• 1(, P 

and 

, _ (2p)!2
2p ~(- 4.B) lIt _p 

z (1) - (_ 4B)P 12p~ l' J l' if Y is large, 

(7,1) 

(For the notation see Ref. 8, pp. 375, 505,) Hence the 
approximation (6. 9) is 

XI (1')" Y-! 12 :U" per) + (- 2p) 12-2P (- 4B)P 1_20(1- 4B/Y) - yP 

and 
(7,2) 

8. APPROXIMATION OF EIGENVALUES 

We treat the last example 7.3, and want to choose K 

so that a linear combination of Xl (r) and X2 (1') vanishes 
at l' = 0 and at l' = co, We notice that, for l' - CG and s - oC, 
:H., p(1') and 12p(s) grow exponentially fast, while the 
combination 

(2p) 1 (-2p)! 
(p _ :, _ K) r 31., _per) - (_ p _ 1- K) 1 :11., p(r)- 0 

and the combination 

I_2p (s) - 12p (s) - 0, 

Hence, according to the formula (7.2), the combination 

__ (- 2p)! (2p)! 
(_P_~)IX1(Y)- ( .! )1 X2(Y) 2-K. P-2-K. 
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has approximately the right asymptotic behavior for 
l' - 00, and the combination 

(2p) ! 2
2p 

() ( 2) 1 2-2p ( 4B)P () (_ 4B)PXj l' - - p. - x2 l' 

has the right asymptotic behavior for )/ - 0, E 

= - 1/ (2K2) is the eigenvalue, if both combinations 
agree: 

1/(p- ~ - K)1 = F(K) (8,1) 

with (_2P)!)2(_2W)2P 1 
F(K) : = T2p)! -K- (_-P-_-=-2-1 --K)-! ' 

As w is a small number and p'> 0, we have to first 
order approximation F(K) '" 0; hence from formula (8.1) 
we obtain 

K"'~+P+V, v=0,1,2,···. 

We recall that p '='l + L so K '" V + l + 1, the well-known 
result in the case w = O. 

To get a better approximation of Eq, (8,1), we in
troduce AK by K:= 1 + P + v + AK; then (8.1) reads 

1 
(-V-l-AK)l =F(K). (8.2) 

For (8,2) we can write 

1 (- 1)" F(K) 
(- 1 - AK) 1 = (1 + AK) ••• (v + AK) 

if V? 1. Using 

1 
(-1 +E)! =d! +yE) + Q(E

3
) 

for small E (y = 0.577· .. is the Eulers constant), we 
get 

(- 1)"+1 F(K) 
AK = (1- ytlK)(1 + AK)'.' (v + tlK) , (8,3) 

which we solve by iteration. 

Example 8.1: We choosel=0.7, j=I,2, 0'=0.02. 
Substitution of l' -1001' just gives Example 7.1, if we 
also choose E=- 0.173. 

We approximate p with the formula (6,1) and ob
serve from that formula that p is nearly independent of 
E. We got the result p '" 1.200098. Now we compute E 
by (8.2), (8.3). 

1. order approximation: K,= 1 + p + v = 1. 700098 + v, 

For v= 0 we get from (8.3) AK = 0, 315 E - 8. This 
gives the first eigenvalue Eo = - O. 17299, Setting v = 1 
and v = 2, we get the higher eigenvalues E 1 = - O. 036521, 
E2 = - 0.0226337. 

9. CONCLUDING REMARKS 

The most important methods of computing eigenvalues 
are the Ritz method and the perturbation formula, The 
first has the disadvantage that higher eigenvalues are 
rather inaccurate. The second has the disadvantage that 
one is not sure about the validity of the pertUrbation 
method, 

An example is the differential equation (1, 1) with 
positive w, For small l' the solutions behave asymp-
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to tic ally like x(r)-Ar3/ 4 sin(v'4w!r+ 0). From this we 
conclude, that the spectrum consists of all E, E < 0 
giving bound states and E> 0 scattering states, 

The reason is that the Hamilton operator is not bound
ed from below, if w> D. This is easily seen by using the 
Ritz variational principle with the trial functions X (r) 
= r 1 .. , exp(- r); E> D. 

The method given in this paper has the advantages: 

(1) One computer program serves for both, eigen
value and scattering problems. 

(2) The accuracy can be increased by working with 
more digits, 
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A straightforward treatment of these problems is given which appears to avoid many of the previously 
encountered difficulties. Admittedly some generality is lost by assuming that the various associated 
parameters k j are not space dependent within their respective domains of definition, D j • Nevertheless, by 
means of the approach offered here, such problems can be analyzed in just one function space; more 
general existence and uniqueness theorems can be obtained; there is no need to regularize the operators 
involved; and, above all, the solutions can be expressed in terms of certain boundary integral equations 
which, computationally, offer good prospects. 

1. INTRODUCTION 

Transmission problems associated with the Helm
holtz equation have already been investigated by a few 
authors and in this connection we particularly mention 
the works of Kittappa and Kleinman, t Kupradze,2 Latz, 3 

and Werner. 4,5 Although these authors discuss such 
problems in quite general terms, for instance most 
consider the case when the Helmholtz equation has a 
distinct, space dependent associated parameter k j in 
each of a number of regions D j C R 3, nevertheless the 
treatment of the problem and the results obtained are 
not always in a form which is entirely suitable for ap
plications. For example, in Ref, 5 existence and uni
queness is only established for those values of the 
transmission coefficient which are related in a certain 
way to the ratio k/k j , i 4) and, moreover, the solu
tion is obtained in a form which is often difficult to 
handle numerically. On the other hand, the results ob
tained in Ref. 1 are only valid for small quantities and 
furthermore the "converse argument,,6 necessary when 
using a Green's representation of the solution seems to 
be missing, 

In this paper we present what is felt to be a more 
straightforward treatment of these problems which ap
pears to avoid the difficulties mentioned above, Ad
mittedly we lose a certain amount of generality by 
demanding that the various k j are not space dependent 
in the regions D f , Nevertheless we find that with our 
approach we can analyze the problem in just one func
tion space, the space of continuous functions; obtain 
more general existence and uniqueness theorems; avoid 
having to regularize the operators involved6 and, above 
all, express the solution in terms of certain boundary 
integral equations which, computationally, offer a very 
hopeful prospect 

For clarity we have confined our attention here to 
problems associated with just one interface, Generali
zations to problems involving not only many interfaces 
but also specific boundary conditions can be mOdeled on 
the work in Ref, 6, 

2. STATEMENT OF THE PROBLEM 
Let Dt denote an unbounded, open region and D2 a 

bounded open region of R3 such that 

The interface boundary S : = oDt = oD2 is assumed to be a 
closed, bounded Lyapunov surface, We shall denote by 
n the unit normal to S drawn in the direction from D2 
to D t , 

In this paper we shall be concerned with the following 
problem, 

Transmission Problem: Find functions um E C2(Dm) 
n Ct(Dm), m=1,2 such that 

(2.1) 

J1.tU t - J1.2U 2 = II 
in S, 

~ ~-on - on -g 

(2,2) 

where Ut is required to satisfy a radiation condition of 
the form 

u=O(l/R), ou/on-iku=o(l/R), R-oo, (2,3) 

and IE C t
, "'(S), gE CO, "'(S), and kh k2' J1.h J1.2 are non

zero complex numbers with 0"" argkh argk2 <1T. 

We note that the transmission conditions, (2.2), are 
quite typical in the sense that they can always be easily 
renormalized to read 

j- ,~_, oU2 _ -
Ut- u2=, "t "2 -g on an 

for appropriate functions 1, i and complex numbers 
Ai> A20 

3. UNIQUENESS 

For our immediate convenience we establish a uni
queness theorem for the homogeneous transmission 
problem 

c.v~+k~vm=O, in Dm, m=1,2, 

J1.tVt - J1.2v2 = 01 
in S 

OVI _ aV2 = 0 ' 
on on 

(3,1) 

(3,2) 

where Vt is required to satisfy a radiation condition of 
the form 
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v=oG), ~~ -i1W=o(*), R-ro. (3.3) 

Theorem 3.1: Let kj, k2 EO cr\{O} with 0 ~ argkj, 
argk2 < 1T, and let Jlj, Jlz c: a:: {O} be such that 

-2 

P ·- Jl2k2 c: lR 
.- JllRI c , 

where p;, 0 ('-:0) if ReklRel?2"" 0 «0). Then the only 
solution of the homogeneous transmission problem is the 
trivial solution VI = 1'2 = O. 

Proof: Let KR be a sphere of radius R with outward 
drawn normal n. Assume that KR contains 5 in its in
terior and let D1, R : = {x E D1 : Ix I < R}. Applying Green's 
theorems over D 1, Rand Dz and using (3.1) and (3.2) we 
obtain 

=Jll! 1 grad vI12dX+Jl2! Igradv2 12dx 
D1, R D2 

-Jllki ( IVI12dx-Jl2k~f Iv212dx, (3.4) 
J VI, R _ D2 

Dividing throughout (3.4) by JllkI and taking imaginary 
parts we get 

1. 1 f aUl) Im\ki K vc-a;; ds 
R 

= Im(p ( 1 gradl'11 2 dx) 
I} Vl,R 

+ P 1m fir ( 1 gradl'21 2 dX) , 
\' 2 J V

2 

(3.5) 

Since the integrals on the right- hand side are clearly 
real we need only concern ourselves with the complex 
nature of kl and k 2• Specifically we distinguish between 
two cases; Imk! > 0 and Imkl=O. 

In the case Imk! > 0 and since VI satisfies the radia
tion condition it follows 2 that the left- hand side of (3. 5) 
tends to zero as R - 00. Consequently (3,5) reduces to 

Rekl Imk2 f 1 12 I k 14 grad1'1 dx 
1 VI 

+ Rek2Imk2 ( 1 gradv 12 dx = 0 
P Ik 14 In 2 • 2 V 2 

If Rekl *0, then from the sign of p it follows that 
f VI I gradv112 dx; = O. From this fact we conclude that 
VI = 0 in D1• The transmission conditions now enable us 
to write v2 = oV2/an = 0 on 5 and as a consequence of 
Green's representation theorem it follows that V2 = 0 in 
D2• 

If Rek 1 = 0, Rek2 * 0, then it follows that 
f D2 I gradvz 12 dx = 0; from which we conclude that 
gradv2 = 0 in Dz• The transmission conditions then 
show that ilvl/on = 0 on S and consequently, by the 
uniqueness theorem for the exterior Neumann problem 
we deduce that VI = 0 in D j • Using the transmission 
conditions once again it follows that Vz = 0 in D2• 

If Rekl = Rek2 = 0, then kI and k~ are negative and 
therefore from (3.4), since p ~ 0 we obtain 
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JDjlvI12dx=JD2Iv212dx=0 

which implies that 1!j=v2=0. 

In the case when Imkl = ° we obtain from (3.5) 

f 0),1 
1m K viands;, O. 

R 

From the radiation condition it follows that, as R - cO, 

kl ( 11'11 2 ds+Im r l'l~~~ds=o(l). 
J KR J KR an 

Since both terms on the left-hand side are nonnegative 
it follows that 

J K 1 u 1 12 ds = a (1 ) 
R 

as R - 00. Therefore, by Rellich's Theorem it follows 
that VI = 0 in D1• The proof of the theorem is now com
pleted by means of arguments similar to those used 
above. 

We note that this theorem is a special case of a the
orem obtained by Werner. 4 

It is obvious that by a more detailed discussion of 
(3.4), uniqueness can be established for a wider range 
of values of kj, k2' Ill> and Jl2 than those considered in 
Theorem 3.1. However, the present range is sufficient 
for our purposes as it indicates a region in which uni
queness can be assured. That uniqueness cannot be 
expected in general for all values of kj, k2' Jlj, and Jl2 
is illustrated by the following example. 

Let Dl be the exterior and D2 the interior of the unit 
sphere in R3. Introduce spherical polar coordinates 
(1', e, ¢) = (r, e) and consider the functions 

ul,n,i(r,e) :=al,n'ih~j)(kl1')Yn,l(e), 1 "". l' < 00, 

u2,n, ;(1', e): = a2,n, dn(k21') Yn,l (e), 0 ~ r ~ 1, 

where h~j) and jn denote the nth spherical Hankel func
tion of the first kind and spherical Bessel function 
respectively and where Yn,l> i = 1,2, ..• ,in denote the 
linearly independent spherical harmonics of order n in 
R3. Obviously these functions form a solution of the 
homogeneous transmission problem if and only if 

Jlla l, n, ih~j) (k 1) - Jl za2, n, i j n (k2) = 0, 

kja 1. n, ih~j), (k 1) - k Za2• n. ij ~ (k2) = O. 

This system of equations has a nontrivial solution for 
aj. n. i and a2• n.; if and only if the determinant 

! 
Iljh~I)(kl) Jl2jn(k 2)! - 0 
klh~l)'(kl) k2j~(kz) - • 

That is, there are nontrivial solutions if and only if, 
given kl> k2 there holds 

iJ.l klh~j), (kl)jn(k2) 

iJ.2 = k2h~1>(kl)j~(k2) 

Obviously for each kj, k2 there eXists, in general, an 
infinite number of (complex) transmission coefficients 
(1lt!iJ.2) such that we have nonuniqueness. 

4. EXISTENCE 
We shall settle the question of existence of solutions 

of the transmission problem by establishing that Fred
holm's Alternative is available for the problem. 
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Let Y"" m = 1,2, denote the fundamental solutions 

(~ ,,"=_l... exp(ik",lx-x'l) xot-x' 
Y.,\",x I- 21T Ix-x'i ' 

of the appropriate Helmholtz equation. We define 
potentials 

u.,(x): = Is (<p(X') o!(~"',) + <t;(x')C",y",}dS(x'), 

XER3\S, m=1,2, (4.1) 

with densities <p E Cl, "(S), ¢ E Co, "'(S), and where cl' c2 

E a are fixed constants which will be appropriately 
chosen later, 

From the regularity properties of single and double 
layer potentials7,B it follows that th~ potentials defined in 

(4.1) are such that urn E C2(Dm) n C1(D .. ), m = 1, 2. 
Furthermore the potentials u'" are known to satisfy the 
differential equation (2.1) and the radiation condition 
(2.3). 

Using the jump conditions of potential theory' we ob
tain on S 

(J1jU j - 1l2112)(x) 

= JJ <P (x') (J11 o~~') - 112 d!~'») 
+ ,f!(x')(l1jCj}'l- J12C 2Y2)]dS(X')- (iJ.l + iJ.2)<P(x), (4.2) 

(
Olll _ _ ~) (x) 
an an 

0:: IJ¢(x')(on(:;~~(X') - on:)2;~(X'») 
+ if!(X')(CI o~}(~) - c 2 o!~)}J ds(x') + (cl +C2)if!(x). 

(4,3) 

In both (4,2) and (4.3) we emphasize that XES, 

We now introduce integral operators Amf: CiS) - CiS), 
111 ,j = 1, 2 defined by 

(A 11 <D ) (x) : = Is ¢ (x') (Ill a!~/) - /1z 0:;2,) ) ds (x'), 

(A 12 i/I)(x) : = Is W(x')[{.tIC1YI - /lzC 2Yz] ds (x'), 

( ( I (') (a2YI a
2y2 ) d (x') A 21 <P)X):= s <px an(x)an(x') - on(x)on(x') S , 

(A2ZW)(,<) : = Is if! (x') (Cl o~(~) - C2 a!~»)dS (x'). 

In terms of these operators we have the obvious result: 

TJle01-e 117 4. 1; The potentials Ill> Uz defined in (4. 1) 
solve the transmission problem (2.1)-(2.3) if the den
sities <P and if! solve the system of boundary integral 
equations 

(/11 + 112)¢ - A11<P - A 12¢= - j, 
(4.4) 

The integral operators in (4.4) have weakly singular 
kernels. For the operators Au, A 12 , AZ2 this fact follows 
by standard potential theoretical arguments. For the 
operator A21 it is established by writing Ym in the ex
panded form 
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1 '" (ik",)Jlx-x' If-l 
Y (x x') = ---- + '0 j! 

"" jx - x' I j.l 

and notic ing that 

_~Y_l __ _ ~ __ = 0( __ 1 __ ) 
on(x) on (x') on(x) on(x/) Ix - x'I • 

Therefore, with CiS') endowed with the usual supremum 
norm, it follows that the operators Ami: CiS) - C(S) are 
compact, and consequently the Riesz-Schauder theory 
is available for our use. 

We now introduce operators E, A: C(S) xC(S) - CiS) 
xC(S) defined by 

E __ [(fJ.I+I1Z)I D ] A>-[ Au Au] 
. - 0 (Cj + C2)!' . - - A2l - AZl ' 

where I is the identity operator on C(S). Setting <P : = [t], 
the integral equations (4.4) can be written in the form 

(E-A)<p=F, 

where F: = [1]. 

(4,5) 

Remark: ~ shall always require the operator E to be 
invertible. Therefore, we must always have III + 112 if' 0 
and C I + Cz * O. The latter condition is a technical one 
which we can always satisfy. The former condition how
ever is of a more intrinsic nature in that it influences 
the acceptable transmission conditions. 

Theorem 4.2: IT the homogeneous transmission prob
lem (3.1)- (3.3) has only the trivial solution, then the 
inhomogeneous transmission problem (2.1)- (2,3) has 
a unique solution. 

PrOOf: (i) Assume that the homogeneous integral 
equation 

(E- A)<p =0 (4.6) 

admits only the trivial solution. [That this is indeed the 
case will be proved in (ii)]. Then by the Riesz-Schauder 
theory the inhomogeneous equation (4.5) has a unique 
solution. 

From the weak singularity of all the kernels involved 
it follows by standard arguments that 

Ami: CiS) - CO, "(S), m,j =1, 2 

and 

Ami: CO''¥(S) - Cl , "(S), md =1, 2. 

Therefore, since/E CI·,,(S), gE CO'''(S) it automatically 
follows that for any continuous solution of (4. 5) we have 
<PE Cl·,,(S) and l/JE CO. "(S). Therefore, by means of 
Theorem 4.1, we see that from the solution of the in
homogeneous integral equation (4. 5) we obtain a solu
tion of the inhomogeneous transmission problem (2. 1)
(2.3). 

(ii) Let <p : = [SJ be a solution of the homogeneous in
tegral equation (4.6). Then the potentials ul> u2, each 
with densities <P and if! as in (4.1), solve the homo
geneous transmission problem. Now by assumption, 
urn = 0 in D"" 111 = 1,2 whilst the jump conditions yield 

u~-u;'=-2<P, onS, m=I,2, 
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au' au-
an'" - a: =2cmz/!, on S, m=I,2. 

Here by the indices + and - we distinguish between the 
values obtained by approaching S from inside Dl and 
from inside D2 respectively. Consequently we have 

ui + ui = 0 on S, 

1. OU2 + 1. oUj = 0 S 
a on • 

C2 n cl an 

If now we define 

then we see that vt. 112 satisfies the homogeneous trans
mission problem 

t.vm+k~v,"=O in D,._t. m=I,2, 

C2V2-C1Vl=0~ 
in S 

aV2 OVI ' 
a;-a;=0 

V2 satisfies the apporpriate radiation condition at 

infinity. 

Notice that here we have set Do'" D2• 

Since the constants c t. c2 are at our disposal we 
choose them to ensure that 

c;kI 
1):=-V ER, 

C2 2 

where 1)~ 0 «0) if ReklRek2~ 0 «0). Then by the 
uniqueness theorem, Theorem 3.1, it follows that 
v2 = 0 in Dl and vI == 0 in D2• Hence, by using the jump 
condition, we conclude that rfJ = z/! = 0, and the proof of 
the theorem is complete. 

In order to deal with the case when the homogeneous 
transmission problem has nontrivial solutions we must 
introduce an operator B which, with respect to some 
suitable structure, is an adjoint of the operator A. To 
this end define the bilinear form 

(.,.):(C(S)xC(S)x(C(S)xC(S)-a: by 

(4), '1') := Is (rfJx + z/!1))ds, 

where 4> : = [t 1 and >IF : = [~]. With respect to this bilinear 
form the operator E is seen to be self-adjoint whilst the 
adjoint of A is given by 

B:=[B11 -B12 ] 
B21 - B22 ' 

where 

(B 11X)(x):= Is X(x')(Ml a~Y~) - M2 a!(;))dS(x'), 

(B )(). - f (x')( a
2
Yl a

2y
2 ) d (x') 121) x • - s 1) an(x) an(x') - on(x) on(x') S , 

(B21 X)(x): = Is X(x')(M1C1Yl- M2C2Y2)ds(x'), 

(B221)) (x) : = is 1)(x') (Cl a!~') - C2 o!~,JdS (x'). 

Let V be the linear space of all solutions of the homo
geneous transmission problem (3.1)- (3. 3) and let 

1436 J. Math Phys., Vol. t 9, No.6, June 1978 

W: = ~ '1' =[a~~ J =[~J : (vt. V2) E vl. t Ml111 s M2v2 s 

Theorem 4.4: ]f N(E - B) denotes the null space of 
the operator E - S, then N(E - B) = W. 

Proof: (i) Let (vi> v2) E v. By means of Green's rep
resentation we obtain 

f (01l2(x') ( '~) (~, - -
s on(x') Y2- V2 X )on(x') ds,<,- )-0, xeDl• (4.8) 

Multiply (4.7) by clMl and (4.8) by C2M2, subtract the 
resulting equations, and use the transmission condi
tions (3.2) to obtain 

f favt(x') r 
s Lan(x') LMlc lYl - M2c 2Y2} 

- M1Vt(x')(Cta!~') -C2o!~,))]as(x') 
=2MtClvl(x), xEDt• (4.9) 

Letting x - S we obtain 

B21(ao~11 J -B 22 (MtVll s) = (Ct + c2) Mtlltl s· (4.10) 

Setting cl = c2 = 1 in (4.9) and taking the normal deriva
tives of the resulting equation we obtain, on letting 
x-S, 

B11eo~t I s) -B t2 (MtVll s) = (Mt + M2) °o~t \ s 

Obviously (4.10) and (4.11) imply that 

(E - B) '1' = 0, 

where 

'1':=[~J • 
M1V t s 

Therefore 

WCN(E- B). 

(4.11) 

(ii) Now let 4> = [t] be a solution of the homogeneous 
equation (E - A)4> = O. Then, as shown in the proof of 
Theorem 4.2, we have 1> E Ct, "'(S) and z/! E Co, "'(S), and 
the corresponding potentials Ut. u2 defined by(4. 1) solve 
the homogeneous transmission problem. 

Now define a mapping 

T:N(E-A) -N(E-B) 

by T:4>=[:Jf-[oa:
1

] • 
MtUt s 

Clearly T4> E W. Further, T is a linear operator which 
moreover is injective since from T4> = 0 it follows that 
au/ an = ul = 0 on S and therefore Ut = 0 in Dt• From the 
transmission conditions we obtain U2 = auJ an = 0 on S. 
If we now repeat the arguments used in the second part 
of Theorem 4. 2, then we find that rfJ = z/! = 0 and we con
clude that 4> = O. Finally, since A and B are compact, 
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Fredholm's Alternative enables us to assert that 
dimN(E - A) = dimN(E - B) and according we can deduce 
that Tis bij ective. 

Now let >Ii : = [~] E N(E - B) and define cP : = T-l'l'. Then 
>Ii = TcP E Wand hence N(E - B) c W. 

The theorem is established by combining the results 
of (i) and (ii). An immediate corollary to this theorem 
is 

Corollary 4.4: The space Vof all solutions to the 
homogeneous transmission problem is finite 
dimensional. 

In keeping with the results of classical Fredholm 
theory we establish the following. 

Theorem 4.5: In order that the nonhomogeneous 
transmission problem (3.1)- (3. 3) have a solution it is 
necessary and sufficient that 

f s (f ~~l - glllVl) ds = 0 

for all solutions 1'1> v 2 of the corresponding homogeneous 
problem. 

Proof (Necessity): Let ul> U2 be solutions of the non
homogeneous problem we obtain by Green's theorem, 

Is (f o~~ - glllV~ ds 

=111 IKR (Ul °0~1 - 00:
1 

Vl)dS. 

This last integral tends to zero as R - 00 by virtue of 
the radiation condition. 

(Sufficiency): Let 'I' E N(E - B). Then by Theorem 4.3 
we have 
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for some element (vI> V2) E V. Then 

[(i~~ -gIlIVl)dS=O 

implies that, for Eq. (4. 5) we have (F, '1') = O. But by 
the Fredholm theory this ensures that (4. 5) has a solu
tion, a fact which ensures that the given transmission 
problem has a solution. 

We can now summarize these several results in the 
following manner. 

Theorem 4.6: Either the homogeneous transmission 
problem (3.1)- (3.3) has only the trivial solution in 
which case the nonhomogeneous transmission problem 
(3.1)- (3. 3) has a unique solution for any inhomogeneous 
term, 

or the homogeneous transmission problem has a 
finite number of linearly independent solutions and the 
nonhomogeneous transmission problem is solvable if 
and only if the inhomogeneous term satisfies the con
ditions of Theorem 4. 5. 
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Functional integrals over anticommuting variables are used to obtain a scattering formula for smooth 
localized potentials in one dimension. Via a calculational trick, the functional integral is evaluated to 
obtain the transition matrix coefficients as an expansion in 

[k'(x)/k(x)] (k(x) = [(2m/h')[E- V(X)]III2). 

This expansion is shown to have a simple physical interpretation. 

I. INTRODUCTION 

The purpose of this paper is 2-fold. First, a new 
scattering formula is obtained for one-dimensional 
quantum mechanical problems. This formula [Eq. (II. 
12) J is expressed in terms of a functional integral over 
anticommuting variables. In such a form it is not very 
useful since functional integrals are, in general, diffi
cult to compute. However, one can break up the action 
into two pieces, Ho(x) and HI(x), and then by expanding 
in HI (.\') and explicitly evaluating the functional integral, 
one may obtain a new (as far as the author can deter
mine) series expansion for the transition amplitude co
efficients. H o(x) acts as a free effective Hamiltonian, 
while HI(x) acts as a perturbing potential. In fact HI(.\') 
= 0 when the potential is constant. The leading term in 
this expansion is the same as the WKB approximation. 
This expansion, is however, not the same as semiclas
sical (WKB) or eikonal expansions since the former is 
in terms of !/(x)/h(x) while the latter involves higher 
derivatives of the potential. 

The second aspect of this paper is the use of func
tional integrals over anticommuting variables. Such 
objects were first introduced l to define Feynman inte
grals for theories with fermions. Anticommuting vari
ables have also become popular with the advent of super
symmetry and graded Lie algebras. 2 The author be
lieves they will become an extremely useful calcula
tional tool in the future. 3 This paper demonstrates their 
power in a seemingly inapplicable problem. Most of 
the material on anticommuting variables is not new and 
thus presented in three appendices. The first shows 
how "continuous" multiplication of matrices can be put 
into a simple form using anticommuting functional inte
grals. The second develops a calculational technique 
used to obtain Eq. (n. 14) from Eq. (II. 12). It is a per
turbative expansion in the off-diagonal elements of the 
"Hamiltonian" matrix, H. The third appendix derives 
the equations of motion. It also shows that even though 
71(X) and 71*(X) cOl1ljilefcly anticommute as "classical" 
variables, as operators they satisfy canonical anticom
mutation relations (CAR). 

The method used to obtain the scattering formula, 
Eq. (n.12), is simple. Take any localized potential and 

a)Research sponsored by the National Science Foundation under 
grant number PHY 74-0S175-A02. 

approximate it by a step function (see Figs. 1 and 2). 
The scattering due to this step function potential should 
be approximately the same as the true potential. The 
scattering due to a step function is easily computed. 
One uses the T matrix formalism4 learned in first year 
quantum mechanics. To obtain the T matrix one need 
only multiply the T matrices for each step of the poten
tial. If there are II steps this involves an II-fold multi
plication of matrices. In the limit as 11- 00 the step 
potential becomes the true potential, the approxima
tion to the scattering becomes the exact scattering, and 
the JI- fold multiplication of matrices becomes a "con
tinuous" multiplication of matrices which is why anti
commuting variables enter: They facilitate "continuous" 
multiplication of matrices. 

One final remark: There appears to be no higher di
mensional analog to Eq. (n. 12) because only in one 
dimension do T matrices multiply. This is unfortunate 
since most interesting scattering processes are not 
reducible to one dimension. 

II. THE DERIVATION 

Let V be a localized one-dimensional potential, i. e. , 
V(x) = VR for x: h, V(x) = VL for x ~ a with VR , VL con
stants. Also assume that V is a bounded C2 functiono 
Such a potential is shown in Fig. 1. The quantum mech
anical scattering can be described in terms of the T 

(II. 1) 

The letters "R" and "L" refer to "right" and "left." 
The numbers A.(R), A.(R), A.(Ll, and A.(L) are defined 
by Eqs. (n. 2) and (n. 3) as follows: Let </J(x) be the solu
tion to the time independent Schrodinger equation, 

V(x) 

FIG. 1. A typical potential. 
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__ ~~~~ ____ -r ______________ ~R~N~'/~~X 
XN./,N'2 b 

FIG. 2. A step function approximation. The potential of Fig. 1 
has been approximated by a step function. The interval [a, b J 
has been broken into N regions, R j , in which the average value 
of the potential is Vj' 

ff2 02 

--2 ~ijJ(x)+ V(x)ijJ(x) = EijJ(x). 
III x 

In the region to the right (x > b ) 

ijJ(x) =A.(R) exp(ikR . x) +A jR) exp(- ikR • x), 

and in the region to left (x < a) 

<b(x) =A+(L) exp(ikL . x) +A jL) exp(- ikL <d, 

where 

and in general 

(
2m ) 1/2 

1;'(x) =' -y;;r (E - V(x)) . 

(n.2) 

(n.3) 

(n.4a) 

(n.4b) 

(n.4c) 

For simplicity assume that the energy is greater than 
the maximum value of the potential. If this is not the 
case one must replace k(x) by ± i k(x); the sign being 

determined by requiring exponential damping in the 
classically forbidden region. 

The" +" and" -" signs refer to the sign of the phase 
of the wave. exp(ik· x) is a wave moving to the right 
(and hence a "plus" wave), whereas exp(- ik . x) is a 
wave moving to the left (and hence a "minus" wave) 
[if the time dependence of the wavefunction were made 
explicit, it would be exp(i(E/ff)t)]. The T matrix spa
tially propagates from left to right the plus and minus 
waves. T.+ represents the probability amplitude 
that a plus wave propagates through the potential and 
remains a plus wave while T _+ represents the proba
bility amplitude that a plus wave propagates through 
the potential and becomes a minus wave. Similarly T+_ 

(and T _J represents the probability of a minus wave 
propagating through the potential to become (or remain) 
a plus (minus) wave. 

Let R = [a, b] be a region containing the potential. To 
solve this problem break R into a large number, N, of 
subregions, R j , of width E. NE = b - a. Replace V by 
an approximating step function, V w) (see Fig. 2). Let 
Vj =the average value of V in R j . R j =[X j ,i_1,X j+1,i] with 
Xj i_1O"a+iE. One can take VW)=ZjVjXR., XR. being the 
characteristic function for R j • Define /, j '= [(21;1/lt) 
X(E- V j )]1/2, the wavenumber for the region, R j • 

The scattering due to V is approximately the same 
as that due to V W ) and in the limit as N goes to <f:o the 
approximation should become exact. 

The T matrix for V W ) is simple, 4 

T(N) = T(R,N)T(N, N -1)··· T(2, 1), (n.5) 

where T(i, i-I) is the transition matrix for the single
step potential, V(x) = Vi for x >Xi,i_1 and V(x) = V i _1 for 
X<xi,i_b 

(n.6) 

Since 1?(x) is continuous, 1, i+1 '" k j + Ek;+l, where ,,< is an appropriate approximation to k'(x) in the regions R j and 
R i+1 • To first order in E 

ki-kj_1_Ek; kj+l(j_1_1_~k; 
2ki 2k i ' 2h j 2kj ' exp[±i(k j - k i _1)X j ,i_1J-l±iEk;x""'_1, 

exp[± i(i'j + k j_1)xi,j_ll - exp(± 2ik1Xl,j_l)' 

Rewriting 

T(i, i-I) '" 1 +EH(i, i-I) "'exp[ln(1 + EH(i, i -1))J=exp[EH(i, i - I)J(1 + O(E)), 

one obtains 

H(i, i-I) = 

!!..L (2'1.. ) 2k. exp ZKjXj,i_l , 
Equation (n. 5) is replaced by 

T = exp[EH(R, N)] exp[EH(N, N - 1)]· .. exp[EH(2, 1)](1 + Ok)). 

In Appendix A it is shown that 
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(n.8) 

(n.9) 
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lim{ exp[ EH(R, N)] exp[ EH(N, N - 1)] ... exp[ EH(2, 1) ]}",a 
N~'" 

= .r fi)1J1) 1)*T)(J)", exp( J:b[ .0T/r'*(x)1)y (x) + .01)y*(X)HH(X)T)~ (x)] dx} 1)*(O)a. 
r r~ 

(n.10) 

Here 1)'(X) = (d/dx)1)(x) and f f/j T)1) T)* - TIxTI", J dT)", (x)dT),n'(). This is a functional integral over anticommuting variables 
T)(X) , T)*(x) with H(x) an appropriate continuous version of H(i, i-I), 

- I/(x) '1 / () 

2/,(x) - ZI' x X 
H(x) = 

!<'(x) [. ( ) ] 
2},(x) exp 211:: x x 

I/(x) [. \ 2!?(x) exp - 2 t"(x)x] . 

- "/(X) . '( ) 
2!?(x) +zk x x (n.11) 

Functional integrals over anticommuting variables accommodate continuous products of matrices. Note that Eq. 
(n.9) is a product of factors which do not commute and hence does not exponentiate. Anticommuting variables allow 
one to exponentiate such a product recasting it into an "action" formalism. 

The final solution, expressed in terms of a functional integral over anticommuting variables, is 

T ",e = .r.r 1) 1)1) T)*( 1)(f))", exp{ f[ 1) '*(X)1)(x) + T)* (x)H(x)T)(x) ] dX}(T) * (O))a' (n. 12) 

This scattering problem has been reduced to solving the quantum mechanical fermion problem given by the 
Lagrangian, L (T)*, T)) = 2:", T);:' (x)T)", (x) + 2:", ,a 1)~(x)H ",B(X)1)a(x). Since, in general, functional integrals are hard to solve, 
it is useful to obtain a perturbativelike expansion for Eq. (n.12). Let H =Ho +Hl with 

I-I:: '('() . '( ) I "/(X) [2'k()]\ 2/,(x) - II, '( \ 0 0 2k(x) exp - z x X 

Ho(\) = k'( ) , H 1(x) = k'(x') . ' 
o ~!?(;~ +i7/(y)x 2F«(x)exp[+21!?(X)X] 0 (n.13) 

and expand the exponential in powers of H1• One can explicitly do the functional integrals term by term (done in 
Appendix B) obtaining a scattering formula with a simple phySical interpretation, 

00 

T",a =Go(b, a)",a + 0 .r I··· J dVl .•. d\'n[GO(b, Yn)H1(Yn)G oLv n, Yn_l)H1(Yn_1) .• , GOLV2' Yl)Hl(Vl)GoLvb a)1a, (n.14) 
n"l 

b;2!:Yn!!<-O •• ~ Yl~a 

where 

G (\". \'. ) =(I::(\'i_1)) 1/2 
O.".I~l k(\'j) 

x eXP[-i\"J{\'i)]exP[i li'~lk(X)dxJ exp[i:\'i~lk(\'i_1)] 0 

o exp[iy ih(V i)]exp[-1i'~lk(X) dXJ exp[ - iy i_l k (V i-l)] 

(n.15) 

Note that because Hl is an off diagonal matrix only even terms in J1 contribute to T ++ and T __ while odd terms con
tribute to T+~ and T _+" To see the physical Significance of Eq. (n. 14) write out, for example, the first few terms 

of T ++, 

(
1)(a))1/2 [ l b J fb ('2 T++= !~(b) exp[-ibh(b)]exp i a },(x)eIx exp[ial?(a)]+ a el}'2 Ja ely 1 

x (
k(V )) 1/2 [lb] kdJ exp[-ibk(b)]exp i ,/,(X)elX exp[iY2 h(V2)] 

(n.16) 
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+-----... + +-++--+-+--++ . ... •• • 
a b a YI Y2 

(a) (b) 

FIG. 3. Diagramatic expansion of T ••• Fig. 3(a) represents 
the probability amplitude that a plus wave propagates froma 
to b without phase flipping. This term is identical to the WKB 
approximation. Fig. 3(b) is the next leading contribution to 
T ••• A plus wave propagates from a to Yt. At Yt the plus wave 
undergoes a phase flip and becomes a minus wave. The minus 
wave then propagates from Yl to Yz. Again at Yz a phase flip 
takes place, changing the minus wave into a plus wave. Final
ly, the plus wave propagates from Y2 to b. 

The first term is the WKB approximation. I interpret 
it as the probability that a plus wave propagates from 
left to right through the potential without any phase 
flips [Fig. 3(a)]. The second term is a product of five 
factors each of which may be interpreted as follows: 
Factor (a) is the probability that a plus wave propagates 
forward from a to Yl' Factor (b) is the probability that 
the plus wave flips into a minus wave at Yl and is called 
the plus to minus phase flip factor. Factor (c) is the 
probability that a minus wave moves forward from Yl 
to Y2' Factor (d) is the minus to plus phase flip pro
bability at Y2' Finally, factor (e), similar to factor (a), 
is the probability that a plus wave moves forward from 
Y2 to b. These five factors are schematically illustrated 
in Fig. 3(b). The phase flips may occur anywhere within 
the interval [a, b] with the restriction that the minus to 
plus phase flip at Y2 occurs after the plus to minus phase 
flip at Yl' Thus one integrates over Yl and Y2 with the 
restriction that Y2 > Yl' 

The physical factors are summarized in Table I. 

Once one has this physical interpretation of Eq. (II. 
14) it's easy to write any term. For example, the low
est term in T._ consists of the following three factors: 
One, the probability that a minus wave moves from a 
to Yl; two, the probability of a minus to plus phase flip 
at Yl; and three, the probability that a plus wave moves 
from Yl to b, 

(II. 17) 

TABLE I. Physical interpretation. 

Name 

G •• (y,x) 

1441 

Physical interpretation 

probability that a plus wave at x 
propagates without phase flip to y 

probability that a minus wave at x 
propagates to y without phase flip 

plus to minus phase flip factor, 
the probability that a plus wave 
flips into a minus wave at y 

minus to plus phase flip factor, the 
probability that a minus wave flips 
into a plus wave at y 

J. Math. Phys., Vol. 19, No.6, June 1978 

One thus obtains the following scattering diagram 
rules: 

(i) To compute the Nth (N odd) contribution to T •• or 
T __ , partition the interval [a, b] into N sections at the 
points Yl < yz < ••• < YN_l' 

(ii) Put in arrows between successive points and alter
nate plus and minus signs (as is illustrated in Fig. 3) 
with +' s at end pOints for T •• and -' s at end points for 
T . 

(iii) Put in a factor of G .. (y, x) for 

+ -+ . ,,. 
x Y 

Put in a factor of G_.(y,x) for 

x Y 

(iv) Put in a factor of F_.(y) for 

+-

y 

Put in a factor of F._(y) for 

-+ 

Y 

(v) Integrate over the partition points with the re
striction a-"'Yl-"'Y2-'" •• '-"'YN-l-'" b. 

(vi) To compute the Nth (N even) contribution to T._ 

or T _. follow a Similar procedure but partition [a, b] 
into an even number of divisions. 

Equation (11.17) is the result for Fig. 4. 

A minor point: If a and b are chosen to be bigger than 
necessary (i. e., V'(x)"* 0 in a region strictly smaller 
than [a, b]), then the above formulas are still valid. The 
factors exp( - ibk(b)] and exp[iak(a)] appropriately com
pensate for the integration of k(x) over regions where 
V is flat. 

Note that although the leading term in T is the WKB 

Diagram symbol Formula 

+ .+ (:&0 1/2 
expl-iyk(y)] 

x exp[iJ
x

Y k(z) dz) exp[ixk(x)] 
x y 

(:&OI/Z exp[iyk(y») 

xexp[-i J: k(z)dz) exp[- ixk(x») 
x y 

~ 2k(y) exp[2iyk(y)] 
+-
y 

-+ ~ . 
2k(y) exp[- 2zyk(y)) 

y 
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---+~ -+-++ . ... 
FIG. - 4. Diagramatic interpretation of Eq. (II. 17). The 
~ --4 ;1' gives a factor of G_.!Yl' a). + gives a factor 
of F,Jy). * gives a factor of G •• \b'Yl)' Finally, the 
phase flip may occur anywhere between a and b so that one 
must sum over all such locations. This introduces a factor of 
f~dYl' One, thus, obtains Eq. (n.7). 

approximation, expansion Eq. (n. 14) is neither the 
WKB nor the eikonal expansion, as one can check. 
These latter expansions are in powers of n and involve 
higher derivative of k, whereas Eq. (n.14) is a power 
series in (k'/k). 

Many cancellations occur in the products of Eq. (n. 
14). Let XL and XR be the exact end points V becomes 
flat, i.e., V'(x)=Oforx>xR , V'(x)=Oforx<xL • It 
is true that !?(a) =l,(xR) and k(b) =k(xL ). Define 

(
k (b)) 1/2. . 

M •• = 1«a) exp[lxR k(xR)]T •• exp[-lxL k(xL )], 

]vI has a simpler expansion, 
00 

M=M o(XR,XL)+,0 J r··J dYI"'dYn 
n=1 

(n.19) 

xL~Yl:!SY2~ ••• ~xR 

where 

exp[ - i f'~ ,,(xl dx II ' 
'i-l 

which may be expressed in terms of a functional 
integral 

M"s = J JD1JD1J*(1J(f))" 

(II. 20) 

x exp {Jx~L [1J*'(x)1J(x) + 1J*(x)H(X)1J(X)] dX}(1J*(O))s, 

(n.21) 

where 

1442 

_lik(X) 

H= k'(x) 

2k(x) 
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(n.22) 

APPENDIX A 

Throughout these appendices one should think of x 
as a time variable and H as a Hamiltonian for a fer
mion system. 

The purpose of this first appendix is to show how con
tinuous matrix multiplication may be accommodated by 
functional integrals over anticommuting variables. Sim
ple properties of anticommuting variables are dis
cussed first. Latin letters will refer to space points 
whereas Greek letters will refer to matrix indices. 

Let H(x) be a smooth continuous sXs matrix function 
on [a, b]. Set Ll.x = (b - a )IN and Xj =jLl.x + a. Let 1J" (x) 
== 1J" (j) and 1J:(x j ) == 1J:t 0) (0' = 1,2, ... , sand j 
= 0, 1,2, ... ,N,j) be a set of anticommuting variables: 

{1J" (i), 1J8 (j)} = 0, 

{1J" (i), 1Jj0)} = 0, 

{1J:(i), 1Jj(j)} = 0, 

for all i, j, 0', (3. 

(A1) 

Note that it is not true that {1Ja (i), 1Jj(j)} = ° ijO"8' This 
relation will be satisfied when inserted in a functional 
integral containing the action as will be shown in Appen
dix C. 

Define integrationl over anticommuting variables by 

J d1J,,(i)d1J:t(i)f=jo ~f f*1J,,(i~1J:(i~, (A2) 
1 If f=1J,,(z)1J,,(z). 

In Eq. (A2) neither 0' nor i are summed over. At each 
"x value, " j~ + a, define J d1J(j)d1J*(j) = D" J d1J" (j) d1J:0) , 

Consider 

T:S) == J d1J(f) d1J*(j) J d1J(N) d1J*(N) ... J d1J(O)d1J*(O) 

x 1J" (j) exp(Eo Aj) 1J/(0), 

where the Aj which make up the "action" are 

Aj =A(x) == 6 [1J~(j + 1) - 1J~0) ]1J" (j) 
" 

+ 61J~(j + 1)H(xj )a81JS(j)Ll.x. 
",B 

Note that 

J d1J(j)d1J* (j) exp[ ~ 1J" 0) 1J: (j) ] 
a 

J 
1 

) .,(;1.1 (;1 ... "'., (;1'11'., (;1"':, (;1 '1,'., (il .. : .,(;1.101 

\ 1JI (j)1Jt (j)1J2 (j) 1J1' 0) ... 1Js(j)1Jt(j) 

All other integrals are zero. 
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Expand the L.: f"o [1)*(j + 1)1)(j) + 1)*(j + I)H(j)1)(j)~x] part 
of the exponent in Eq. (A3) leaving exp[Lj1)(j)1)*(j)]. 
Using Eq. (A5) the integrations are easy to do. First 
do the 1)(0),1)*(0) integrals. The relevant factor is 

f1)(O)d1)*(O) exp[1)(O)1)*(O)]2? ~! [1)*(1)1)(0) 

+ ~x1)*(I)H(X1)1)(0) ]"1)/(0) 

= 7)y*(I)[I + ~XH(X1) ~a. (A6) 

The last step follows since a single 1):(0) being pre
sent implies that only the n = 1 term contributes. 1 in 
Eq. (A6) is the identity matrix. 

The 1)(0),1)*(0) integrations have left the remaining 
integrals in exactly the same form. After doing 
1)1' 1)t .. ·1)N' 1)~ integrations in that order one obtains 

T~) = f d1)(j) d1)* (j) exp[ 1)(j)1)* (j)]11a (j) 

x 1)y*(f){[I + ~xH(N)J[1 + ~xH(N - 1)]'" [I + ~xH(1)]}ra 

=([I + ~xH(N) ] ... [I + ~xH(1) ]} 0: 8' 

(A 7) 

Because 

TIN) = exp[ ~xH(N) ] exp[~xH(N - 1)] ... 

xexp[~xH(I)][I+O(AX)], (AS) 

T"a=limTa""a)=f fi)1)(x)f)1)*(x) 11a(f)eA 1)/(O), (A9) 
N·~ 

with A the continuous version of L jAi' 

TO = 0 exp[ + f (H 0) _. dx] ~ 

The "'" denotes derivative with respect to x and the 
"+" denotes a Slightly later position (x' =x + E) to re
mind one that 1)'* and 1) are not multiplied at the same 
space point. 

Equation (AS) is the result Eq. (n. 10) used in Sec. II. 

APPENDIX B 

This Appendix proves Eq. (II. 14) from Eqs. (II. 12) 
and (II. 13), by writing H =Ho +H1 and expanding the 
exponent including H1: 

Ta8 = ffi)1)i)1)*11a (j) ex{jb'1)'*(x) 1) (x)+ 1)* (x)Ho(x)1)(x) dX] 

00 1[ r ]" X~on! Ja dX1)*(x)H1(x)1)(x) 1)/(0) 

= f fi) 1)[) 1)*1Jo, (j) exp{I [1)'*(;;)1)(x) + 1)* (x)Ho(x)1)(x) ] dX} 

x (~fd::h ... flYn 1)*(Yn lHleVn)1)(Yn) ... 

aEY1:!!; ••• ~~n::!Sb 

(Bl) 

The last step follows since the integrand in [Jab dX1)*(x) 
XH1(X)1)(x)]N = J: dyd: dY2 ... f: dYN1)*O'1)H1(Y1)1)(h) ., . 
X 1)*O'N )H1 CVN )1)(YN) is a completely symmetric function 
of Y1, Y2, ... 'YN because the 1)*1) products commute. 

The n = 0 term is easy to evaluate, It is the continu
ous matrix product, TO=Il jexp[EHo(i)], and because 
Ho is diagonal this product reduces to ordinary 
integrals, 

jeXP[f (Ho)++dx J 0 ( 

=(k(b)) 1/2 ~exp[-ik(b)b]exp[i f: k(:'(jdx]exp[ik(a)a] 0 '! 
k(a) . 

o exp[ik(b)b]exp[-it k(x)dx]exp[-ik(a)a] 
a 

(B2) 

An integration by parts has been done in obtaining Eq. 
(B2). 

TO is eO(b, a). So the zeroth order term in Eq. (II. 14) 
agrees with the zeroth order term in Eq. (Bl). To 
evaluate the higher order terms, latticize the functional 
integral in Eq. (Bl). Doing the integration variables up 
to Y1 will yield a factor of 

J dTJ(Yl)d'fl*(Yl) exp[ 1)(Y1)TJ*CV1) + TJ*(Y1 + €)1](Y1) 

+ 1]*(Y1 + E)HoTJ(Y1)E ]1]*(Y1 + E)H1(Y1) 1](Yl) 7)y* (Y1)C$a (Y1, a) 

= 7)y*(Y1 + E)[H1(Y1)CO(Yb a)~8 (B3) 

and when the rest of the anticommuting integrations 
are done one obtains 
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(B4) 

as the integrand to the Yj integrals thus obtaining Eq. 
(n.14). 

APPENDIX C 

This Appendix derives the equations of motion and 
canonical anticommutation relations in a manner similar 
to the boson case. 5 They are easily obtainable by using 
anticommuting derivatives d/dTJ and d/d1]*. Anticom
muting derivatives are similar to ordinary derivatives 
except that one must be careful to include a minus sign 
when d/d1] or d/dTJ* moves past an anticommuting vari
able. For example (d/d1]l)(1]l1){} = 1)t but (d/d1)1)1)tTJ1 
= - 1)t(d/d1)l) 1)1 = - 1){. This is consistent since (d/d1]l) 
x (1)t1)l) = (d/d1)l)(- 1)l1Jt) = - 1)t. For the details in anti
commuting derivatives see Ref. 1. 

One can integrate by parts in an anticommuting vari-
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able integral. Let F(77, 77*) and G(77, 77*) be two arbitrary 
functions in the 77 and 77* variables. The rules1 are 

f d77 d77* F d G = fd 77 d77* F d G 
d77 d77 ' 

f d77 d77* F ~ G = fdT} dT}* F --.!. G 
dT}*.I( d77* 0 

The simplest example is 1 = f d77dT}*7777*(d/d77)T} 
= f d77 d77* 7777*(d / d77)77 = - f d77 dT}*77* 77 = f d77 dT}* 7777* ~ 1. 
Applying this to functional integrals, 

ffD77D 77*e
A 

d:(y)F= ffo77D77*e
A 

d:(y)F, 

f fD 77D 77*e
A 

dTJr1(y) F = 1ft 77U 77*e
A 

dTJr1(y) F, 

where A is given by Eq. (AlO). 

(Cl) 

(C2) 

Choose F=l{!j[77,,(j), 77~(j)1l{!o[T},,(0), 77~(0)1 with l{!, and 
l{!o arbitrary and y to be in (a, b). Latticize the functional 
integral. One obtains using Eq. (C2) 

0= (TJr*(Y + E) - TJr* (y) + qt(y + ElH6y Cv)), 
(C3) 

where (/) means f JD 77U 77* eAN,l{!o. The continuous ver
sions of (C3) are 

/ d77* *) / dT} ) _ \ dY + 77 H = 0, \ dy - H77 - 0, (C4) 

which one might guess by a variational calculation of 
the action. Equations (C4) are operator equations, 
satisfied no matter what" initial and final states" are 
used. Hence, dT}* /dy + 77*H =d77/d:V- HT} = 0 as operator 
equations. 

Choosing F= 77/J. (y)l{!,l{!o and F=77~(y)l{!,l{!o one obtains 

(Oyl-<) = ([1)y*lv + E) - TJr*(Y) + ETJt(y + E)H~Y(Y)1771-< (y)), 

1444 J. Math. Phys .• Vol. 19. No.6. June 1978 

(Oyl-<) = ([1)y(y) - T}y(y - E) - EHy~Cv)T}:.(y - E)JTJ,t(y)), 

0= ([ TJr* (y + E) - 1)y* (y) + ETJt(y + E)H:.y (y )]77~{Y)), 

0= ([ 1)y (y) - 1)y (y - 0::) - 0:: Hn(Y)77:.(Y - 0::)]771-< (y)), 

which are as E - 0 the operator equations 

(C5) 

Oy" = 7J7(Y+)771-< (v) + 771-< (v) 1)y* (y ) = 77,t(Y)TJr (Y-) + T}y (y )77~(Y), 

(C6) 

0= 1)y* (Y+)77S (Y) + 77,tCV)7J7(y) = 77/1. (y)TJr(y-) + TJr(y)77/J. (y). 

Thus as operators the antic om muting variables satisfy 
canonical anticommutation relations. 
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A Chebyshev polynomial method for computing analytic 
solutions to eigenvalue problems with application to the 
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In this work, I present a two-part algorithm which employs Chebyshev polynomials to compute the 
eigenvalues and eigenfunctions of an ordinary differential equation and to represent their dependence on a 
problem parameter A. To illustrate these methods, I apply them to the anharmonic oscillator where the 
parameter A is the coupling constant. I show that these techniques are simple, efficient, and easy to 
program for a computer. Unlike perturbation methods or numerical tables, the Chebyshev algorithms 
calculate explicit, highly uniform polynomial approximations to each function on any interval on which the 
function is analytic. Perhaps the most important result of this work is that although the two Chebyshev 
algorithms are numerical, all the results are analytic-a dramatic counterexample to the conventional 
wisdom which holds that to obtain nonnumerical solutions, one must use analytic, paper-and-pencil 
techniques. Thus, the two-part Chebyshev approach, despite its numerical basis, should be regarded 
principally as a new and powerful method for computing analytic solutions which will succeed where 
ordinary (and even extraordinary) perturbation methods fail. 

1. INTRODUCTION 

In this work, I describe a two-part algorithm which 
uses Chebyshev polynomials to compute efficient, high
ly uniform representations for the dependence of the 
eigenvalues and eigenfunctions of an ordinary differ
ential equation upon a parameter ,\, No claim is made 
that either individual part is original; it is the use of 
these two algorithms in combination that is new. For 
the anharmonic oscillator, ,\ is the coupling constant 
which measures the strength of the X4 term which is 
added to the potential of Schrodinger's equation for the 
ordinary harmonic oscillator. Traditionally, parametric 
dependence has been studied in two ways. perturbation 
theory and numerical tables, The former is restricted 
to a limited range of the parameter. Numerical tables 
do not provide an explicit representation of the de
pendence of various quantities on ,\ and interpolation 
between tabulated values will only yield one or two place 
accuracy unless the tables are very large, which is 
both unwieldy and computationally expensive. In con
trast, the Chebyshev method produces explicit poly
nomial approximations for the dependence of each 
quantity on '\. Unlike perturbation series, the 
Chebyshev formulas can be applied to any interval on 
which the function of ,\ is analytic, regardless of the 
location of off-interval singularities, and the approxi
mations are highly uniform over the whole interval. 

Besides these advantages, the Chebyshev methods 
have other virtues, and the greatest of them is general
ity, Neither part of the algorithm employs special 
tricks, so the only problem-dependent parameters are 
the differential equation itself and the domain in X-,\ 

space. The pseudo spectral eigenvalue routine can 

a) Pre sent address: Department of Atmospheric and Oceanic 
SCiences, University of Michigan, Ann Arbor, Michigan 
48109. 

b) The National Center for Atmospheric Research is sponsored 
by the National Science Foundation. 

usually compute enough modes to high accuracy to 
overlap with high precision WKB calculations, which 
become better as the mode number increases, Because 
of the rapid convergence of Chebyshev series, it is 
possible to represent the eigenfunctions as double 
Chebyshev series in X and x over a range where other 
representations, such as double Taylor series, would 
either diverge or require too many terms to be useful. 
As an added bonus, we can differentiate the Chebyshev 
series with respect to X and evaluate at X = 0 (or any 
other value of X) to check analytically computed pertur
bation series. Both parts of the algorithm are easy to 
program: Excluding comment cards and "canned" 
EISPACK routines, but including rather elaborate input 
and output statements, all the routines for the first part 
required 200 FORTRAN statements and all for the sec
ond, including the calculation of Taylor series, needed 
240. Finally, if we calculate enough terms in the 
Chebyshev series to obtain more accuracy than we need 
in our final results, we can use the properties of 
Chebyshev polynomials to bound the error in the uni
form norm for truncation after a given number of 
terms. As I describe with examples, we can determine, 
almost by inspection, how many Chebyshev polynomials 
we should retain to keep the error below a specified 
tolerance over the whole interval. 

The first part of the algorithm consists of solving for 
the eigenfunctions and eigenvalues for a discrete set of 
values of X. I employed the Chebyshev pseudospectral 
technique described in the next section. This method is 
accurate, economical, and easy to program, and usual
ly works well even when a different expansion basis 
might seem more logical. To emphasize this, I have 
chosen to illustrate the algorithm by applying it to the 
anharmonic oscillator where Hermite functions (the 
exact eigenfunctions for X = 0) are the natural basis. 
However, the second part will apply without change to 
eigenvalues and eigenfunctions computed in any way. 
Wavefunctions in quantum chemistry often depend non
linearly on a number of dependent variational param-
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eters (see Kauzman1 or any standard text for examples), 
but these parameters can be treated exactly like the 
coefficients of a series expansion and be represented 
as polynomials in A by the techniques I will describe 
below. 

The second part of the algorithm converts the M
dimensional vector of the values of a function q at the 
discrete set of points \' i = 1, ... ,M, into first a 
truncated Chebyshev series in A and then into an ordi
nary polynomial by two successive matrix multiplica
tions, where q is either an eigenvalue or a particular 
expansion coefficient. (Details are given in the next 
section.) The coefficients of the Chebyshev expansion 
are given rigorously by integrals defined by Eq. (2.2). 

The discrete algorithm is equivalent to evaluating 
these integrals by iII -point Gaussian quadrature; As I 
explain below, the errors introduced by the quadrature 
are no larger than those of the lVI-term polynomial ap
proximation itself. The two square matrices that 
multiply the vector of values of q are given by explicit 
formulas. 

In Sec. 2, I describe these algorithms in much 
greater detail and apply them to the anharmonic oscil
lator in Sec. 3. Good parametrizations for the eigen
values already exist thanks to Hioe ct al. ,2 and to 
emphasize that my primary purpose is to illustrate the 
Chebyshev methods rather than to study exhaustively 
the anharmonic oscillator, I have presented results 
chiefly for the ground and second excited states after 
showing the techniques are applicable to at least the 
lowest forty modes in principle. (I show that we can 
accurately compute expansions for at least forty modes: 
Convergence in x is slower for the higher order 
modes.) Two simple quadratic polynomials, one for 
small A, the other for large, give the ground state 
energy to within one part in 700 for all positive values 
of A-an order of magnitude improvement over com
parable or more complicated formulas of Hioe cl al. 2 

I also present wholly new results; two polynomials in 
x and A, both of fifteen terms, which give the ground 
state eigenfunction to within a maximum error of 1 % 
of the peak amplitude of the mode for all positive A and 
all x, and similarly for the second excited state with 
polynomials of 24 terms. I make a few closing remarks 
in Sec. 4 and discuss the theoretical and empirical 
convergence of Chebyshev series for functions which 
have asymptotic expansions about one endpoint (back
ground material needed for the example) in Appendix B. 

2. ALGORITHMS 

Before describing the algorithms themselves, I will 
briefly discuss the properties of Chebyshev polynomials 
which make these algorithms effective. Least squares 
polynomial approximation is a standard topic of every 
first course in numerical analysis. The unique poly
nomial pCx-) which minimizes the weighted least 
square e~;ror on [a, b 1 with the weighting function r(x) 

r b [j(x) - P N (x))2rCx-)dx 
. a 

1446 J. Math Phys .. Vol. 19, No.6, June 1978 

is given by 

N 

PN(X) =:0 anen(x), (2.1) 
n=O 

.1, 
(l = C-1 f {C'de (x)r(x)dx, n n. a· n 

where the set of polynomials {en(x)}, each of degree 
equal to its subscript, are orthogonal with respect to the 
inner product 

f
ob 

(e ,e ) =: e (x)e (x)r(x)dx n m , n m 
a 

(2.3) 

(0 if III 1-n, 

=tcn if m =11. 

For a given interval and weight function, the polyno
mials {tin} can always be constructed from the powers 
of x: {I, x, x 2 

" • ,} by the Gram-Schmidt orthogonaliza-
tion process, which is discussed in Young and 
Gregory's3 text along with all aspects of least squares 
approximation. The Chebyshev polynomials correspond 
to the special case (I = - 1, b = 1, and r(x) = (1 _ X2 )-1/2" 

The C
n 

are given in (AlI). 

What sets the Chebyshev polynomials apart from 
their peers is a simple argument given in Fox and 
Parker,1 which shows that, for a general infinitely 
differentiable function, Chebyshev polynomials con
verge faster than any other member of the class of 
Jacobi polynomials, which includes Legendre poly
nomials as another special case and ordinary Taylor 
expansions as a limiting case. Like all members of 
this class, Chebyshev polynomials have the property 
of infillile order cOJll'ergellce: Asymptotically, the 
error decreases faster than any finite power of /1. 

Furthermore, Chebyshev expansions converge inside 
the largest ellipse with foci at (- 1, I) within which the 
function is analytic. (See Appendix B for details.) Thus, 
unlike ordinary Taylor expansion, Chebyshev expansions 
will always converge on (III)' interval on which the func
tion is analytic. 

The Chebyshev polynomials also have excellent 
properties with respect to the so-called uniform or 
Chebyshev norm which is defined by 

L~=: max If(x)-pJx-)I. (2,5) 
xc [a,bl 

It has long been known (see Todd" for proof) that if 
{(x) is analytic on [a, bj, then there exists a unique 
'polynomial of degree 11 or less that minimizes the error 
in the uniform norm over the class of polynomials of 
degree /101' less. Furthermore, if we denote the error 
in the uniform norm by {j, then the pointwise error will 
be exactly ± {j at 11 + 2 points on the interval for the 
best approximating polynomial. Unfortunately, no 
finite algorithm for computing this best polynomial ap
proximation in the uniform norm is known, but reliable 
iterative procedures for computing the best polynomial 
on a discrete set of points in a finite number of steps 
have been developed: the Remes algorithm (see Young 
and Gregory3 for a discussion). 

A truncated Chebyshev series is generally not equal 
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to the best polynomial approximation of the same de
gree in the uniform norm, but empirically, it is usual
ly quite close. Theoretically, Powell6 proved that the 
error in the uniform norm of a Chebyshev series 
truncated after N + 1 terms and computed by inter
polation on the N + 1 points given by (2.14) below, call 
it 5 N' is related to the error of the best approximating 
polynomial in the uniform norm of the same degree, 
call its error EN' by the inequality SN < (1 + ¢N)EN, 
where ¢N < 2 . 5 for N < 10 and ¢ N < 5.5 for N < 1000. 
Since, once the degree of the truncated Chebyshev 
series is high enough to give a moderately good ap
proximation, adding just one more term will usually 
decrease the pointwise error by at least a factor of 
three, it is rarely worthwhile to improve upon a 
truncated Chebyshev series to reduce the error in the 
uniform norm: It is far easier to Simply add one more 
term. Even if we wished to compute the best poly
nomial approximation of a given degree 11, the Remes 
algorithm demands a means of evaluating f(x) for many 
values of x and also a first guess. A Chebyshev ex
pansion of high degree and the truncated Chebyshev 
expansion of lower degree 11, respectively, are good 
means for meeting these needs of Remes' procedure. 

No approximation is useful without some measure of 
accuracy, but the Chebyshev polynomials satisfy the 
simple bound 

I Tn(x) I'" 1 for all XE [-1, 1J and for all n (2,6) 

since the polynomials are defined by 

Tn(cosB)=cosI1B for B E[O,1T]. (2,7) 

This means that we can bound the error in the uniform 
norm for a truncated Chebyshev series merely by 
summing the absolute values of the coefficients of all 
the neglected terms. When we have computed only a 
finite number of coefficients and these values are con
taminated by numerical roundoff and quadrature errors, 
we cannot compute this error bound sum exactly. How
ever, because of the property of infinite order con
vergence described above, coefficients usually diminish 
rapidly after some 11 which is the minimum necessary 
to achieve moderate accuracy, so if we compute a num
ber of terms above this minimum 11, neglect of higher 
order uncalculated coefficients will produce only a 
tiny error in calculating error bounds. Thus, unless 
we want a Chebyshev approximation whose error is 
only slightly larger than that of the computer precision 
we are employing, (2.6) is a powerful and reliable tool 
for estimating the maximum error in the Chebyshev 
norm. Furthermore, (206) is a tight bound on the 
values of the Chebyshev polynomials for alln. Because 
of this and the rapid convergence of Chebyshev series, 
which usually means that the first neglected term is 
not significantly cancelled by the second neglected term 
to make the error smaller than the magnitude of the 
first neglected term alone, error bounds on a series 
computed by using (2.6) are usually fairly tight: The 
true error in the Chebyshev norm is normally only a 
little smaller than the sum of the absolute values of the 
neglected coefficients. 

Over-all, therefore, Chebyshev polynomials are 
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about as efficient and accurate as any form of poly
nomial approximation. Because of this, I chose to use 
them not only to parametrize the dependence of the 
eigenvalues and eigenfunctions on the parameter A but 
also to compute the eigenvalues and eigenfunctions 
themselves. To simplify programming, all the algo
rithms below automatically transfer all calculations 
via a simple linear transformation from [a, b] to the 
standard interval r - 1,1]. The truncated Chebyshev 
series and ordinary polynomials whose coefficients are 
given in the tables in the next section are always 
evaluated with an argument that lies on [- 1,11. 

The simplest way to insure that the calculated eigen
functions satisfy the appropriate homogeneous boundary 
conditions at the end points is to rearrange the 
Chebyshev polynomials into a new set of basis functions 
that individually satisfy the boundary conditions. For 
u =0 at a, b, we can use 

11 even, 

(2.8) 
11 odd. 

When the equation is symmetric about the midpoint of 
the interval, as is true of the anharmonic os cillator, 
we only need to compute on the half interval [0, b]. We 
can use (2,8) to compute the antisymmetric modes, but 
the symmetric modes must satisfy dll dx = 0 at the 
midpoint of the interval, so we can use the basis 

BnC"()=-[Jl2 (JI+2)2]Tn+2 (x) + Tn(x)+{[n2 (Jz+2)2j 

-liTe- (2.9) 

(There is a good deal of freedom in choosing new basis 
sets: Results will be little affected by the particular 
choice one makes unless one defines basis functions 
which are almost linearly dependent, which can lead to 
numerical ill-conditioning and severe errors.) 

We now assume 

N-l 

u(x) =.z lIn Bn(y) , (2.10) 
"=0 

y=2[x- ((I+b)/2J (b-a) (2.11) 

and substitute this in the differential equation (primes 
denote differentiation with respect to x) 

(2.12) 

There are two popular ways of obtaining N algebraic 
equations for the expansion coefficients un' Galerkin's 
method, also called the spectral method, involves 
multiplying (2.12), after substitution of (2.10), by each 
of the first N basis functions in turn and integrating over 
the interval with the appropriate weight function, which 
is (1 - X2 )-1/2 for Chebyshev polynomials, and equating 
the result to O. The pseudospectral or collocation 
method that I will use consists of demanding that the 
truncated expansion satisfy (2.12) exactly at N colloca-
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tion points: 
N-l 

Fo uJll:!(Xj)e~(yI)/1f + al(xi)e~(yl)/d+ ao(xl )8n(y j )J 

N-l 

=E(A)~q(xi)8n(yi)un fori=I,2, ... ,N (2.13) 
n=0 

(primes denote differentiation with respect to y), 

Yi = - cos[(2i - l)1r/2N], (2.14) 

x i =0.5(a+b)+0.5(b-a)y p (2.15) 

d=0.5(b - a). (2.16) 

Equation (2.13) actually describes a generalized 
eigenvalue problem, i.e., the matrix multiplying E is 
not the identity but rather a general matrix M, but we 
can easily remedy this by multiplying through by M- l

• 

Superficially, the spectral and pseudospectral 
methods are quite different, but the collocation pOints 
given by (2. 14) are actually the Gaussian quadrature 
abscissae for the Chebyshev interval and weight func
tion. Multiplying each row of (2.13) by 8m (Yi) and 
summing over i for m = 0,1, .. ,N -1, we see that the 
pseudospectral method is identical with Galerkin's 
method if we evaluate the integrals of the latter by N
point Gaussian quadrature. 

If the exact Chebyshev coefficients of a function I (x) 
are denoted by In' then the coefficients computed by 
N-point Gaussian quadrature will be (Fox and Parker4 ) 

(2.17) 

Thus, if the errors from Gaussian quadrature are un
acceptably large, the errors in even the exact 
Chebyshev series will also be unacceptably larger after 
N-term truncation: The errors in N-point quadrature 
and the N-term Chebyshev series are roughly the 
same. There is usually little point, therefore, in 
evaluating the spectral integrals by a quadrature of 
higher degree; one can usually obtain a greater error 
reduction by increasing N by one even if N is large. 

Like other orthogonal polynomials, the Chebyshev 
polynomials can be efficiently evaluated by a three
term recursion relation, and its derivatives can be 
evaluated by similar three-term recursion relations 
that follow from differentiating that for Tn(x) itself. 
Truncated Chebyshev series of N terms can be summed 
in O(N) operations by an equally simple recursive 
formula given by Fox and Parker. 4 These expressions 
are given in the appendices. 

Even if one wants to represent the eigenfunctions in 
terms of a non-Chebyshev basis-spherical harmonics 
or Hermite functions, for example-it may still be 
convenient to do the eigenfunction calculations via 
Chebyshev polynomials, Thanks to the Chebyshev sum 
formula, the work of evaluating the proj ection integrals 
similar to (2.2) to convert all the computed eigen
functions into a different basis will be small compared 
to that needed to compute the eigenfunctions in the 
first place if any efficient quadrature scheme is used. 
However, it is usually easy to rewrite the whole 
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psuedospectral algorithm in terms of other orthogonal 
polynomials, and so we can take our choice, 

The final step is to call a standard "black box" sub
routine to solve the algebraic eigenproblem posed by 
(2,13), For the calculations I present in the next sec
tion, I employed the QR algorithm from the EISPACK 
library of subroutines distributed by Argonne National 
Laboratory. Empirically, the QR algorithm requires 
0(15 N 3

) operations to find all the eigenvalues and 
eigenfunctions (Stephen Orszag, unpublished M, I. T. 
lecture notes), and so, for computational efficiency, 
it is extremely important to minimize the number of 
degrees of freedom N. Because of this as discussed by 
Orszag7 and Boyd, S Galerkin methods are usually 
much superior to finite difference methods for con
verting a differential equation eigenvalue problem into 
an algebraic characteristic value problem except for 
ordinary (as opposed to general eigenvalue problems 
where we need only moderate accuracy and can employ 
an eigenvalue routine which exploits the sparsity of 
the matrices generated by finite differencing, 

Since the Nth eigenmode of the differential equation 
almost invariably oscillates too rapidly to be well 
approximated by N polynomials, the highest eigenfunc
tions of the equivalent N-dimensional matrix are pure
ly numerical even when N is large enough so that the 
lowest modes and eigenvalues of the matrix are ex
cellent approximations to those of the differential 
equation. Because Chebyshev series have the property 
of infinite order convergence, one can usually dis
tinguish true modes from numerical modes by inspec
tion. The coefficients cn of the true modes will de
crease very rapidly once the series has started to con
verge, i.e., for n>M for some lvI< N, cn+ l will 
typically be one-half to one-fifth9 the magnitude of 
cn -this is the practical meaning of infinite order con
vergence. All the coefficients of the purely numerical 
modes in contrast will be of roughly the same order of 
magnitude 0 Thus, merely by printing out the coefficients 
of each matrix eigenfunction, one can usually tell at a 
glance which modes are numerical and which are good 
approximations to modes of the differential equation 
by keeping (2 0 6) in mind. 

The safest and most reliable way of estimating the 
exact numerical value of the error is the time honored 
practice of repeating the calculation for a slightly 
larger or smaller X and comparing results. BoydS 
discusses error estimates. pathological problems, 
and other aspects of pseudo spectral m2thod in more 
detail. 

Given a column vector F containing the values of a 
functionf(x) at the collocation points (2.15), we can 
convert this to the coefficients of a truncated Chebyshev 
series (column vector G) and then into the coefficients 
of an ordinary polynomial (column vector H) on the 
standard interval of [-1, 1] by two successive matrix 
multiplications. [0 The multiplication by the first matrix 
R merely evaluates the proj ection integrals (2.2) by 
Gaussian quadrature. The elements of the second 
matrix Q are the power series coefficients of each 
Chebyshev polynomial. 

For our present purposes, the independent variable 
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is A, the problem parameter, which for the anharmonic 
oscillator is a coupling constant that measures the 
strength of the x4 term. The procedure begins by 
choosing an interval [a, b] in i\ and a degree N. We then 
solve the ordinary differential equation eigenvalue pro
blem using the pseudospectral method in x for each of 
the N values of A given by (2,15) and convert the eigen
functions from the modified Chebyshev basis functions 
en into ordinary Chebyshev polynomials by using (2.8) 
and (2.9). We can then multiply the N-dimensional 
column vector of values of each eigenvalue and each 
expansion coefficient of each eigenfunction by Rand 
Q in turn to obtain Chebyshev and polynomial expres
sions for their dependence on A. There is nothing com
plicated or subtle about this procedure: It is simply the 
rapid convergence of Chebyshev expansions that makes 
it practical as the anharmonic oscillator will illustrate. 

Formally, to compute the expansions of /(A) on 
[a, b] through N terms, we define the elements of the 
column vector F and the NXN square matrices Rand 
Q as 

(2.18) 

(2.19) 

Qll =0. 5, (2.20) 

Qjl =0, j= 2, 3, ... ,N 

o . 5 (n - 1) (n - k - 2) ! 2 (j-l ) (- l)kj (k! (j - 1) ! ) 

if j and n are both odd or both even and j ~ n, 

o otherwise, 

n=2,3, ... ,N, j=I,2,3, ... ,N, 

where 

k =- (n - j)/2 (always an integer) 

and xI is defined by (2.15) and Yj by (2.14). 

N-1 (2 ) 
/(A)=!d'Gn+lTn (b-a) [A-0.5(a+b)] 

1'1-1 (2 )n 
=!d Hn+l (b- a) [A- 0.5(a+b)] , 

Then 

(2.21) 

(2.22) 

(2.23 ) 

(2.24) 

(2.25) 

The prime on the sum in (2.22) denotes that the coef
ficient G1 as computed by (2.24) should be taken with a 
factor of ~ in evaluating the sum (as is automatically 
done by the recursive sum formula of Fox and Parker4). 

The reason is that the normalization coefficient [the 
en in (2.4)] for To is twice that for the other modes, so 
(2.19) will compute a value for G1 that is twice the 
actual coefficient of To. [Note that the coefficients of 
To in (2,8) and (2,9) are the actual coefficients, and 
should be multiplied by two before using the Fox
Parker formula to evaluate the modified Chebyshev 
basis functions. J This is discussed further in the 
appendices. 

As a very useful fringe benefit, we can repeatedly 

1449 J. Math Phys., Vol. 19, No.6, June 1978 

differentiate the truncated Chebyshev series and 
evaluate it at A = 0 to obtain Taylor series representa
tions of the function about A = 0 (or any place else we 
want). If we denote the coefficients of a Chebyshev 
series by co, c1 ' c2 , etc. and those of the first der
ivative by ccil), c1 1 ), c~l), and so forth, then the two 
are related for a series truncated after N terms via 
(Fox Parker4

) 

CJi':2 = 2(N -l)CN_1 , 

We cannot blithely estimate the error by merely taking 
the absolute value of the first neglected term, however, 
because (2.26) shows that every other coefficient of the 
first derivative should contain c~21' which is the lowest 
neglected derivative coefficient. Thus, the error in the 
first derivative is roughly (N/2) C11}1' not C1:)1 as we 
might expect. Differentiation is an antismoothing op
eration in general, so this rapid error propagation is 
not surprising. Because of it, we can only hope to 
calculate up to the second or third order Taylor co
efficients with much accuracy, but for purposes of in
dependently checking analytic perturbation theory cal
culations, this is all we need. 

For reference in estimating the error in Taylor co
efficient calculations, I will list explicit formulas for 
the coefficients of the first and second derivatives of a 
function in terms of those for the function itself: 

C~2) =4 t (n + 2 + 2mkn+2+2m ( t (n + 1 + 2m - 2k)\ 
m::rO k=-O 'j 

3. APPLICATION TO THE ANHARMONIC 
OSCILLATOR 

(2.27) 

To illustrate these methods, I will apply them to 
parameterize the dependence of the eigenfunctions and 
eigenvalues of the anharmonic oscillator on the coupling 
constant A. Formally, the problem is to find the solu
tions of the differential equation 

[
- d2 x 2 AX4 ,1 
d.i'- + '4 + 4 - E(A)J u(x) = 0, (3,1) 

which are bounded at ± 00 for all positive values of A. 

For large values of A, it is convenient to rescale the 
problem by setting y = Al 

/ 6X to transform (3,1) into 

[_ !2 + A-~(3 y2+ ~4 -A-1/ 3E(.\)]U(Y)=0. (3.2) 

In the eigenfunction parameterizations I will give in 
terms of .\-2/3, I will always use the rescaled spatial 
coordinate y. 

Because of the infinite domain, the AX4 term will 
always dominate the x 2 term for sufficiently large I xl 
and will not be a small perturbation for any finite .\. 
On the other hand, if A is small, then since the eigen
functions decay exponentially for large I x I , this break
down of the perturbative assumption (that AX4 is small 

John P. Boyd 1449 



                                                                                                                                    

TABLE I. Computed eigenvalues for the pure harmonic 
oscillator (symmetric modes only) sixty basis functions; do-
main [0,151. 

Mode No. Eigenvalue Mode No. Eigenvalue 

0 0.500000000827 2 2.49999999683 
4 4.500000004721 6 6.50000000183 
8 8.499999999427 10 10.50000000872 

12 12.49999999725 14 14.50000000323 
16 16.50000000462 18 18.49999998409 
20 20.50000000358 22 22.50000001156 
24 24.49999998710 26 26.50000001185 
28 28.49999999720 30 30.49999999473 
32 32.50000000341 34 34.50000001774 
36 :16.50000002619 as 38.50000019240 
40 40.50000215247 42 42.50002129761 
44 44.50016970882 46 46.50109803205 
48 48.50570880576 50 50.52344871242 

compared to .i') will occur only where the eigenfunctions 
have negligible amplitude anyway. The mathematical 
consequences of these competing factors are, first, 
that E(>..) nonanalytic at >..=0 and, second, that E(>..) 
has an asymptotic power series about >"=0. As dis
cussed theoretically in Appendix B and as demonstrated 
empirically by the numerical results that will be pre
sented in a moment, the Chebyshev series for a smooth 
function with a nontrivial asymptotic series about one 
end point of the expansion interval converges almost as 
rapidly as that for a function which has no singularities 
of any kind near the expansion interval. The branch 
point at >.. = 0 which spoils the usefulness of the 
Rayleigh-Schrodinger series for E(>..) for all but the 
smallest values of >.. will cause no problems at all for 
the Chebyshev algorithm. 

There are three different spectral methods for solving 
(3.1): Chebyshev polynomials on a large but finite inter
val (domain truncation), Chebyshev polynomials after a 
change of variable to transform [- 00 ,,x:; 1 into [- 1,1] 
(mapping), and Hermite functions. All three work, but, 
for this paper, I will use domain truncation because 
it is the simplest and it shows most clearly that 
Chebyshev polynomials are a jack-of -all-trades, 
successful for a very wide range of problems without 
special tricks. Experiments with mapping were not 
too encouraging, largely because the singularity at the 

end point of the transformed interval is strong enough 
to significantly degrade convergence as discussed in 
Appendix B, but a different mapping might be more 
efficient. Hermite functions are quite successful for 
this problem since they are the exact eigenfunctions 
for>.. = 0, but there are a number of important algor
ithmic differences from Chebyshev polynomial methods 
which are discussed in Boyd. 12 The naive intuition that 
the last two approaches are a priori better than do
main truncation because they employ infinite intervals 
is false. It is not possible in general to accurately 
represent the behavior of a transcendental function 
over an entire infinite interval with only a finite num
ber of expansion functions: Though the absolute error of 
the approximation may be bounded by a small number, 
the relative error of a finite Hermite series for large 
x or of a Chebyshev series in the transformed variable 
y near y = 1 will be enormous. Domain truncation 
merely faces up directly to this nonuniformity in x 
which the other two approaches hide. 

The computational boundary b in the domain trunca
tion approach should be chosen so that the eigenfunc
tions at x == b have decayed by a factor roughly equal to 
the machine precision. Then, computer round off rather 
than the value of b is the primary source of error. 
Common sense, the known asymptotic solutions, and a 
little experimentation are usually adequate to choose 
a satisfactory b for this sort of problem: The exact 
choice is not crucial. 

Since the operator of the differential equation com
mutes with the parity operator, the eigenfunctions are 
all of definite parity, symmetric or antisymmetric 
about x==O. To save computer time, we can compute 
these two classes of functions separately on the domain 
[0, b J by imposing the boundary conditions 1I(b) == 0 for 
all runs where b is a large positive number and set 
u(O) = 0 to find the antisymmetric functions and u' (0) == 0 
to find the symmetriC. In most of the results I present 
here, I set b=10 [for either (3,1) or (3.2)] and used 
forty Chebyshev basis functions, but I set b == 15 and 
used sixty basis functions for the run whose results are 
presented in Table 1. 

The Chebyshev eigenfunction routine can compute only 

TABLE II. The coefficients of the Chebyshev series and polynomial representations of the n = 0 and n = 2 "'nergy levels on the 
interval AE: [0, O. 21. 

n=O n=2 
Degree Chebyshev Polynomial Cheb~shev Pol~nomial 

0 1. 105943:311 0.55914632722 6.1641097992 3.1386243075 
1 0.050564446 0.04887362253 0.5037752812 0.4694183996 
2 - O. 003964286 - O. 00706976272 - O. 0598379152 - O. 0964126504 
3 0.000607050 0.00195343470 0.0130682472 0.0356829649 
4 - O. 000122063 - O. 00069716815 - O. 0036119762 - O. 0164273160 
5 0.000028730 0.00028107050 0.0011378728 0.0071982175 
6 - 0.000007519 - O. 00012653510 - O. 0003903184 - O. 0038097517 
7 0.000002128 0.00008289358 0.0001422674 0.0066758966 
8 - O. 000000640 - O. 00004453260 - O. 0000542873 - O. 0045442714 
9 0.000000202 - O. 00001141573 0.0000214634 - O. 0044390767 

10 - O. 000000067 0.00000842004 - O. 0000087012 0.0033076915 
11 0.000000022 0.00002297234 0.0000035276 0.0036122576 
12 - O. 000000007 - O. 00001416434 - O. 0000012635 - 0.0025875717 
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TABLE III. The coefficients of the Chebyshev series and polynomial representations of the n= 0 and n== 2 energy levels on the 
interval A-2/ 3E [0 •• o. 7311 (En==Al/3qn• where qn is given by the appropriate polynomial in the variable A-2/ 3 whose coefficients 
are tabulated below). 

n=O 
Degree Chebyshev Polynomial 

0 1. 7109068859 0.86181687593 
1 0.1806776547 0.17955804917 
2 - O. 0063876680 - O. 01258245023 
3 0.0003758331 0.00147189779 
4 - O. 0000243347 - O. 00018992200 
5 0.0000015866 0.00002488664 
6 - O. 0000000999 - O. 00000307919 
7 0.0000000059 0.00000003723 
8 - 0.0000000002 - O. 00000020852 
9 0.00000032174 

10 0.00000020296 
11 - O. 00000011226 
12 - O. 00000007884 

a finite number of the lowest modes, but Hioe et al. 2 

show that WKB calculations, which become more ac
curate as the mode number increases, agree with the 
exact results to many decimal places even for n as 
small as 10. Table I lists the computed symmetric 
eigenvalues for the pure harmonic oscillator; since the 
zeros and eigenvalues for the antisymmetric eigen
functions interlace those of the symmetric, results for 
the antisymmetric are comparable. The exact eigen
values are (n + 0. 5), where n is a nonnegative integer. 
We see from the table that, with this choice of domain 
and basis Size, we can compute the first forty eigen
values to within a relative error of at most one part 
in 2 XI07

• The situation for general A is a little more 
complicated since the eigenfunctions are more closely 
confined to the origin as A increases and thus the choice 
of optimum computational domain varies by about a 
third over the two intervals, A E [0, 0.2] and A -2/3 

E [0,0.731], that I used for the calculations I will 
present in the rest of this section; but, without resort
ing to out-of-core storage, it is possible to use as 
many as ninety basis functions on the CDC 7600 I 
employed for these computations. Thus, there is a 
large overlap between the Chebyshev and WKB methods 
By using the former for small n and the latter for 
large n, we can efficiently compute and explicitly re
present the eigenvalues and eigenfunctions for all 
modes. 

Since we have seen that the Chebyshev method is 
effective for a large number of modes, for the sake of 
simplicity only, I will confine the rest of my dis
cussion to the ground state and the second excited 
state. Tables II and III present the coefficients of the 
Chebyshev and ordinary polynomial representations of 
the eigenvalues for these two modes on the intervals 
AE[0,0.2]andAE[0.2,oo] (in the variables A and A-2 / 3, 

respectively). As discussed in the second paper by 
Hioe et al. ,2 the transition between small A and large 
A behavior occurs at smaller and smaller values of A 
as the mode number increases. Thus, it is hardly 
surprising that the expansion for the second excited 
state converges more slowly than that for the ground 
state on AE (0,0.2] but more rapidly on AE[O.2,oo]. The 
polynomial form is probably easier to use (although 
the Chebyshev series can be summed in the same num-

1451 J. Math Phys., Vol. 19, No.6, June 1978 

Chebyshev 

10.766549418 
0.674890308 

- O. 011392416 
0.000202591 
0.000004909 

- O. 000000977 
0.000000083 

- O. 000000005 

n=2 
Polynomial 

5.3946719515 
0.6742776808 

- O. 0228226281 
0.0008297053 
0.0000354032 

- 0.0000155690 
0.0000023304 
0.0000008978 
0.0000004538 

- 0.0000012754 
- O. 0000002982 

0.0000004787 
0.0000000728 

ber of operations), but the Chebyshev form is useful 
because we can put a bound on the error of truncating 
the Chebyshev series after a given number of terms N 
(with N < 13 here) by summing the absolute values of 
the neglected coefficients, as discussed earlier, For 
the ground state, for example, we find that two 
quadratic polynomials, one for [0,0.2] and another for 
[0.2,00], give the true eigenvalue to within a maximum 
relative error of 1 part in 700 and 1 part in 1500, 
respectively. The energy level formulas for Hioe et al. 3 

are adequate for all practical purposes, and this pre
sent work would have little point if its only goal were to 
improve upon them. However, it is nonetheless a 
reflection of the power of the Chebyshev method that 
the largest error of either of these quadratics in the 
respective intervals is an order of magnitude smaller 
than those of the solutions of Hioe et al.'s cubic equa
tion for A E [0,0.2] and of their three term Taylor ex
pansion in A-2 /

3 for AE [0.2,00]. 

It has been shown that ground state eigenvalue of the 
anharmonic oscillator is a member of one of the few 
classes of functions for which it can be rigorously 
proven that the [N,N1 Pade approximants converge to 
the exact eigenvalue as N increases for all positive 
finite values of A. Although Pade approximants are 
widely used in physics, it is imposs ible to prove con
vergence for most functions, so it is especially illu
minating to compare Pade approximants with Chebyshev 
series for this problem. The (N,N] Pade approximant 
is formally defined as that rational function whose 
numerator and denominator are polynomials of degree 
N and whose Taylor expansion agrees with that of the 
approximated function through the firs t 2N + 1 te rms. 
By convention, the constant of the denominator poly
nomial is set equal to 1, so that the [N, N] approxi
mant has 2N + 1 undetermined coefficients which are 
computed by multiplying through by the denominator 
polynomial, formally matching powers of A and solving 
the resulting set of linear equations. Like power series, 
Pade approximants are exact at the origin and become 
less and less accurate as A increases, but empirically, 
even for functions with nonpolar singularities, the 
[N, NJ approximant usually has a much greater range of 
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TABLE IVa. A comparison of exact and approximate Taylor 
series about A'" 0 and A-2 / 3 '" 0 for the ground state. 

A"'O 
Degree Approximate Exact Relative error 

0 0.50000000643 0.5 1. 3x 10-8 

1 0.749989 0.75 1. 5x 10-5 

2 - 2.6218 -2.625 1. 2 x 10-3 

3 20.416 20.8125 0.019 
4 -214. - 241. 289 0.113 

A-2 / 3 = 0 

Degree Approximate Hioe et al. 2 Relative error 

0 0.66798626 0.66798626 o. 
1 0.57468 0.57468 o. 
2 - 0.138 - 0.141 0.021 

usefulness than the truncated power series from 
which it was formed. 

The [1,1] approximant about A = 0 for the ground state 
eigenvalue has the same number of nontrivial coeffi
cients as the quadratic Chebyshev series for [0,0.2]. 
By direct comparison, however, the Chebyshev series 
is more accurate in the uniform norm than the [1,1] 
approximant for A> 0.05, being six times more ac
curate for A = 0.1 and 25 times more accurate for 
A = 0.2. The quadratic Chebyshev series is more ac
curate than the [2,2] approximant for A> 0.12 and is 
five times more accurate at A = 0.2. Thus from the per
spective of obtaining an approximation which is ac
curate to within a specified tolerance over the entire 
interval [0, O. 2], Chebyshev series are considerably 
more efficient than Pade approximants. Loeffel13 et al. 
discuss the application of Pade approximants to the an
harmonic oscillator in detail and give additional 
references. 

The low order coefficients of the polynomial form of 
a high degree Chebyshev series will contain significant 
contributions from the higher Chebyshev terms because 
the high degree Chebyshev polynomials have constant, 
linear, quadratic, and higher terms with rather large 
coefficients as can be seen from their explicit power 
series (Abramowitz and Stegun14

). Thus the polynomial 
form of a Chebyshev series should never be truncated; 
if we need less accuracy, we should truncate the 
Chebyshev coefficients and convert the result to poly
nomial form. 

In the previous section, I made much of the fact that 
Chebyshev expansions converge on any interval on 
which the function is analytic. For A> 0.1, the (asymp
totic) Rayleigh-Schrodinger series about A = 0 is es
sentially useless, but a quadratic polynomial on 
A E [0,0.8] (not given in the tables) gave the ground 
state eigenvalue to within a relative error of one part 
in 80 over the whole interval, This is a very dramatic 
improvement over the Taylor series result, and illu
strates the remark of the previous section that weak 
Singularities at an end point will usually not seriously 
damage the convergence rate of the Chebyshev 
expansion. 

Table IVa compares the Taylor expansions I computed 
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from the Chebyshev series given in Table II and III 
with more accurate values from Hioe et al. 2 We see 
that the computed Taylor coefficients, although ac
curacy falls off rapidly with increasing order as ex
plained in the previous section, are quite adequate for 
checking the first three or four terms of an analytically 
determined perturbation series. 

To investigate the errors in differentiated Chebyshev 
series more carefully, I repeated the calculation of the 
ground state eigenvalue as a Chebyshev series of only 
seven terms and compared the first derivative of this 
with the first derivative of the 13-term expansion given 
in Table II. The results and the differences are given 
in Table IVb. Note the striking regularity in the ab
solute errors. As explained in the previous section, 
each even coefficient of the N = 7 expansion will be in 
error by a value roughly equal to the first neglected 
derivative coefficient and each odd coefficient will be 
in error by roughly the value of the second (first odd) 
neglected derivative coefficient. Curiously, the mag
nitude of the second neglected coefficient is somewhat 
smaller than the errors in the lower odd coefficients 
though of the right Sign, but in general, Table IVb is a 
good illustration of the remarks about differentation 
errors made in the previous section. If we truncate 
the derivative of the 13-term expansion after six terms, 
we make only the truncation error given by the sum of 
the absolute values of the neglected derivative coeffi
cients. If we truncate to seven terms before differentia
tion, then we will make errors in the computation of 
low-order derivative coefficients too. Round-off errors 
in the original, undifferentiated series will propagate 
through successive differentiations in much the same 
way as truncation errors, so I will not discuss this in 
detail. 

The most important consequence of the swift con
vergence of Chebyshev series is that we can compactly 
parametriZe the eigenfunctions themselves. For the 
anharmonic oscillator modes, we are cheifly interested 
in I xl c;; 3 since the amplitudes of the eigenfunctions are 
exponentially small for large absolute values of x. 
There are two ways of obtaining expansions valid for 

TABLE IVb. A comparison of Chebyshev coefficients for the 
first derivative of the ground state eigenvalue for AE: [0., o. 21 
as calculated using seven and 13 collocation points in A and of 
the value of the first derivative at A= O. 

First Taylor coefficient 
Exact N= 7 approximation Relative error 

0.75 0.74798 0.0027 

First derivative Chebyshev coefficients 
Degree N= 13 ("exact") N= 7 Absolute error 

o 
1 
2 
3 
4 
5 
6 
7 

0.105092410 
- O. 016935611 

0.003963518 
- O. 001078467 

0.000321218 
- O. 000101964 

0.00003392 
-0.00001174 

0.105056321 
- O. 016915633 

0.003927436 
- O. 001058522 

0.000285273 
- O. 000082551 

0.000036 
- O. 000020 

0.000036 
- O. 000020 

0.000036 
- O. 000020 
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TABLE V. Coefficients of the double expansions of the ground 
and second excited states as Chebyshev series in x and;>.. for 
;>.. E [0, o. 21 (domain in x: [0,4. D. 

n=O 
Degree Degree in;>" 
in x 0 1 2 

0 1.7404 - O. 0387 0.0055 
1 1. 1254 0.0033 -0.0014 
2 0.1866 0.0249 - O. 0029 
3 - 0.1288 - O. 0033 0.0016 
4 - O. 0625 - O. 0066 0.0002 

n=2 state 

0 0.26733 - O. 05100 0.00676 
1 - O. 90332 0.06823 - O. 01029 
2 - 1. 39567 0.00202 0.00542 
3 - 0.12335 - O. 10855 0.01450 
4 0.39571 0.01513 - O. 00893 
5 0.14547 0.03844 - O. 00253 
6 - O. 03880 0.00033 0.00211 
7 - O. 02528 - O. 00729 0.00002 

this small interval: The first is to calculate the eigen
functions on a large domain and then re-expand them on 
a small domain and the second is to simply compute the 
modes ab initio with boundaries at small absolute 
values of x. The first is a little more accurate at the 
expense of a little extra programming, so to illustrate 
the power of the Chebyshev methods, I have used the 
second, employing the x domains [0,3.6] and [0,4.0], 
respectively, for the intervals [0,0.2] and [0, 2, ""J in 
.\. 

The coefficients of the double Chebyshev expansions, 
to second order in .\ or .\-2/3 and to fourth order in x 
for the ground state and to seventh order in x for the 
excited state, are given in Tables V and VI. Table VII 
compares the values of these truncated expansions with 
the exact eigenfunctions for x"" 3 and particular values 
of .\ and .\-2/3. The largest absolute errors are only 
1 % of the peak amplitude of the wavefunction 0 Note that 
the errors alternate in sign and that the error at sev
eral points is roughly equal in absolute value to the 
largest error at any point. This is a consequence of 
the strong resemblance of truncated Chebyshev approxi
mations to the best approximating polynomial in the 
uniform norm as was mentioned earlier. Because of 
this highly uniform nature of Chebyshev expansions, 
the errors for values of .\ and .\-2/3 other than those 
listed in the table where roughly of the same magnitude. 

We see that by using two different expressions of 
fifteen terms, one for small coupling constant, the 
other for large, we can represent the ground state 
wavefunction to moderate accuracy for all positive 
values of .\ and all values of x where the mode has sig
nificant amplitude. In a numerical sense, we can con
sider the anharmonic oscillator problem as completely 
solved and its eigenfunctions as known. 

4. DISCUSSION AND SUMMARY 

The anharmonic oscillator is a simple problem which, 
because of its simplicity, can be attacked using any 
number of special tricks, but the real Significance of 
my results is twofold. First, the two-part Chebyshev 
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TABLE VI. Coefficients of the double expansions of the ground 
and second excited states as Chebyshev series in x and 
;>..-2/3 for )..-2/3 E [0,07311 (domain in x: [0,3.6]). 

n=O 
Degree Degree in ;>..-2/3 
in x 0 1 2 

0 1. 5795 - O. 0358 0.0026 
1 1.1236 - O. 0086 0.0006 
2 0.2979 0.0241 -0.0020 
3 - 0.1212 0.0146 - O. 0006 
4 - 0.1000 - O. 0061 0.0008 

n=2 

0 0.0716 0.0121 -0.0017 
1 - O. 6510 0.0337 - O. 0023 
2 -1.3002 0.0192 - O. 0002 
3 - O. 5578 - O. 0383 0.0024 
4 0.3224 - O. 0309 0.0003 
5 0.3328 0.0141 - 0.0015 
6 0.0204 0.0188 - O. 0003 
7 - O. 0656 - 0.0001 0.0006 

algorithm should refute the notion that if one wants the 
answer in the form E(.\) = Eo + E1.\ + E2.\2 .• " one mnst 
ineVitably use some form of perturbation theory. 
Second, the double algorithm is completely general. In 
particular, Chebyshev methods can be used to solve 
boundary value problems, integral equations, and more 
exotic classes of equations as discussed in Fox and 
Parker4

; I have limited the discussion to eigenvalue 
problems only for clarity. I have successfully used the 
programs that generated the results of the previous 
section on a very different problem without modifica
tion: the generalized Laplace's tidal equation, which 
(after separation of variables) describes the north
south structure of atmospheric planetary waves in the 

TABLE VII. A comparison of exact and approximate values 
for the n= 0 and n= 2 eigenfunctions for xc: [0,3.1 and ;>..-2/3 
=0.3655,1-.=0.l. 

;>..-2/3=0.365 
n=O n==2 

x Approx. Exact Error Approx. Exact Error 

0 0.995 1. 000 0.005 - O. 929 - O. 9:32 - O. 003 
0.33 0.957 0.953 - O. 004 - O. 669 - O. 667 0.002 
0.67 0.816 0.821 0.005 - O. 018 - O. 024 - O. 006 
1. 00 0.624 0.631 0.007 0.633 0.6:35 0.002 
1. 33 0.426 0.423 - O. 003 0.971 0.980 0.009 
1. 67 0.251 0.242 - O. 009 0.921 0.917 - O. 004 
2.00 0.118 0.114 - O. 004 0.621 0.611 - O. 010 
2.33 0.037 0.043 0.006 0.294 0.299 0.005 
2.67 0.004 0.013 0.009 0.097 0.106 0.009 
3.00 0.0:36 0.027 - O. 009 

;>..= 0.1 

0 0.995 1. 00 0.005 - O. 909 - O. 907 0.002 
0.33 0.974 0.969 - O. 005 - O. 754 - O. 754 0.000 
0.67 0.882 0.882 0.000 - O. 348 - O. :347 0.001 
1. 00 0.748 0.752 0.004 0.177 0.173 - O. 004 
1. :13 0.595 0.597 0.002 0.645 0.642 - O. 00:3 
1. 67 0.443 0.442 - O. 001 0.932 0.9:32 0.000 
2.00 0.305 0.302 - O. 003 0.995 0.996 0.001 
2.33 0.191 0.189 - O. 002 0.871 0.872 0.001 
2.67 0.107 0.107 0.000 0.643 0.647 0.004 
3.00 0.052 0.055 0.003 0.403 0.413 0.010 
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presence of a mean (independent of longitude) wind that 
is varying with latitude. The geometry is spherical; 
there are true singularities at the poles and "apparent" 
singularities near the equator; the problem is different 
for each wind profile; and because of the geometric, 
Coriolis force, and wind-dependent terms, the coeffi
cients of the differential equation are too complicated 
to write down explicitly and must be computed in 
stages. Nonetheless, both parts of the Chebyshev 
algorithm work well, and I will soon publish results for 
this class of problems in another place. 

It is really for such more difficult problems that gen
eral purpose algorithms such as I have described are 
intended. An almost embarrassing number of special 
techniques have been applied to the anharmonic oscil
lalor energy levels, and as usual some of these are 
computationally cheaper or more accurate in limited 
domains than results of the most general methods
Hioe ('I (Ii. 'S2 Taylor expansions in ,\-2/3, for example, 
for A,> 1. Algorithms can never substitute for thinking. 
Still, the Chebyshev methods have made it possible to 
give new results for this venerable war horse: compact, 
explicit polynomial representations for the eigenfunc
tions. This speaks for itself. 
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APPENDIX A: RECURSIVE CHEBYSHEV FORMULAS 

To evaluate the Chebyshev polynomials and their first 
and second derivatives efficiently, we can use the 
formulas (prime denotes differentiation) 

TJy)=2x'f
n

_
1
(x)- [n_ 2 (x), 11=:0,1, ... , (A1) 

1l"=3,4, •.• , (A2) 

11=3,4, '" (A3) 

To make (All valid for all nonnegative integral values 
of 11, we define 

(A4) 

for computational convenience. The true Chebyshev 
polynomials are defined only for nonnegative integral 
values of n. To supplement (A2) and (A3) which are 
valid only 11 > 3, we use the starting values 

(A5) 

(A6) 
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To compute the sum of a function f(x) where x~c [a, b 1 
as a truncated series of Chebyshev polynomials of the 
stretched variable .v where y c l- 1,1 J (the standard 
interval), i. e . , 

Ill ... l 

f(x)= 6' cJn(Y), 
"",0 

we initialize by setting 

\' == 2(x - (a + b)/2)/(b - (/) 

"b 1 =0, b2 =,0, 

and then cycle through the follOwing loop tv times: 

bo=2yb1-b2+CN_i' i=l, ... ,N, 

At the end of the loop 

f(x:)=0.5(b 1 - b). 

(A7) 

(AS) 

(A9) 

(A10) 

The prime on the summation in (A7) denotes that the 
lowest term in the sum is to be taken with a factor of 
L L e. , Co 1'0/2 is to be added to the sum of the other 
terms, not coTo, and the algorithm of (A8)-(A10) 
automatically does this. As explained i ust after (2.25), 
this pesky factor of two stems from the normalization 
factors en in (2,2), which are 

(All) 

One can either divide the first row of the matrix de
fined in (2.19) by two, or multiply the computed Co by 
0.5 in summing the Chebyshev series. Following Fox 
and Parker,'1 I have chosen the latter. A similar prob
lem with the constant term arises in ordinary Fourier 
series, which is hardly surprising since (2.7) shows 
that the Chebyshev polynomials are merely cosine func
tions of a transformed variable", 

APPENDIX B: THE EMPIRICAL CONVERGENCE RATE 
OF A CHEBYSHEV SERIES 

If a function is infinitely differentiable but nonanalytic 
at a point, it still has a formal power series expansion 
about that point, and it can be shown through the Taylor 
series remainder formula that this series is asymptotic 
to the function. It can further be shown that the 
CJzC/)YS!Ii'1' expansion of the function on an interval 
which includes this point as one end point still has the 
property of illfinilc-onicr CO!ll'cvgcncc. The proof 
follows from making the change of variable x = cos ti, 
using the relationship between the trigonometric func
tions and Chebyshev polynomials, and integrating the 
explicit expression for the series coefficients (2.2) by 
parts h times to show that the coefficients are O(II- k

) 

as II goes to infinity, provided the function is }? times 
differentiable. If the function is infinitely differentiable 
everywhere on the interval of expansion including the 
end points, then the Chebyshev series will show infinite 
order convergence even if it is not everywhere analytic. 

It is still important, however, to gain some feeling, 
even if only on an empiricaL basis, for the practical 
convergence rates of Chebyshev series for functions 
which are Singular at one end point although infinitely 
differentiable there. The expansion with the coefficients 
an = (0, 99)n technically has the property of infinite order 
convergence, but one would need to sum several thou-
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TABLE VIII. The ratios rn= I a/a".! I for the n = 0 eigenvalue 
for AE: [0, O. 2l. 

n r n 

0 21. 86 
1 12.75 
2 6.53 
3 4.97 
4 4.25 
5 3.82 
6 3.53 
7 3.33 
8 3.17 
9 3.01 

sand terms to compute the function accurately, thus 
showing that this theoretical property is no guarantee 
of a series' usefulness. Luke, 15 however, tabulates 
the expansion coefficients for a number of functions 
which are weakly singular at one end point, and finds 
rapid convergence, just as is true here for the an
harmonic oscillator as shown in my tables. For a 
couple of series, he demonstrates that the coefficients 
are proportional to exp(- pnq

) for a large n where q is 
i or i, thus explicitly illustrating the infinite order 
convergence. 

The most useful measure of the rate of convergence 
of a Chebyshev series is rn = 1 a/ an+1 1, For most func
tions, rn is usually between two and five once n is large 
enough to give moderate (5%) accuracy. For functions 
whose only singularities are simple poles, it can be 
shown rigorously that rn is asymptotically cOllstant. 
For entire functions-exponentials, sines, and Bessel 
functions-rn asymptotically increases, In Luke's 
asymptotic formulas, however, rn will decrease to one 
from above as n tends to infinity if q is less than one, 
as it is for his examples. Table VIII shows that the 
same behavior is true of the Chebyshev series for the 
ground state eigenvalue of the anharmonic oscillator 
on an interval with one end point at A = O. 

rt is straightforward to show that r must decrease 
to one as n - 00, if the function is sing~lar at one or both 
end points. It is easy to prove that a Chebyshev series 
will converge inside the largest ellipse with foci at the 
end points of the expansion interval within which the 
function is analytic. (As demonstrated in Geddes, 16 the 
same conformal mapping that transforms an ellipse 
with foci at ± 1 into a circle about the origin also maps 
Tn(z) into wn • Thus, the convergence of the Chebyshev 
series for f (z) is equivalent to that of the Taylor se ries 
in w for g(w) =f(z), from which the theorem follows 
trivially.) For functions which are singular at one or 
both end points, the ellipse of convergence collapses 
into the expansion interval itself: The series diverges 
at all other points of the complex plane. Boyd17 shows 
that Chebyshev polynomials satisfy the tight bound 

ITn(x+iy)l,,:coshnflo (B1) 

for all points inside and on the ellipse Il = Ila, where Il 

is an elliptical coordinate in the complex plane. (Note 
that the ellipse for 110 = 0 is the expansion interval it
self") Thus, the ratio 

I an Tn (x + iy) I / I an+1 T n+l (x + iy) I 
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is bounded from below by rn exp(- Ilo). If rn does not 
asymptotically tend to 1, then for suffiCiently small 11 0 , 

the Chebyshev series must (by the ratio test) converge 
uniformly and absolutely inside and on the ellipse 
fl = flo, which is a contradiction. Divergence of the 
series at all points off the expansion interval is not 
incompatible with the property of infinite order con
vergence, however. If the coefficients are asymptotical
ly proportional to exp(- pnq

), for example, one clearly 
has infinite order convergence on the expansion inter
val, butfor flo*O and for q<l, the exp(n/1o) growth of 
the Chebyshev polynomials will eventually overwhelm 
the slower exponential decrease of the absolute values 
of the coefficients, implying that the series diverges 
as it must. 

On a practical level, however, the importance of the 
end point singularity depends on its severity. The func
tion exp[ - 0.25 log2 (1 - y)], which is the ground state 
eigenfunction of the harmonic oscillator after the change 
of variable y = 1 - exp(- x) is made in (3.1), has only 
the trivial asymptotic series about y = 1, i. e. , f(y) = 0, 
since all the derivatives of the function vanish there. 
Nonetheless, the integrals defining the Chebyshev coef
ficients can be integrated by parts an arbitrary number 
of times, and Chebyshev series with N = 3, 24, and 49 
give maximum absolute errors of O. 033, 2.2 xl 0- 4 , 

and 2.3 X 10-6 , respectively. In noteworthy contrast to 
the usual situation where the errors of a truncated 
Chebyshev series are distributed more or less uniform
ly over the interval, for this function, they are con
centrated near the singularity. Away from the neighbor
hood of y = 1, for example, the maximum errors are 
less than those at y = 1 by a factor of four for N = 3 and 
by a factor of roughly one hundred for N = 24 and N = 49. 
Clearly Chebyshev series give useful and highly ac
curate approximations to this function, especially if 
one is willing to tolerate higher error near the singular
ity, but convergence is slow in comparison with that 
for a monotonic analytic function. It is because of this 
slow convergence that domain truncation, instead of a 
change of variable to map [O,eo] into [0,1], was used to 
compute the eigenfunctions of the anharmonic oscillator. 

When the Singularity is weaker so that the asymptotic 
series about the singularity is nontrivial and has some 
small but finite range of usefulness, then the asymptotic 
behavior of rn is probably significant only if one is in
terested in very high accuracy-more than ten decimal 
places-for most simple functions. For 

e!X1
/

2 r ~ Ko(t)dl, 
'X 

r 25 is still as large as 3.16 as compared to rIO = 4, 83; 
n = 10 gives nine decimal place accuracy and n = 25 
gives 18 decimal place accuracy for this funcEon. 
Similarly, rg = 3.01 for the ground state eigenvalue of 
the anharmonic oscillator; the first eleven terms of 
this series give a relative error of only 1 part in 10 
million. Thus, even though r is tendin rr to one for 
large n for both these examples, rn is ;till within the 
empirical range of "two to five" that I quoted above for 
the largest values of 11 that are likely to be of practical 
interest, Empirically, then (as well as theoretically), 
the Chebyshev expansions of functions which are singular 
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but infinitely differentiable at one end point and which 
have nontrivial asymptotic expansions about that point 
are likely to be as useful and almost as rapidly con
verging as those of smooth, well-behaved functions with 
no singularities of any kind close to the expansion 
interval. 

Notes added in proof: (i) Grosch and Orszag18 have 
thoroughly investigated mappings for six examples 
including the harmonic oscillator (A = 0). In general, 
they find that exponential mappings similar to that 
discussed in Appendix B are poorer than simple 
domain truncation for the same reason given here: 
The endpoint singularity in the transformed variable 
is strong enough to drastically reduce the convergence 
rate of the Chebyshev series. However, they also show 
that algebraic mappings of the form y =x/(x +L) where 
L is a constant are usually somewhat more efficient 
than the domain truncation adopted for simplicity here. 

(ii) Sheorey19 in a paper published after the original 
submission of this manuscript has independently 
applied the same idea to the Coulomb wavefunctions. 
Although his emphasis is strictly numerical in contrast 
to the philosophy which I have stressed here, which is 
that the double Chebyshev algorithm is an analytic 
alternative to perturbation theory, his work should be 
noted. 

(iii) The traditional philosophy of table-making is to 
calculate the solution at from twenty-five to one hundred 
evenly spaced values of A and then print the results. 
For representing observational or experimental data, 
this strategy is sound, but for analytic functions, it is 
probably highly inefficient. It is unlikely that any table
maker striving for eight decimal place accuracy 
would construct a table with as few entries as Table n, 
but from the thirteen Chebyshev coefficients given 
there for EO(A), one can in fact compute the function 
to at least eight figures over the entire interval. By 
using the double Chebyshev method, one can easily 
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make a table with a hundred entries by doing the primary 
calculation (finding the eigenvalues via the QR algorithm) 
for only a doz en unevenly spaced values of A. 

11;\,. Kauzmann, Quantum Chemistry: An Introduction 
(Academic, New York, 1957). 

2F. T. Hioe and E. W. Montroll, J. Math. Phys. 15, 1945 
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The classes of distinct point and line defects in ordered media and the laws governing their combination, 
are determined by the fundamental group of the order parameter space 17" the second homotopy group 172' 

and the group of automorphisms induced in 172 by the action of 17,. A simple algorithm is given for 
computing all of these algebraic structures for a quite general family of ordered forms of condensed 
matter. 

I. INTRODUCTION 

Several papers have recently appeared applying 
homotopy theory to the study of defects in the ordered 
media of condensed matter physics. 1-10 In such treat
ments the relevant properties of the media are to be 
found in the topological structure of the space of allowed 
values of its order parameter. Of particular impor
tance are those topological features described by the 
structure of the first and second homotopy groups, 711 

and 712 , The categories of distinct line defects are de
termined by the algebraic structure of 1T1 (known also 
as the fundamental group of the order parameter space). 
The categories of distinct point defects are determined 
by the algebraic structure of 712 , together with a topo
logically determined group of automorphisms of 712 

associated with the transport of point defects around 
closed paths encircling line defects, and characterized 
mathematically as being brought about "by the action of 
711 on 712 ," 

The primary concern of most of these papers has been 
how, given the structure of 711 and 712 , one can charac
terize the classes of line and point defects, their com
bination laws, or what comes about when attempts are 
made to pass such defects through or around one an
other. Except in a few papers 9

,10 the actual computation 
of these groups and their interrelations has not been of 
central concern; the groups have been determined in the 
following ways: 

(a) Reference has been made to results in the math
ematical literature; 

(b) Ingenious arguments have been used to construct 
the groups from first principles, by explicitly con
sidering all relevant deformations of curves or surfaces 
in the order parameter space; 

(c) Powerful general theorems (summarized in the 
"exact homotopy sequence of homomorphisms") have 
been exploited to reduce the structure of the homotopy 
groups to a small number of possibilities. All but one 
of them is then eliminated by arguments essentially of 
type (b), applied to a much simpler set of cases than 
would have been required were the exact sequence not 
invoked. 

I wish to point out that at least in the matter of com
puting the homotopy groups, one does not need a math
ematics library, ingenuity, or facility in the manipula
tion of exact sequences. There is a simple algorithm 
which reduces to an elementary algebraic exercise the 

computation of the first and second homotopy groups, 
as well as the computation of the action of 1Tl on 712 , for 
a very large class of ordered media. The class includes 
all those discussed to date in the literaturell and many 
yet to be discussed. The presentation of this algorithm 
is organized as follows: 

In Sec. II I characterize those ordered media to which 
the algorithm can be applied. The algorithm itself is 
presented in the form of three short theorems. It is 
described in enough detail to indicate in elementary 
terms its intuitive content; most of the comparatively 
unilluminating formal proof is deferred to Sec. IV, 

In Sec. III I apply the algorithm in several cases, to 
provide some concrete illustrations of the rather ab
stract procedure specified in II, Readers more in
terested in how to use the algorithm than in why it 
works, might be advised to skip directly to Sec. III 
after reading the statement of the three theorems. 

In Sec. IV I offer a brief proof of the algorithm by a 
single application of the exact homotopy sequence to all 
of the cases characterized in Sec. II. Readers with only 
a little less knowledge of topology than I have may fail 
to find the argument illuminating, and they are en
couraged to construct their own proofs along the more 
elementary lines hinted at in Sec. II, I have chosen to 
present here the formal proof rather than pursuing the 
more intuitive line of argument, because the former 
is far more concise and emphasizes that the computa
tional algorithm I am describing is, in fact, only a very 
modest extension of the approach [(c) above 1 already 
emphasized by Volovik and Mineyev. 7 

II. COMPUTING 1T I. 1T 2' AND THE ACTION OF 
IT 1 ON 1T 2 

The media for which the algorithm is designed are 
those in which the order parameter space can be charac
terized as a space of cosets GIH of a Lie group G, with 
respect to a closed subgroup H. This description of the 
order parameter underlies the Landau-Lifshitz theory 
of phase transitions (and survives the failure of the 
more quantitative aspects of that theory). It can also be 
found in the general treatments of Refs. 3 and 7, To 
describe an order parameter space in this way one re
quires only the following: 

There must be a group G of transformations among 
the possible values of the order parameter, which is 
large enough to contain operations taking any possible 
value into any other. Given such a group, one can single 
out a particular reference value <Po of the order param-
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eter <P, and specify any other value <P1 by giving a 
transformation g in 0 which takes <Po into <Pi' In gen
eral there will be many elements of g satisfying g<Pa 
= <Pi> but there is a simple way to deal with this re
dundancy. One notes that the set H of all transformations 
in 0 that leave CPa invariant, is a subgroup (known as 
the isotropy subgroup or "fixer" of the order param
eter). It is then an elementary algebraic exercise to 
establish that the set of all transformations in 0 that 
take CPo into any given <Pi is Simply a left coset of H in 
O. One thus establishes a correspondence between 
distinct values of the order parameter, and the left 
cosets of the isotropy subgroup H in 00 

The abstractness of this presentation should be re
lieved by an examination of the examples in Sec. III 0 

(One might also note that in the Landau-Lifshitz 
language, 0 is the symmetry group of the disordered 
state and H is that subgroup of 0 that survives the 
symmetry breaking below the transition temperature.) 

We call the space of left cosets O/H, and identify it 
with the order parameter space, The central observa
tion which reduces the computation of the homotopy 
groups to a simple algebraic exercise, is that the group 
o can always be chosen so that 11n (O) =0 for 17=0,1, 
and 2. In actual practice the choice of a connected 
[11o(O)=OJ simply connected [111(G)=OJ group 0 is quite 
routine, and 112 (0) vanishes automatically. Readers who 
are content with this are urged to skip from here to the 
statement of the algorithm (Theorems 1-3 below) and 
thence to the illustrative applications in Sec, III. The 
three paragraphs that follow indicate why these restric
tions are easy to satisfy. 

1To(O) = 0: This is homotopy-theoretic shorthand for 
the assertion that the continuous group 0 is arcwise 
connected. This can always be arranged for the study 
of point and line defects, for in the absence of planar 
defects that disconnect macroscopic portions of physical 
space, any two points of space can be joined by a path 
that avoids all order parameter singularities. The 
values of the order parameter at such a pair of pOints 
can then be related by a transformation of 0 that is in 
the connected component of the identity. Thus if one 
did happen to choose a disconnected group 0 [for ex
ample by taking 0 to be the group 0(3) of proper and 
improper rotations, rather than the connected proper 
rotation group 80(3»), one could build a new description 
based only on operations in the subgroup of 0 connected 
to the identity, provided only that the region of physical 
space free of defects was connected 0 

1T
1
(0)=0: Such groups are said to be simply connected, 

and are characterized by the fact that any continuous 
one-parameter family of group elements g(li) with g(O) 
= g(21T )(i. e. , any continuous image of a circle in the 
group 0) can be continuously deformed to a single point 
in 0 0 If the original choice of 0 is not a simply con
nected group, one can always find a larger simply con
nected group, of which 0 is the homomorphic image, 
and work with this group instead. The existence of such 
a group (known as the "universal covering group") is 
guaranteed by a fundamental topological theorem. 12 

In applications to the media of condensed matter 
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physics the selection of a simply connected group G 
presents no problems. The three dimensional proper 
rotation group 80(3) is not simply connected, but it is 
the homomorphic image of the simply connected group 
SU(2) of unitary unimodular 2 x 2 matrices; the two 
dimensional proper rotation group SO(2) is not simply 
connected, but it is the homomorphic image of the sim
ply connected one-dimensional translation group T(1); 
the translation group T(n) is simply connected in any 
number of dimensions. The groups G encountered in ap
plications in condensed matter physics are invariably 
built out of direct products (or, in the case of the 
Euclidean group, semidirect products) of the above 
groups. Since the product of two simply connected 
spaces is also simply connected, a simply connected G 
can always be arranged. In practice one merely de
scribes rotations by operations from SU(2) or T(l), 
rather than 80(3) or 80(2). The additional redundancy 
in description that this introduces is no problem, since 
the formation of the coset space O/H removes whatever 
redundancy is present. The Simplicity of the pro
cedure should be revealed by the examples in Sec. III. 

71 2 (0) =0: This is the assertion that any continuous 
image of the surface 52 of a 3-sphere in 0 can be con
tinuously deformed to a single point. This is not dif
ficult to prove for any of the groups described in the 
preceding paragraph, but in fact it is never a worry, 
due to a theorem of Cartan that 11 2 (0) vanishes for any 
Lie group 0 13 

We now state the algorithm in the form of three 
theorems c In all cases 0 is to be taken to be connected 
and simply connected. [The vanishing of "? (G), which is 
used in the proof of theorem 2, is automatic. J 

Theorem 1: If 0 is connected and simply connected 
then "i(olH) is isomorphic to the quotient group Hilla, 
where Ho is the connected component of the identity in 
H. 

Theorem 2; If 0 is connected and simply connected, 
then 1T2 (0/H) is isomorphic to "i(Ho)' 

Theorem 3. If 0 is connected and simply connected 
then the action of 11 1(G/H) on "2(G/H) is given by the 
action on "l(Ho) of the inner automorphisms of ll. [This 
concise but somewhat cryptic statement can be ex
panded as follows: Let C\' be a homotopy class in 
71 i (G/H) and let p be a homotopy class in "2(01ll). Let 
II be any element of H such that liHa is the coset of Ha 
in H corresponding to (} under the isomorphism of 
Theorem 1, and let gt be any loop in I1(] belonging to the 
homotopy dass corresponding to f.5 under the isomor
phism of Theorem 2. Then the action of (Y on jj is to 
transform f.5 into the homotopy class {if which corre
sponds, under the isomorphism of Theorem 2, to the 
homotopy class of loops in Ho of which h-iHtit is a 
representative. The resulting automorphism of 112 (G/ Ii) 

is independent of the choice of coset representative 17 

or representative loop gt.1 

I expand briefly on the meaning and intuitive content 
of these results and then turn (in Sec. III) to some ap
plications which will probably clarify their meaning 
more efficiently than any general remarks. Theorem 
3 is proved in the discussion at the end of this section, 
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but the proof of Theorems 1 and 2 is deferred to Sec. 
IV. For applications of these results to the study of 
defects, the informal discussion in this section is likely 
to be of more interest than the rigorous proofs of the 
isomorphisms in Sec. IV. It is only in the informal 
discussion that the explicit construction of the isomor
phic correspondences is specified. Without an under
standing of that correspondence it can be difficult to 
sort out which classes of defects correspond to which 
elements of the abstract homotopy groups. 

Comments on Theorem 1: The statement of Theorem 
1 presupposes the elementary result that if H is any 
continuous group and Ho the connected component of the 
identity in H, then Ho is a normal subgroup of H, so 
that the coset space H/Ho is, in fact, a groupo14 From 
the topological point of view the cosets of Ho in Hare 
the various disjoint connected components of H. The 
elements of the group H/Ho are best thought of as these 
internally connected pieces of H, which are given a 
group structure by virtue of Ho being a normal sub
group. (The product of two pieces is simply the piece to 
which the product of any pair of their respective mem
bers belongs.) The isomorphic mapping between 
7Tl (G/H) and the elements of H1Ho can be characterized 
as follows: 

Given any connected component HI of H, trace out a 
continuous path g(t) (O,c; t,c; 1) that connects any point 
in HI to the identity e (which lies in Ho). The continuous 
family of cosets given by K(t)=g(t)H is a closed path 
(i. e., a loop) in the coset space G/H [since g(O)H and 
g(l)H are both the coset H itself]. The homotopy class 
of loops to which the loop K(t) belongs is the element in 
7T I (G/H) associated with the element of H/ Ho given by 
HI' A line singularity characterized by an element of 
1I I (G/H) corresponding to the component HI of H can be 
represented as one in which the variation in the order 
parameter about an encircling path is given by gt¢O, 
O,c; t,c; 1. 

A rigorous proof of Theorem 1 must establish that the 
structure of this correspondence is independent of the 
particular choice of paths from the components H. of 
H to the identity, and that it meets the requisite f~a
tures of being one-to-one and taking the multiplication 
table of the one group into that of the other. The proofs 
of all these paints are straightforward consequences of 
the underlying definitions, and can be formulated along 
lines requiring no advanced topological technology. 
Once the connection between paths linking the H. to H 
in G, and closed loops at the coset H in G/H is firml; 
perceived, the proof of the theorem is virtually at hand. 

Comments on Theorem 2: The structure of the isomor
phic correspondence between 7T2 (G/H) and 7T I (Ho) is the 
following: 

The second homotopy group of the coset space G/H 
consists of homotopy classes of maps of the surface 
52 of a sphere into G/H, which take one point of the 
sphere (here chosen to be the south pole) into the coset 
H itself, If we introduce spherical coordinates then a 
representative map of a sphere into G/H is a two 
parameter family of cosets K(e,¢), with K(1I, ¢) identi
cally equal to H, To prove Theorem 2 one must first 
establish that such a family of cosets can always be 
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represented by a two-parameter family gte, ¢) of ele
ments of G itself: 

K(e, ¢)=g(e, ¢)H, 

where g(7T, ¢) traces out a closed curve in Ho, as ¢ 
varies from a to 27T 0 [It is evident that such a map of a 
disk into G taking the circumference into Ho represents, 
via (2,1), the image of a sphere in the coset space 
G/H; the nontrivial part is that any sphere in coset 
space can be so represented. J 

Having established the representation (2,1) for any 
sphere at H in coset space G!R, one must then prove: 
(a) That the correspondence (201) is one-to-one be
tween homotopy classes of maps of Sa into G/H taking 
the south pole into H, and homotopy classes of maps of 
the disk into G taking the circumference into Ho; (b) 
That the homotopy classes of maps of the disk into G 
are entirely characterized by the action of the map on 
the circumference of the disk-L e., by the elements 
of 7T 1 (Ho), which are the homotopy classes of loops in 
Ho; and (c) that the resulting correspondence between 
maps of spheres into G/H and circles into Ho preserves 
the multiplication table between the homotopy classes 
in 7T2(G/H) and the homotopy classes in 1II (Ho)' 

Proof of Theorem 3: Given the isomorphic corre
spondences described above, Theorem 3 follows from a 
careful statement of precisely how 1T 1 (G /H) acts on 
7!2(G/H). Let K(e, tf» be a sphere in coset space rep
resented by the disk g(&,¢) in G [as in Eq. (2.1)Jo Let 
L(f3), O,c; B,c; 211, be a loop at H in coset space-i. e, , 
a map of a circle into G/H (with L(O) = L(27T) =H] rep
resenting a homotopy class of 7T I (G/H). Under the cor
respondence given by Theorem 1 we can represent 
\ L({3) by a path a(f3) in the group G connecti~g an element 
I in one of the components of H to e: 

(2.2) 

The loop L acts on the sphere K as pictured in Fig. 1, 
to produce a new sphere LK 0 Formally, LK is defined 
by 

a b 

c d 

FIG. 1. Various sets in the coset space G/H. The heavy dot 
represents the coset H. (a) The image K of a sphere at H. 
(b) The image L of a loop at H. (c) The image of the sphere 
LK produced by the action of L on K. (d) Another set homo
topic to LK, in which the loop has been allowed to ex~and into 
a tube, to make clearer the relation between LK and a sphere. 
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LK(e,cp)=K(28,CP), 0,,; 8";7T/2; 

=L(48-27Tl,7T/2,,;8";7T. (2.3) 

We can represent LK by a map Lg of the disk into G, 

LK(8, cp)=Lg(8, cp)H, (2.4) 

by taking Lg to be given by 

Lg(B,c/J)=g(21t,Cp)hl' 0,,; 8";7T/2; 

=a(4e-21r)h~lg(7T,¢)hl' 'll"j2"; e~7T (2.5) 

The factors of hi on the right have no effect on the 
structure in coset space given by (2.4). Along with the 
factor hi l they are there (a) to insure that the circum
ference of the disk is indeed taken into Ho by the map 
Lg(7I", <p) and (b) to insure that continuity is preserved 
at 8=71"/2. 

Under the isomorphism of Theorem 2, the rep
resentative map LK of 71" 2 (G/H) corresponds to the rep
resentative loop Lg(7I", cp) of 71"1 (Ho). According to (2 .. 5) 
this loop is just 

(2.6) 

That (2.6) does, in fact, give a loop in Ho follows from 
the fact that g(7T, ¢) is such a loop and the fact that Ho is 
a normal subgroup of H. It is easily verified that the 
homotopy class of loops in Ho to which h~lg(7T, <Plhl be
longs, does not depend on the choice of 121 within the 
connected component HI of H. Thus under the isomor
phism of Theorem 1, we have associated with every 
element of 7I"l(G/H)-Le., with each component of 
H-a loop hi l g(7I" , <p)hl in Ho which, under the isomor
phism of Theorem 2, corresponds to the homotopy class 
of LK in 7T 2 (G/H). Since g(7T, cp) is a loop in Ho corre
sponding to the homotopy dass of Kin 7T2(G/H), we con
clude that (2.6) gives precisely the action of 7Tl(G/H) on 
7I"2(G/H) asserted by Theorem 3. 

III. ILLUSTRATIVE APPLICATIONS 
A. Media that can be regarded as a field of obiects with 
a given point group symmetry 

Only proper rotations are required to relate the or
ientations of such objects at different points of a con
nected medium, and we need therefore only consider 
the subgroup of proper point group operations in con
structing the isotropy subgroup H. Examples of such 
media and the proper subgroup of their point groups 
include nematics (D.J, biaxial nematics (D 2 ) , isotropic 
ferromagnets (C.ol, the dipole-locked A phase of super
fluid helium-3 (Col, etc. 

To apply the algorithm we must take G to be the 
simply connected group SU(2), which is related to the 
multiply connected proper rotation group SO(3) through 
the homomorphic mapping: 

RCh, It)-±u(n, 8) 

=± exp[i(B/2)n' oj 

=±[cosie+isin~cmoo}, 0,,; 8,,;211, (3.1) 

[u(n , O± Z1T) = - u(n, 8)], 

where RGi, It) is a rotation through the angle 8 about the 
axis n, and the OJ are the Pauli matrices. The isotropy 
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subgroup H is then the "lift" in SU(2) of the proper part 
of the point group: for each proper rotation R(n, e) in 
the point group, H contains the pair of 2 x 2 unitary 
matrices ± u(n, e) lor, alternatively, u(n, e) and u\n, e 
+ 271")]. Thus H is just the double group of the proper 
subgroup of the point group, familiar from its (quite 
unrelated) applications in the treatment of magnetic 
ions in crystals. 

The application of the algorithm is particularly simple 
when the point group is discrete, for its lift in SU(2) 
is then also discrete, Ho is the identity in SU(2), and 
HIHo is H itself. For a medium of obj ects with dis
crete point group symmetries the fundamental group is 
Simply the double group associated with the proper 
subgroup of the point group. A particularly simple ap
plication of this is the result of Toulouse and Kleman1 

that the fundamental group of dipole-locked 3He-A is 
Zz, the two element group. {Proof: G'a [the one element 
group in SO(3)] lifts to the two element group (u =± 1) 
in SU(2),} A more interesting application is provided by 
Toulouse's charming observation2 that the fundamental 
group of the biaxial nematic is the quaternion group Q. 
[Proof: Dz consists of the four rotations 1, R(X,11), 
R(y, 71"), and R(z ,71"); under the homorphism (3.1) these 
lift to the eight elements ±l, ±iox' ±ioy' and ±ioz' 
which are the quaternion group 01 Evidently the pro
cedure is similarly straightforward for fields of arbi
trary obi eets with no continuous symmetry elements. 

Point singularities are even simpler when the point 
group is discrete, for Ho then consists of the identity 
alone, and 7I"l(Ho)=O. It follows that 7I"2(GiH) =0: there 
are no point defects. 

To illustrate the use of the algorithm when the point 
group is not discrete, we consider the ordinary ne
matic, The proper part of the point group, D." con
tains elements of the form R(z, e) and RCy, 11)R(z, ttl for 
arbitrary e. These lift to the subgroup of SU(2) consist
ing of u(z , el and io xU(z, It) for 0,,; e,,; 411. Thus H has two 
connected components. (The negative of any operation 
of H is in the same component as the operation itself.) 
Ho is the subgroup containing the u(z, b), and the op
erations iu xU (Z , e) are in the coset HI = (iu )Ho 0 The 
quotient group H/Ho is thus the two-element group Z2' 

The topology of Ho is that of the circle, and there
fore l5 

7T 1 (Ho) = Z, the integers. It follows from Theorem 
2 that 7T 2(clH)=Z for the nematic. The automorphism 
group generated by 71" 1 consists of the single inner 
automorphism H- h-1Hh given by any h in the com
ponent of H not connected to the identity. A simple 
chOice is io. itself. The resulting automorphism acts 
on any curve u(z, t) in Ho as follows: 

(iax)-lu(z, t)(ia,) =u(~, - I).. (3.2) 

Thus a loop in the class of 71" 1 (Ho) characterized by 
winding number n is in the same automorphism class 
as a loop characterized by winding number - n. Point 
defects in a nematic (as emphasized by VoLovik and 
Mineyev7) are thus characterized by a positive integer 
n indicating that they belong to the class of maps of 
a sphere into G/H with degree +n or-l1. The combina
tion law for point defects is ni + 112 - \ n1 ± 112 \ 0 (This 
has the amusing consequence that in the presence of a 
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line defect doubly quantized pOint defects are unstable: 
one need merely decompose a 2n point defect into two 
identical defects of type n, move one of them around 
the line defect to conveI't it to - n, and allow the re
united point defects to annihilate one another.) 

8. Some examples from the theory of superfluid 
helium-3 

Here the order parameter has the structure of a 
second-rank tensor in spin and orbital spaceo In gen
eral, operations in G can act differently on the two 
types of indices, and the simply connected group G must 
be taken as the group SU(2)XSU(2) consisting of ordered 
pairs of operations from SU(2). H is then the lift of the 
isotropy subgroup in 80(3) xSO(3L The elegant result 
of Cross and Brinkman9 for the dipole-free A phase is 
recovered from the following rather bleak analysis: 

The reference order parameter in the dipole-free 
A phase can be taken to be the tensor A~n=zm(xn +iY). 
The isotropy subgroup in SO(3) contains operations of 
the form [R(z,e),1]and [R(X,7T)R(z,8),R(z,7T)], Lifting 
these to SU(2) x SU(2) gives a four-component subgroup 
consisting of 

Ho: [u(z,8),1j, HI: [illxu(z,e),ill.l, 

Hz; [u(z, e), -1], H3: [illxU(Z, Ii), - i!lz]' 

-27T ~ e~ Z7T. 
Taking g to be the element 

(3.4) 

these can be represented as the following cosets of Ho: 

The quotient group H/Ho is therefore isomorphic to Z4' 
the integers modulo 4. Theorem 1 then gives 
7TI (G/H)=Z4° 

Since Ho has the topology of a circle 7T z{G/H) =Z ° One 
easily verifies that 

g-n[u(Z, 0, l]g"= (u(z , (-l)nt), 1], (3.6) 

and therefore the action of 11 I on 7T 2 is again to group 
elements of 7T2 (G/H) with degree 11 and - n into a single 
class of defects. The import of the relations in (3.6) 
is that a point defect of type n must be transported 
around a line singularity of type g or g3 (but not g2) to 
be converted into its own inverse. As in the case of 
the nematic, if a g or g3 line singularity is present it 
can catalyze the decay of all point singularities down 
to a single one of unit degree. 

The more recent results of Balian and Love on the Al 
phase10 can be similarly treated. If, for example, the 
reference order parameter is A~n:=: (Xm + iy m)(Xn + iy n) 
and the spin and orbital parts are allowed to orient 
arbitrarily, then the isotropy subgroup in SO(3) x SO(3) 
contains just those transformations of the form 
[R(z, 8),R(z, - e)], This lifts to a two-component sub
group of SU(2), consisting of 
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Ho: (11(2, 8),u(z, - e)], -27T~ f),; 27T, 

HI: [u(z,8), -u(z,e)], -27T~ fj~27T, 

HI =gHo, g= [1, -1]. 
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(307) 

{The other pieces one might write down are already 
included in these families; e. g. [- u(z, 8), u(z , 8)] 
=[u(z, &+71"), -u(z' e+7T)].} Hence H/Ho is the two ele
ment group, and 7T I (G/H)=Z2' Once again Ho has the 
topology of the circle, so 7T 2 (G/H) is again the integers. 
However g-Iag=a for any element of SU(2)xSU(2), so 
7T1 {G/H) acts trivially on 7T2 (G/H): point defects with 
quantum numbers nand - 11 are distinct. 

IV. PROOF OF THEOREMS 1 AND 2 

The proof is an application of the exact homotopy 
sequence: 

"2(G)- 7T 2(G/H)- 7T I (H)

"l(G)- 7T 1 (C/H)- 1To(H)-

7To(G). (4.1) 
The use of this exact sequence in computing the homo
topy groups of condensed matter physics has been 
described by Volovik and Mineyev, 1 To their analysis 
we need add only two remarks ~ 

(a) As discussed in Sec, II, it is always possible to 
choose the group G so that "2(G)=7TI (G)=7To(G)=O; 

(b) With this choice of G the theorems follow immedi
ately from the general structural feature of exact 
sequences that a pair of groups sandWiched between a 
pair of trivial groups in an exact sequence must be 
isomorphic. 
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long to H, and a belong to Ho. Since Ho is the connected com
ponent of the identity there is a continuous family of elements 
in Ho,a(f;), jOining e to a. The family g-la (t)f{ is also continu
ous, but jOins e to glaf{. Hence glaf{ is also in the connected 
component of the identity. (The proof that Ho is a subgroup 
runs along Similar lines.) 

I'This can also be proved by an application of Theorem 1. A 
point on the circumference of a circle can be specified by 
giving the member of SO (2) that produces it by action on a 
fixed reference point. The isotropy subgroup is then the 
identity of SO (2). The simply connected covering group G of 
SO(2) is the one-dimensional translation group, the homo
morphism being T(e+2rrn)-R(e), n=O, ±1, ±2,"", The 
isotropy subgroup H is the discrete subgroup of translations 
T(2rrn). Since H is discrete H/Ho=H, and rrl is isomorphic to 
H itself, which in turn is isomorphic to the additive group of 
the integers. 
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In th's paper and in the following, we deduce inversionlike integral equations (from which we can 
construct a class of potentials without introducing the data) in the case of a system of n linear first-order 
partial differential equations with different coordinate variables. The partial differential part of the linear 
operator is a diagonal matrix with each element acting only on a particular coordinate. 

I. INTRODUCTION 

The connection, uSing the so-called "inverse Method" 
between one-dimensional nonlinear partial differential 
equations (nlpde) and the associated linear one-dimen
sional coordinate differential systems is actually 
relatively well understood. 1 The link is obtained by 
considering the one dimensional inversion equation 
associated to this linear system. However, the problem 
in the multidimensional case2 is not in as good shape as 
in the one-dimensional case, becanse the inversion 
corresponding to a multidimensional partial differential 
system is missing. 3 

Let us consider Do(x) = a/ox and 

(AOC'1'X2 , ••• ,xn ) +ikA - Q) zjJ= 0, 

where A is a diagonal eigenvalue matrix A = (OJ,),j), 
Q a (n x n) "potential" 

and zjJ a column vector. Ao is a diagonal partial 
differential operator Ao= (OjjDo(X j )). 

(1) 

Let us consider a set of solutions [Do(x) + ikAi ]u7Cd = 0 
and define a set of eigenfunctions of Ao. 

;J~ = ('\,j U~(x, )), (Ao + ikA)(I/J?, ...• I/J~) = (0). 

Let us formally write a set of n functions [which we 
would like to be Sobltions of Eq. (1) 1 with the following 
representation, 

I/J j = (6jjU~(xj) + ( U7(v)G~(XUX2"" ,xn;y)dy). (2) 
j 

Our aim (as it was in the one coordinate case4
) in' this 

paper and in the following5 is to obtain, from algebraic 
methods, integral equations (IE) for the transforms 
G{ such that we can generate both a class of solution 
I/J j [Eq. (2)] and of potential Q of the system (1). We 
shall not try to define (as it must be for a trlle inverse 
formalism) the data on the basis of which Q could be 
reconstrncted, nor to get from these data the kernel 
of the IE. Thus we want to provide a potential frame
work for an inversionlike procedure. Let us recall that 
in the one-dimensional case, 4 this procedure is llseful 
to generate the solutions of the nlpde associated with 
linear differential systems as weH as to construct a 

class of energy dependent (or angular momentum 
dependent) potentials. 

By changing the variables, (1) can be enlarged to 
more general systems. Let us start with a system (la) 
where Ao=[Oj/J.lj(xj)(a/ox;ll, with J.lj>O, 
limx_~t(J.lj(u)rldu=+oO. Equation (2) becomes (2a) 
I/JJ=[Ojp~(Xj)+rJ.ljlG{dy) with now (JJ,(x)O/aX+iA)lfJ 
= O. However by Ja change of variables X"j = j'j(J.lj(U))-l du 
we come back to (1) with Ao=(Oj,a/axj ). 

In Sec. II, subsections A, B, and C we formally 
derive an IE corresponding to Eq. (1) when any two 
elements of Ao apply to two different coordinates, and in 
subsection F when two, three, 0 •• of these elements 
apply to the same coordinate. In subsection D we discuss 
the conditions to be satisfied by the kernel of the IE 
in order that all the formalism be correct, and in sub
section E the properties of the solutions of our IE 0 

II. INVERSIONLIKE INTEGRAL EOUATIONS 

A. Statement of the problem 

First we write down a representation of a set of 
solutions of the whole system as transforms of the 
reduced set of solutions when the "potential" is switched 
off. Secondly, we put this representation into the 
differential system and we get (boundary conditions 
appear at this stage) that these transforms must satisfy 
well defined nlpde. Thirdly, we guess an integral 
equation (IE) such that the solutions satisfy the above 
nlpde. In this way we get that the kernels of the IE 
must satisfy well-defined partial differential equations 
and also boundary conditions in order that all the 
derivations be correct. A drawback of the method is that 
we have no guarantee concerning the uniqueness of the 
IE and we shall see in the following paper5 that for (1)
(2) different IE can exist, i. e. , can lead to the same 
above set of nIp de . 

B. n I pde satisfied by G 1 (x I, •. " Xn; Y) 

We assume the following boundary conditions, 

limU~(s)G:(Xl>X2> ... ,xn;s)=O, j*iandj=i. (3) s--
Let us introduce the following Lemma: 
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Lemma: If the boundary conditions (3) are satisfied, 
then we get: 

[DoC>;) + i/(,\] [U~Cx) + r U~C; ds] 
Xi 

A' 
='-:'U~'(X.)Ci( ... ,x.) 

A. t t J t , 

(4) 

We assume that the IjJj given by (2) are solutions of (1), 

(~o + i!?J\,- Q)(J;u 4'2"" ,ljJn) = (0), 

and we define 

We assume that the conditions of the lemma are 
satisfied, and taking into account Eq. (4), the result 
Eq. (5) is written down with scalar quantities 

_q~UO(x )+J U~(y)(O~ Ci_"'q'!'Ci)dv=O 
t l i x. t t,Xi t LJ 1 m - , , 

(5) 

(_ q~ + Aj Oi) [fl(X.) + J' U~(y )(Oi Ci - ZqmCJ) dy = 0 
) A. J 1 1 Xi t J ,OXj) J m , 

, Uj.(5 /) 

It follows that if the transforms {Cn of Eq. (2) satisfy 
the nlpde, 

then the set of potentials {qJr of Eq. (1) 

. AJ A. • 

q'=-C' q'=O 
j Ai " , , 

are such that the lhs of Eq. (5) is zero. 

C. A conjecture of an inversion like integral equation 
of Eq. (1) 

(6) 

(7) 

Let us consider the following integral equation: F: = 0 
and 

Kj(x u " . ,xn;Y) = F;C'J'Y) + ~ {F~(s ,y) 
mi-t m 

XKj(x" ... ,xn;s)ds. 

For the {Fj} and the {Kj} we assume the following 
boundary condition, 

limFj (x , Y ) = 0 , 
y~~ 

limFj(s,y)K{(X 1 ,X2 ,'" ,xn;s)=O 
J~~ 

and we require of course that the solution of Eq. (8) 
exists. 

(8) 

(9) 

Property: If we assume that each kernel F; satisfies 
both the b01mdary condition Eq. (9) and the partial 
differential equation 

0;x/1 = (Do(X j ) + ~: Do(y ))Fj(Xj,y) = 0, (10) 
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then the solution of Eq. (8) satisfies the nlpde [Eq. (6)] 

(6a) 

For the proof we apply Oji to both side of Eq. (8), ,x
J 

+ZfK,!,Aj Do(y)Fi ds. (11) J\ m 

Using the relation (10), the rhs of Eq, (11) can be 
written 

and comparing with the solution of Eq, (8), the result 
(6 /) follows. Let us define K(x u '" ,xn;y) 
= (Kj(x1 ,.,. ,xn;y)) and 

](xu '" ,xn;y) = (Fj(xj,y)), 

](s,y)=(F](s,y) 8(s-x
j
)). (12) 

then Eq. (8) can be written in matrix form 

K(xu '"' ,xn;Y) =] (XU" . ,xn;y) + f:J(s ,y) 

xK(x 1 , ••• ,xn;s)ds, 

where in the jth column of] only the xJ coordinate 
appears. 

(8a) 

In conclusion, if the kernel] satisfies both Eqs. 
(9) and (10), if we substitute the solution K of Eq. (8) 
into the representation (2), K; =cj, and further if the 
condition (3) is satisfied, then Eq. (2) are solutions 
of our starting partial differential system (1) and 
consequently Eq. (8) will be an associated IE. 

D. Conditions on the kernel 

The discussion is the same as in the one-dimensional 
case,4 the conditions being at infinity in both cases, 
We must verify (9) and that the solution of the IE [Eq. 
(8)] exists. 

AiAJ < 0: We can have square integrable scalar kernels 
with a continuum as well as a discrete part, 

F; (xj ' y) = Jdvja;(v;) exp[iv;(Ar'j - AjY)], (13a) 

or 

F;(Xj ,V) =Z a],m exp[ - v;,m(xj - AiA/V)], Vi "> 0 
j,m • 

m (13b) 

AiAj> 0: For Simplicity we consider discrete kernels: 
They are not square integrable, 

F;(x"y)=Zaj,mexpv;,m(Xj-AiA;lv), vj,m>O. (14) 
m 

Whereas in (13b), F;(x, ,y) - 0 either when Xj - 00 or 
y - 00, on the contrary in (14), Fj (x j' y) - y~_ 0 and they 
behaved badly when x J - 00: Fj(xj ,y) - 00, Xj - 00. 

Let us call] +O~) the set of (Fj) kernels with Aik) > 0 
(kiAj < 0). With]~ are associated square integrable 
scalar kernels F;(xJ,y), whereas with]+ are associated 
badly behaving kernels as in Eq. (14). 

If we assume that the kernels are discrete and 
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degenerate of the most simple form F}(x"y)=g;(x,)hj(Y) 
given by (15b) and (14), then from simple examples4 we 
learn for ]+ that we cannot have both F; a~d F{, 
F;F1.F~ all present, and more generally 
Fi.lF~2 •.. F!n-lF!n all present. 

~2 '3 'In" 1 

We rewrite the IE, Eqo (8a) in the form 

/«(X U ' •• ,xn;y) =~/(n(x U X2, .•. ,xn;Y), /(0 =], 

/(1 = f::] (s ,y)] (x 1, •.. ,xn;s) ds, 

(/(i)~ = L~ (0 Fi(s ,y )F~(x, ,s )e(s -x,))ds. 
I 

(15) 

(16) 

When s - 00 we must require that all these terms be 
integrable 

(17) 

sufficiently quickly in order that the integral exists and 
we must check the compatibility of these conditions 0 

In this way, we again find the above rules for F; E]+. 
Let us consider 

1.:J (s, v)] (w, s) ds 

= r~(0Fl(s,y)F~(w,s)8(s -x, )9(w -x.))ds (18) 
-~ l J 1 

for v and w fixed. We remark that for degenerate 
kernels, as those considered in this section, the 
integrability conditions (13b) and (14) when s - "" are 
both the same in Eq. (16) and Eq. (18). /(n can be written 

/(n= j](lluY)](U2,u 1 )du I '" J](Ui+Uui ) 

XJ(lli+2,lli+I)du i+I '" jdu,) (un'un- I )] (xu '" ,xn;un). 

We see that the same integrability condition Eq. (17) or 
Eq. (18) is repeated in the general case and so we have 
no new condition in order that /(n exists. We remark 
that our choice of the y dependence of the ke~nels F; 
in Eq. (13b) and Eq. (14) is sItch that lim~_.J(s,y)==O, 
further:y appears in /(n(X U '" ,xn;y) only from the first 
matrix ](lll'Y)' It follows that /(n(XU ""] ,x";y) - 0 
when y - O. Similarly the behavior of] (!>..J y )/(n(:::l, 
x2, ••. ,Xn;S) when s is large is given by ](S,Y)](lll'S) 
and so goes to zero when S - "". 

E. Properties of the solutions of the IE Eq. (8) 

1. We shall see that the potentials K; and the solutions 
K~ satisfy besides the nlpde (6a) [necessary in order that 

J • 

Eq. (8) be an IE] other nlpde. For any kf- j, DO(xk)F;(x
i

, 

y)==DO(xk)F;(s,y)==O and consequently from Eq. (8) we 
get: 

(19) 

(l Ki==_KiKAk k-+' 2 Cl:¥,; J k i' r), n?- , 
(20) 

a A. A. Ak 
-:;-Kj = - KZKJ , k,* if- j '* k, n?- 3. 
uXk 

2. Due to [Do(u) + (iI./;\)Do(v)]F;(u,v) =0, then F;(u,v) 
= F; (\U - iI..v). We shall see that consequently the 
potentials it; constr11cted from Eq. (8) depend on only 
n - 1 independent variables. Equation (8) can be written 
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Kj(x l , ..• ,xn;y)=Fj(iI.,xi - AiY) 

+ 01~ Fj(iI.,s - il.iy)K~(Xl>' .• ,xn;s )ds. 
I "I J 

(21) 

Let us define Kj(z) =K;(xI , • .• ,xn; Y =xi + z), Xii = ">t,xJ 
- ">tiX i • We have Xi i + Xi} = 0, Xii + X'k + Xkj = O. Equation 
(8) can be rewritten 

Xj(z) = F;(X,i - il.iz) + Z;J; F!(x ii + A,U - ~iz)K;(u) duo 
(22) 

Then K; (z) depends on z, {x ij} whereas K; (z == 0) = R; 
depend on the set {Xi,}, i=1, ... ,n, j=1, ... ,n, 
if- j. Only (n - 1) independent Xii exist. Take for instance 
the set X I2 ' X I3 , ••• 'X ln ' t~en for any other (i,j) Xi} 
= X I} - X Ii' C onseqllently K; depends at most on (n - 1) 
variables. For n == 2 we have only the variable X12 ; 

for n = 3, two variables X12 ' x 13; and so on. 

F. Inversion equations in some particular less than 
n coordinate case 

Let us assume in (1) that the first q coordinates are 
different, X 1 f-X 2 f- ···f-x. while the (n-q) remaining ones 
are equal, x. =xq +I = ... =xn' 

[AO(X U X 2 , ••• ,x.,x., ... ,x.) +ikA - QJ i/!=O. (1') 

The elements of the diagonal Ao matrix are Do(X 1), 
D O(x2), •.• ,Do(x.), Do(x.), •. • ,Do(x.) whereas A is the 
same eigenvalue matrix as in (1). 

Let us consider the representation 

i/!, = (l,ji.P~(X,) + f.;UJ(Y)C{(X U X2"" ,x.,x., .•. ,x.;y)dy) 

(2') 

with Xj = x. for j?- q. For j to; q, the definition of i/!J is 
the same as in Eq. (2) whereas for j > q, the i/!} have 
their integration path starting at x.' 

We assume the boundary condition Eq. (3) with 
x, = x. for j > q and call it condition (3'). The first 
important difference in the formalism (apart from 
the trivial change x,=x. for j>q) appears in the second 
relation of the lemma (Eq. 4) when both i > q, j > q, 
if-q [(iI./hi -1)U~C; instead on ">t/il.iqC;J. If we require 
that the representation (2') is a solution of (1 I), if we 
assume (3'), and apply (4'), then we get an Eq. (5'), 
like Eq. (5) with two changes: 

(i) A trivial one where Xi for j > q must be replaced by 

x.' 

(ii) A nontrivial one due to the supplementary term in 
Eqo (4') for both i ?- q, j ?- q, if- j. This leads in the lhs 
of Eq. (5) to a supplementary term, - q(x.)G;. 
From Eq. (5'), it follows that if 

(6') 

then 
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ql=o, q{=\Ai(A)"lG{, eitherj<q or i<q, 

~ (~; - 1 ) G{, i ~ q andj ~ q. 
(7') 

Let us consider Eq. (8) when xJ = x. for j ~ q, Fi = 0, 

K; (x" ... , x. ' ... ,x.; Y ) 

= F;(x j ,y) + 6.J~ F~(s,y )K;'(x l' ••. , x ;s) ds. (8') 
mil Xm q 

Let us assume both the boundary conditions (9) with 
Xi=X. for i>q [and call it (9')] and the partial differen
tial equations 

(Do(Xi)+~; Do(Y))F{(X;,y)=o, Xi=X. for i~q; (10') 

then we show that the set {K}, Ki}, solutions of Eq. (8') 
satisfies the nlpde [Eq. (6')J. j 

(6'a) 

For the proof we apply OL to both sides of Eq. (8') and 
we get that j 

Oi Ki _ 6fFi om K'!' 
jX

J 
j m m j Xj J 

equals 

6 N Fi Km ifj < q, 
mt-j Am m J 

q-l n 

6 Aj Fi K':' + 6 Fi (1 _~) Km if j 2 q. 
m,l Am m J ;;:;1 n Am J 

Comparing with the IE (8'), the result (6'a) follows. 

The sufficient conditions on Fj in order that all the 
derivations be correct are the same in both formalisms 
Eqs. (1)-(8) or Eqs. (1')-(8'). For the properties of 
the solutions of the IE Eq. (8') we get that the potentials 
Kj depend on (q -!) independent variables (X I2 ,XI3 , ... , 
Xl.)' and the K;, K} have to satisfy nlpde Eq. (20') 
[like Eq. (20) with Xl =X. for l ~ q]. 

III. CONCLUSION 

In our algebraic method, the derivation of the IE 
associated with a linear differential (or partial differ
ential) system is done in two successive steps. First 
we get the nlpde that the transforms of the solutions of 
the system must satisfy. Secondly we seek an IE such 
that the solutions satisfy these nlpde. However, the 
IE exhibited here are such that their kernels 
F; (s ,y )e(s - x j ) are almost independent of the coordin-
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ates, whereas the free terms Fj(xJ,y) depend on only 
one coordinate. Further they satisfy lpde such that they 
depend in fact on only one variable. We find that the 
reconstructed potentials satisfy extra nlpde Eq. (20) 
and we show explicitly that they depend in fact on only 
n - 1 variables (linked to the n coordinates). Moreover 
the degenerated kernels are of the pure exponential 
type and so the values of the corresponding potentials 
cannot be confined in the more than one coordinate 
space. These results suggest that the potentials 
reconstructed from the present IE Eq. (8) represent 
a subclass of the whole class of potentials associated 
with the system (1). 

In the following paper5 the kernels F; will depend on 
all the coordinates, satisfy lpde different of Eq. (10), 
and we shall show that there exists a generalization of 
the present IE [the solutions still satisfying the nlpde 
Eq. (6a)] differing only if the number of different 
coordinates is higher than one. This means that in the 
multidimensional inversion formalism entirely new 
features not present in the one-dimensional case appear. 
For instance,5 the kernels of this other IE are not 
necessarily of the pure exponential type; there exist 
potentials confined in a two-dimensional space which 
do not satisfy extra nlpde. 

In conclusion the structure of the multidimensional 
inversion formalism appears very rich and complex and 
this paper is a first investigation in order to explore 
it. 

In their first theory Zakharov and Shabat2 considered 
an IE corresponding to one coordinate and introduced 
the other as parameters. Although it is not at first sight 
obvious that this is identical to the determination of 
the IE associated to a linear partial differential system, 
we think that their formalism and the one presented here 
and in Ref. 5 must have some analogy. (This point will 
be discussed elsewhere). 

lFor a review paper see, for instance, A. C. Scott et al., 
I.E.E.E. 61,1443 (1973). 

2V. E. Zakharov and A. B. Sh ab at, Func. Ana!. App!. 8, 226 
(1974). Note added: After the completion of this work we have 
become aware that these authors have obtained new results 
in the two-dimensional case: S. P. Novikov, talk at the 
"International Conference on the Mathematical Problems in 
Theoretical Physics" (Rome, June 1977). 

3M.J. Ablowitz and R. Haberman, P.R. L. 35, 1185 (1975). 
4H. Cornille, J. Math. Phys. 17, 2143 (1976); 18, 1855 
(1977); Rockefeller Preprint COO-2232B-124 (to be published 
in J. Math. Phys.). 

5H. Cornille: "Confined solutions of multidimensional inver
sion equations," (to be published in J. Phys. A). 
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Asymptotic steady-state solution in the functional random
walk model 

I. Hosokawa 

Department of Mechanical Engineering. Iwate University. Morioka 020. Japan 
(Received 22 November 1977) 

The maximum-entropy (equilibrium) state of the functional random-walk model of a closed many-particle 
system is known. but there has been no direct proof that this state represents the steady solution of the 
basic functional equation in the model. Here. a direct proof of it is given for the asymptotic case where 
the average particle-number density is extremely large. 

1. INTRODUCTION 

In the previous works, 1-3 the dynamics of the func
tional random-walk model was established so as to 
simulate closely the Liouville dynamics for a classical 
many-particle system in the sense of a kind of coarse 
graining, The model develops in an irreversible way 
from any initial state towards the maximum-entropy 
state, which corresponds to the equilibrium state in 
statistical mechanics, 

In the functional random-walk model, we deal with, 
rather than 6N-dimensional phase points, the stochastic 
particle-number density field in the one-body phase 
space, The equation for the probability density functional 
of the field is written in the Fokker-Planck or 
Kolmogorov form, which guarantees the irreversible 
development of the system only if there exists any 
interaction between particles, This equation has the 
same content as the functional equation of Bogoliubov4 

and the author, 5 which is equivalent to the Liouville 
dynamics in the thermodynamic limit, except for the 
one essentIal modification leading to the irreversibility; 
various phYSical discussions were made on the coarse
graining nature of this modification, which was intro
duced rather from a mathematical motivation, 1-3 The 
basic Fokker- Planck or Kolmogorov functional 
equation in our model dynamics is explained in the 
next section, 

The maximum-entropy state of the probability density 
functional was easy to obtain in our model dynamics, 2,3 

and it was deduced at this state that the most probable 
form of the stochastic particle -number density field 
is canonical. However, as for the question whether 
it represents a steady solution of the basic function-
al equation, we have no direct answer beyond a 
pretty reasonable, but indirect supporting argument. 
It is because the basic functional equation contains a 
complicated operator with the modification described 
above. In this paper, we formally give the direct 
answer to this problem for the asymptotic case where 
the average particle-number density n is exceedingly 
greater than unity. Of course, n depends on the physical 
scale of length, Then, our asymptotic state may always 
be realized by taking a big scale of length, Therefore, 
the present direct proof of the asymptotic steady-state 
solution will remain effective on most of many-particle 
systems; until another direct proof for an arbitrary n 
appears in the future, 

2. BASIC DYNAMICS OF THE FUNCTIONAL 
RANDOM-WALK MODEL 

The basic Fokker-Planck or Kolmogorov equation 
may be written as 

opO[B] =-1 _15_ {Qz(x)po[B]}dx 
at x DZ(X) 

+ } Ix Ix I5Z(X~;Z(X') {D(z;x, x'),oo[B]}dxdx', 

(2.1) 

which governs the probability density functional ,0 of 
the particle-number density field nz(x) in the one-bOdy 
phase space (XE)X. Here, t is the time variable, 
o/Oz(x) the functional derivative with respect to z at 
x, Q the nonlinear Vlasov operator defined as 

Qz(X) = [H1 (x); z(x)] +njx [rfJ(q - q'); z(x)z(x')Jdx' (2.2) 

in which H1 (x) is the one-body Hamiltonian, [; ] the 
Poisson bracket, and rfJ (q) the interaction potential 
between particles, q being the displacement vector, 
and 

D(z; x, x') = P [rfJ(q - q'); z(x)z(x')] (203) 

where P is the operator which makes the subsequent 
symmetric function positive definite (see Ref. 1). 
orB] associated with p indicates that the probability 
density 1'>(z) in the function space A of z is meaningful 
only inside its subspace B; in other wordS, O[B]oz is 
the measure in A which vanishes outside B but is the 
Riemannian measure inside Bo This measure forces 
the normal component of all z(x) to the space B to be 
trivial or vanishing in (2,1). The space B is defined 
by the following conditions: 

lim j z(x)dx/ V = 1 
V~.o x 

and 

lim{j nH1 (x)z(x)dx 
y ... .o x 

+ J J in2 rfJ{ I q - q' I )z(x)z(x')dxdx'}/ V = const, (2.5) 
x x 

where V is the volume containing the whole system. 
The former equation prescribes the normalization 
of z and the latter the average energy of the system 
in question, As (20 5) is nonlinear, B is Riemannian 
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in A. Furthermore, the condition z(x) ~ 0 is necessary 
for the physical meaning of z to hold. 

The expression of the p equation associated with 
OrB] was first presented in Ref. 3. This expression 
is valid, against the original one in Refs. 1 and 2, in 
the case when z(x) is considered as a Euclidean vector 
in Ao We assumed in these works that z(x) could repre
sent a set of Riemannian coordinates in B, but this is 
unjustifiable. Therefore, the present form of the 
equation was adopted. [The Fokker-Planck or 
Kolmogorov equation in the Riemannian space is usually 
well treated in the frame of curvilinear coordinates. 
But there is some advantage for physical understanding 
in dealing with the present form equation, however 
curious it seems to be at first glance.] However, all 
the results in Refs. 1 and 2 will remain essentially 
valid, if we proceed with the present equation. Only 
a formal change is necessary in the process, such as 
replacing p by po [B]; accordingly we have the equilibrium 
measure p~o [B]oz in A in place of p~oz (assumedly in 
BL Px represents the maximum-entropy state, which 
is explicitly given as 

poo =A~ exp(- nJxzlogzdx), (2.6) 

where A~ is the constant to be determined by the time
invariant normalization condition: 

(2.7) 

It may cause some question in mathematics to deal with 
a probability density in infinite dimensions in the 
above-described formal way 0 In order to evade this 
difficulty, it is reasonable to understand the whole 
formalism in a finite-dimensional approach to z(x) 
(the cylinder-functional approachl) and to take a limit 
in the final formulas, assuming the convergence. 

Finally, it is notable that the Liouville dynamics in 
the thermodynamic limit is completely recovered if 
we take away the P operator from the D factor as 
well as the factor 0 [B] from the whole equation (2.1).1 
The resulting equation is nothing but the functional 
Fourier transform of the Bogoliubov-Hosokawa equa
tion4

,5 for the generating or state functional, which is 
equivalent to the so-called BBGKY hierarchy. The 
irreversibility in question as well as the physical 
interpretation of p as the probability density of the 
particle-number density field came into play only 
with the modification by P. 1-3 

3. THE ROLE OF THE OPERATOR P 

A general solution for p(z, f)o[B] may be given in 
terms of the functional Green kernel G. That is, 

p(z, t)6[B]=J G(z, tlz', O)p(z', O)o[B]oz'; (3.1) 
A 

L-l 
X n ozk, 

k=1 
(3.2) 

where z = ZL, Z' = zo, t:>.t = (t - t')1 L, and the super
scripts indicate the order of time subintervals. The 
infinitesimal Green kernel P I>t is explicitly obtained 
from (2.1) as 
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(303) 

where O[B]k denotes orB] for Zk and yk(x)E:A. Obviously, 
Pl>t(zk+l/zk) is Gaussian for Zk+l in B, whose parameters 
depend on Zk. Hence, it may be said that (302) with (3.3) 
provides a generalized kind of the Wiener measure, G 
involves the probability of all possible paths of z(x) 
which start from z' at t' and reach z at t in the discre
tized form; this may be called the path sum according 
to Dekker.6 

In fact, functional integration in (3.3) is performed 
to yield the explicit Gaussian form in Zk+l, as follows. 
Since D is a symmetric kernel, there must be the one 
orthogonal transformation in A, which makes diagonal 
the quadratic form in yk in the exponent in (3.3) for a 
definite Zk. After this transformation, we have the new 
function yk* =TTyk in place of yk and the new eigenvalue 
function D*(Zk;X)O(X-x') of D(Zk;X, x'). Here, T is the 
functional version of the transformation matrix. Using 
a scalar-product expression,7 we may write 

JX,\/'(Zk - Zk+l + t:>.tQzk)dx = (T1/*, Zk _ Zk+l + t:>.tQZk) 

= (vh , tT(Zk _ Zk+l + t:>.tQZk», 

(3.4) 

J. J vk(x)D(Zk. x x')yk(x')dxdx' x x~ , , 

= (Tvk*, DTyh) = (yk*, t T DTyk*) 

=(vk*, (D*O)yh) = J
X

(yk*)2D*(Zk;X)dx c 

Thus, we have 

PM (Zk+l I Zk) 

= J
A 

exp{iJ>k*[tT(zk - Zk+l +t:>.tQzk)]dx 

- ~t:>.t J)yk*)2 D*(Zk; X)dx}oyk*O [Brl 

(3.5) 

=exp {-fiJ dx[IT(Zk - Z"1 + t:>.tQzk)YI [t:>.tD* (Zk;X) ]} 
x 

x n[MD*(zk;x
j
)]-1/2o[Bjk+l, (3.6) 

J 

noting that oy = Udy(x j)(t:>.x /271)1/2, by definition, 5 and 
D*? O. When D*J(Zk; x) =0, the exponential factor acts 
as a delta function only for that x and Zk. 

It is important to note here that 

tT[</>( I q - q' I); z(x)z(x')]T = D*o + N*o 

by definition,2 where N*o is the negative definite part 
of the eigenvalue function of [</>; zz]. The P operator 
causes to neglect N*o, so that we have 

D*o = U(tT[</>; zz]TWT[</>; zZ]T, 

where Ural is the step function such that it is unity for 
a ~ 0, and vanishes for a < O. Since UO as well as 
tTl</>; zZ]T are diagonal and then commute with each 
other, we may write 

Hence 
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(3.10) 

This may be rewritten as 

D(z; x, x') = ixu(z; x, x")[ CPt I q" - q' I); z(x")z (x') ]dx" 0 

(3,11) 

Obviously. the function u is a functional of Z and also 
symmetric with respect to interchange of the arguments, 

Furthermore, we give some comments on the quality 
of T and 1/0 We have, by virtue of orthogonality, 

o=T1T, 6(x-x')=j T(x, xn)T(x', x")dx", (3.12) 
x 

which is equal to 
O(x' - x) = Jx T(- x, x" )T(- x' , x")dx" 0 (3.13) 

As a result, we have 

T(x, X")=± T(-x, x"); (3.14) 

in other words, T as a function of the first argument 
x should be either even or odd, depending on the 
second argument x" as a parameter. Since x is a 
six-dimensional vector", (qu q2' q3' Pu P2' Ps) 
where P'" (PH P2' P3) denotes the momentum vector of 
a particle, the above-described parity of the function 
T holds for each component of x independently. 
Remember 

3 

O(x - x') '" i~16(qi - q;)6 (Pi - p;). (3.15) 

Then, 11 may be expressed as 

u(z;x, x')=JxJxT(X, x")U(z;x")6(x"-x''')T(x', x"')dx"dx:'" 

= j xT(x, x")T(x', x" )U(z; x" )dx", (3.16) 

where fj is identical with U but re-expressed as a 
function in X. This shows that, by virtue of the parity 
of T, u can be divided into the two parts of the 
integral, the one of which is even in x" (any component 
of x) and the othe r odd in x". As is evident from the 
form of (3,16), the part even in x" should be at the 
same time even in x~, while the part odd in x" be 
also odd in x~. We will call these parts of the integral 
(3.16) the x,,-even 11 part and the x,,-odd u part, 
respectively. 

4. PROOF OF THE ASYMPTOTIC STEADY SOLUTION 

First, we note that p~ in (2,6) has the saddle point 
in B, which is determined by 

6 [- n J>logzdx) = 0 

under the conditions (2 0 4) and (2,5)0 That is, 2 

ZB(X) =exp{- A - {3 (HI (x) + n} 4>( 1 q - q' I )ZB(x')dx']}, 
x 

(4.2) 

A and (3 being the constants to be determined by those 
two conditions, It is easily known that ZB ,satisfies 

(403) 

p~6 [B] can be expressed, as follows, in the neighbor
hood of this saddle point; 

P~O[B)=A~exp[-nJZBlOgZBdx--2nJ ~ (z-zB)2dxl 
x x ZB J 

x IS [B], (404) 
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Here, if n is extremely large, the probability measure 
p~o[B)6z tends to vanish for all z, except for Z=ZB 

where it tends to be concentrated to be unity, 

With this fact in mind, let us inSert p." into (2,1) 
for (50 Then, the first term in the right-hand side is 

=0 (4,5) 

on account of (4, 3L The second term is 

With the aid of (3,11) and (402), the right-hand side 
of (4,6) becomes 

~J'JJ (. ,,)°4>(1" '1){3(OH1 OH1) (") (') 
2 x X xU ZB'X, x aq" q - q ap' - ap" ZB x ZB X 

x{n2 [logzB (x) + 1 ][logzB (x') + 1) 

- ZB(X) 6(x - X')}dXdx' dx"p~O [B], 

In the integral with the first term in the curly bracket, 
the part with aH/cp' vanishes because aH/ap' is odd 
in the momentum space while the other factors relevant 
to p' are all even in it, as is seen in (4 0 2). Next, 
consider the part with aH/ap" 0 Since aH/ap" is odd 
in the momentum space, only the P"-odd u part of 
(3.16) contributes to the integral. But it is necessarily 
odd in p, as was noted upon (3.16). Therefore, the part 
vanishes with the integral with respect to p, because 
the remaining factor is even in p. Thus, we are left 
with the integral with the second term in the curly 
bracket that is rewritten as 

X (2Hl OHI) (")dxdx"~ "[B] ap-ap" zBx p~v 

in which both parts with oH/ap and oH/ap" must 
vanish for the same reason as described above in the 
last argument on the part with aH/ap·.8 In consequence, 
the whole term of (4,6), and then all the terms in the 
right-hand side of (2,1), should vanish for p6[B]=p~6[B] 
for the asymptotic case, n - 00. 

This concludes the proof, It is apparent that the 
asymptotic steady solution p~o[B] is unique and stable, 
from the argument that the entropy defined on the 
basis of p6[B] should continue to increase until ,6~6[B) 
is reached,2 
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sIn the above argument, it was assumed that the kinetic ener
gy part of Ifl does not include any electromagnetic vector po
tential. However, even with it the same argument can apply 
if we know that (:3.15) equals 

3 
o(x -x') '" n o(qi - qj)o{[Pi - eAf(q)/ cJ - [pi - eAf(q')/cl}. so 

i=1 
that the parity of T holds for the new translated vector 
=' (qj. q2' q3.Pl- £,AVc.P2 - eAq/c.P3 - eA~/c). Here, e is the 
electronic charge, c the light speed, Ae the electromagnetic 
vector potential. 
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Lorentz subgroup analysis of the Lie algebra of Sp{8,R) 
and a null-plane, boson realization 

L. P. Staunton 

Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 
(Received 16 January 1978) 

An algorithm is given for the construction of the Lie algebra of Sp(2N, R), integral N::: 3, in the form in 
which the tensor character of the generators under the action of a Lorentz subgroup is apparent. A 
specific realization of the algebra of Sp(8, R) in terms of four boson operators is presented, along with the 
tensor form of the complete algebra classified under the (unique) full null-plane Lorentz subalgebra. The 
identities obtaining for the specific boson operator realization employed for Sp(8, R) are listed, use of 
which permits subsidiary conditions for four boson constrained systems to be expressed in terms of 
Lorentz invariants. 

1. INTRODUCTION 

It is well known! that the Lie algebra of Sp(2n,R) may 
be given a concrete, self-adjoint realization in terms 
of the n(2n + 1) bosonic operators consisting of all inde
pendent bi-linear combinations of n variables qJ' and 
their canonical conjugates 1); '" - i a/oqj' j = 1,2, , , 0 , n. 
As is the case with any Lie algebra, different linear 
combinations of the generators may be selected so as 
to present the algebra in some standard, convenient 
form, e,g" the Cartan form, which is useful for gen
eral classification purposes, construction of Dynkin 
diagrams, etc, 

For the purpose of certain physical applications, 
however, the most convenient form of a Lie algebra is 
one in which the generators are arranged into com
binations which transform as tensors under a particular 
Lorentz subgroup. In the case of the orthogonal groups, 
the general technique for effecting an arrangement of the 
generators into such a tensor form is simple and well 
known. Unfortunately, due to the higher level of com
plexity of their root diagrams,! no general technique 
of equal simplicity has been given for large symplectic 
groups, and those Lorentz classifications which have 
been reported are not systematic, 2 

In this communication, the results for the Lie algebra 
LSp(8, R) are presented in detail, along with an induc
tive algorithm applicable to L Sp(2N, R), for integral 
N>3. 

In the simpler cases, N = 1 and N = 2, the Lie alge
bras obtained are isomorphic to those of SU(1, 1) and 
SO(3, 2), respectively. The latter isomorphism with an 
orthogonal group is particularly convenient: the 10 
generators of Sp(4,R) can be immediately classified 
into a vector and a second rank tensor under a Lorentz 
subgroup, and a realization of these generators in 
terms of bilinears in q" Y}J (i,j = 1,2) which yields the 
Majorana representation3 of the Lorentz group has 
been given by Dirac. 2 No convenient isomorphisms 
obtain! for lv'~ 3. 

Historically, however, there has been no compelling 
reason to inquire for the Lorentz tensor character of 
the generators of higher order symplectic groups, nor 
to seek concrete bosonic realizations of the generators. 
The advent of the dual resonance model, 4 and more 

particularly, the emergence of the model known as the 
Nambu string, 5 however, have recently focused atten
tion upon physical systems whose algebraic structure 
is composed of bilinear boson operators. The Lorentz 
classification of such operators has therefore become 
a problem of immediate interest, and constitutes the 
motivation for this work. 

The 1973 effort at quantization of the Nambu string 
model by Goddard, Goldstone, Rebbi, and Thorn, 6 

who employed an analysis in terms of null-plane boson 
operators, yielded the unphysical result that the postu
lated generators of the Poincare group achieved the 
required algebraic closure only in 26 space-time di
mensions. Subequently, Marnelius 7 developed a mani
festly Lorentz convariant analysis of the string in terms 
of the classical Dirac-bracket procedure for con
strained Hamiltonian systems, and concluded that dif
ficulties with the generators of translations were ap
parent, even at the classical leveL Further, he found 
that no covariant, bosonic-normal mode degree of 
freedom could be canonical, and that, as a consequence, 
ordering problems at the level of first quantization 
would be doubly severe in a covariant formalism (as 
opposed to a null-plane formalism). 

In a parallel line of development, a spin-~ positive
energy relativistic wave equation was presented8 whose 
structure was based upon operators comprising the two 
boson realization of Sp(4,R) "'SO(3,2). It was shown9 

that this model described, at the classical (non
quantum) limit level, a relativistic extended system 
composed of two permanently bound null-plane con
stituents10 which orbit one another at the velOCity of 
light, i. e., the classical Nambu string model restricted 
to excitation of only the lowest covariant normal 
mode, 

Consequently, the covariant operator commutation 
relations following from the Heisenberg picture analysis 
of this model were obtained. 11 The results, which 
described a 4-space quantized Nambu string containing 
only first normal mode operators, were concluded 
to comprise the nucleus of the complete quantized string 
relations obtaining in 4 dimensions. 12 

The results presented here are the necessary math
ematical basis for an extension of the Sp(4,R) wave 
equation model to a system containing several covariant 
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normal modes, i. e., a system containing bilinears 
in the null-plane operators qi' T)j' for i, j=I,2,3,4. 
Further communications will discuss wave equations 
and Heisenberg models constructed from these op
erators. In particular, the question of the proper form 
of commutation relations between operators describing 
covariant string normal modes of different order is 
now under investigation. 

In Sec. 2, a general result due to Brownel3 is adapted 
to form part of an algorithm for sequential classifica
tion of the generators of L Sp(2N, R). In Sec. 3, the 
particular results obtained for Sp(8, R) are detailed, 
and in Sec. 4, the special operator identities which ob
tain for the realization of L Sp(8, R) in terms of boson 
operators are cataloged. 

2. AN ALGORITHM BASED UPON A REAL 
CLIFFORD ALGEBRA 

Consider the following set of real 4 x 4 matrices 
realizing a five-dimensional (Dirac-type) Clifford alge
bra with metric (-1,1, -1,1,1): 

(2.1) 

As is well known, a complete, linearly independent set 
of 16 (real) 4X4 matrices may be simply obtained from 
thos e above, Let this set be partitioned into the set 
{S} of 10 symmetric matrices, and the set {A} of 6 
antisymmetric matrices. Then 

(2.2) 

and with these particular choices, simple closure of 
both commutation and anticommutation relations be
tween any two matrices is immediate. 

Let i, .i = 1,2, , , , , 10 number the elements of {S}, and 
Ie, 1=1,2, .• 0 , 6 number those of {A}, and define real 

8 x 8 matrices as fOllOl;S, oiJn an obvious notation: 

r i (S, even, +) = I , 

o 5i 

(2.3) 

__ [ 0 AkJ r,,(A, odd, ) - ° 

-Ak 0 

Clearly, the sets of matrices r exhibited above con-
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stitute a choice and partition of the linearly independent 
elements M A' A = 1, ° •• 36 of the set of all 8 x 8 matrices 
{M} of the form 

:Vl=[S ~J, 
ZT S 

where Sand S are any two 4 x 4 real symmetric matri
ces, and Z is any 4 x 4 real matrix (ZT;;; transpose of 
Z) 0 The convenience of this particular partition will 
become clear below. 

Let the 8 x 8 matrix i3 be defined as 

(2,5) 

from w hic h the properties {3 T = - {3, {32 = - I follow, and 
cpnsider the set of all linearly independent matrices 
JI A' A = 1,2, ... ,36 obtained from those of the set 
{lVIA } via 

(2,6) 

Now the complete set of all such 8 x 8 matrices has 
the general form 

[

ZT 5 ] 
iVl= . 

-s -z 
(2,7) 

It follows, then, from their form t2. 7) alone, 1 that the 
36 linearly independent matrices MA constitute a de
fining 8 x 8 matrix realization of the Lie algebra of 
Sp(8,R). 

Consider next the set of 4 real variables {Ql,Q2,q3,qJ 
and their canonical operator conjugates {1/p T)2' T)3' T)4} 
(T) -= - ia/ aq). Define the column matrix 

and denote the entries Q a' a = 1 , 2, ° ° , ,8. The result 

[Qa,Q b l=i{3ab' a,b=I,2,o.o,8, 

where {:Jab are the elements of the matrix {3 of (2.5) 
follows immediately 0 

Now the result of Brownel3 states, in this notation, 
that if there exists a set of matrices {if A} with the 
property 

(2,10) 

which satisfy any Lie algebra, then the quantities 

GA =tQTMAQ, all A, (2,11) 

(where the M A are obtained from the if A via (2. ~)] sat
isfy the same Lie algebra, Since the matrices M A ex
hibited above satisfy (2010) and the Lie algebra of 
Sp(8,R), and since the matrices M A , and in particular 
the partitioned sets {r} of (2.3), are obtained via (206), 
it follows that the 36 operators G defined, generically, 
as 

form a bosonic representation of the Lie algebra 
LSp(8,R). 
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The particular form of the generators G defined via 
the algorithm (2.2), (2,3) is singularly convenient since, 
in this case, the commutator of any two operators G is 
equal to the factor ± i times another single G operator. 
In this form, the Lorentz tensor character of the 
operators may be immediately identified. Let the 
symbol - denote equality up to sign and the numerical 
jactors oj;} appearinr; in (2.12), and let the operators 
G be denoted below by their particular r content. One 
then obtains, 14 for example, in a self-explanatory 
notation: 

[ 

0 [Si'S,]] 

[ri(S, even, +), r,(S ,even,+)]- - lSi ,5,1 0 

rri(s,even,+),rj(s,even;-n-[ 0 {SpSjr] (2.13) 
{SpSj} 0 

'" r({si ,Sj}' odd, +). 

(The full compelement of relations is exhibited in Table 
1.) The convenience oj the result depends, then, upon 
the simple closure oj hoth commutation and anticol11-
mutation relations oj the sets oj 4x4 matrices (2.2). 

The 36 operators G and their Lie algebra, LSp(8,R), 
classified according to their tensor character under a 
null-plane Lorentz subgroup will be exhibited in the 
following section. Here we continue with brief remarks 
concerning the extension of the algorithm to L Sp(2N , R), 
for integral N> 3. 

To the set of 36 matrices r may be appended a second 
set of 28 matrices r of the form 

A k 

[

A 
r,,(A, even, +) = 0 

A [Ak rk(A,even,-)= 0 

~I~,odd,-)= ' , [
OS.] 

-5. 0 , 

TABLE I. Format of commutation relation results between 
members of the partitioned sets of generators G, denoted 
here by their r matrix content. 

r/ (S, even, +), 
ri(S' even, +), 
Ti(S, even, +), 
ri(S, even, +), 
ri(S, even, -), 
ri(S, even, -), 
ri(S, even, -), 
ri(S, odd, +), 
ri(S,odd,+), 
rk(A, odd, -), 

rj(s, even, +) ~ r([Si' Sjl, odd,-) 
rJ(S, even, -) ~ r<{Si, Sj}, odd, +) 
rj(S, odd, +) ~ r({Si' Sj}, even,-) 
rk(A, odd, -) - r((Si,Akl,even,+) 
rj(S, even, -) - r([si' S;l, odd, -) , 
rj(S, odd, +) ~ r({si' Sj}, even, +) 
rk(A, odd, -) ~ r((Si,Akl, even,-) 
rj(S, odd, +) ~ r«Si' Sjl, odd,-) 
rk(A, odd, -) ~ r([Si,Akl, odd,+) 
rl(A, odd, -) - r ([A k' All, odd,-) 
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so that the union of the two sets constitutes a particular 
choice of form of the complete set of 64 linearly in
dependent real 8 x 8 matrices. Moreover, this complete 
set oj matrices exhibits simple closure under both 
commutation and anticommutation operations. There
fore, the 64 elements of this set may be re-partitioned 
according to their symmetry or antisymmetry and used 
in place of the sets of 4 x4 matrices {5} and {A} of Eq. 
(2,2). An exactly similar procedure to that carried out 
above for L Sp(8 ,R) may now be followed to obtain a 
bosonic representation of L Sp(16, R) in a form in which 
the Lorentz tensor character of the generators may be 
obtained by inspection. Clearly, the process can be 
continued, stepwise, to any LSp(2 N ,R), N>3. 

3. THE NULL·PLANE LORENTZ CLASSIFICATION 
OF LSP (8,R) 

In order to effect a tensor classification of the gener
ators G constructed according to (2011) from the sets of 
matrices r of (2,3), it is necessary to select one of the 
Lorentz subalgebras contained in LSp(8,R), and to 
identify the six generators involved. For our purposes, 
the simple generalization to four variables of the null
plane Lorentz subalgebra of Sp(4,R) employed by 
Dirac15 suffices. 

Let the antisymmetric tensor operator 5 "V (JJ., lJ 

= 0,1,2,3) generate the Lorentz subgroup. We identify, 
then,16 

510 =t(qI2 
- q2 2 +q/ - q42 -711

2 +71/ -7132 +7142), 

(3.1) 

531 =:l:C- q12 +q/ - q32 + q42 -171
2 +7122 -713

2 +71/). 

The designation of this particular Lorentz subalgebra 
as the null-plane algebra follows l5

•
17 from the absence 

of terms quadratic in 17 in the null-plane combinations 
S30' 512 , S10 +SI3' and 520 +S23. After lengthy inspection 
of the full set of commutation relations, the remaining 
30 self -adjoint generators may be classified into two 
antisymmetric tensors, E",v and F",v' four vectors A", 
B)J.' C" and D" and two scalars Tl and T2 • The specific 
operator forms and the associated r matrix for each 
component are given in Table II. The complete Lie 
algebra is exhibited below1B : 

[5" v' S "'8] = i(g", ",Sva - gv",S"a + gvaS /LO< - g"a5v",) ' 
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TABLE II. Specific realization of the generators of Sp(S, R) 
in terms of bosonic operators, and the associated I matrix. 

510~ 4(q1 2 - q22 + q3
2 

- q42 - 1)1 2 + 1)l- 1)32 + 1)/) f(YIY2, even,-) 
520~ ~ (- qlq2 - q3q4 + 1)11)2 + 1)31)4) f(- 1'21'3, even,-) 
530~~ (ql1)1 + q21)2 + q31)3 + q41)4 - 2il r(J, odd, +) 

5 12 ~ ~(ql1)2 - q21)1 + q31)4 - q41)3) r(YIY3, odd, -) 
523 ~ ~(- qlq2 - q3q4 - 1)11)2 - 1)3174) f(- 1'21'3, even, +) 

531 ~ !(- ql2 + q22 - q3' + q42 - 171' + 1)22 - 1732 + 1)4 2) r(-y 11'2' even, +) 

TI ~,~ (- ql1)4 + 12173" 131)2 - q41]1) 

T, ~ ~ (q l l)3 + q2174 - q3171- q41]2) 

A 0 ~ ~ (q I' + ([" + ([32 + q / + 1) 12 + liz2 + 1)32 + 1) /) 

Al ~ H- ql171 + ([21)2 - ([}13 +q4174) 

A2 ~ ~ «([11)2 + q2'71 + q3174 + q4173) 

A3 ~ !(qI2 +([22 + q32 + q42 - 1)12 - 1)l- 1)32 - 1)42) 

Bo~ ~(qlrJ'l- (hq3 - 1)1')4 + 1121)) 

B I ~ ~ (ql1)4 + rJ2113 - q31)2 - (41)1) 

B2 ~ }(ql1)3 - q21)4 - q31)1 + (41)2) 

B3 ~ ~ (qlq4 - rJ2q3 + 1)1174 - 1)21)3) 

Co~ !(qI2 + q22 - q32 - q42 + 1712 + 1722 - 1)l- 1)42) 

C1 ~ ~(- ql171 + q2172 + (31)3 - q41),I) 

C2 ~ ~(qlJ)2 + q,1)j - (31)4 - q41)3) 

C3 ~ d(rJl2 + '122 - qs2 - q4 2 -1)? -1)2 2 +1)32 +1),12) 

DO~ ~ (qlq3 + q2q4 +1)11)3 + 1)2114) 
DI = 1 (- ql'13 +q21)4 - q3 1)1 +q4'IZ) 
D2 ~ ~(ql1)4 + q2'13 + q31)2 -I- q41)1) 

D3 = ~ (qlq3 + '12'14 - ']11)3 - 1)1.1)4) 

r(- 1'2' odd, +) 
r(Y4Y" odd, -) 
f(J, even, +) 

r(- 1'11'2' odd, +) 

f(Y2 Y3, odd, +) 
r(J, even,-) 

r(Y2' even,-) 
I(YI, odd,-) 
I(ys, odd,-) 
r(y,. even, +) 

f(Y4. even, +) 
f(- 1'31'5, odd,-I-) 
I(YIY" odd, +) 
I'(Y4. even,-) 

f(Y5' even, +) 
I(Y3Y4. odd, +) 
r(-YjY4. odd.+) 
f(Y5' even.-) 

EIO~ .\(qj2 - ql- q3 2 + q,/ - 1)/ + 1]22 + 1132 -1)/) fh3Y5. even,-) 
E 2o =1(-qlfJ2+fJ3q,I+1)11)2-1)31)4) J(-"IY' even-) 
E30~ l (ql1)1 + (2 1)2 - qs1)s - (141)4) f<Yl: od'd, +) , 
EI2 ~~ (fJl1), - (21)1 - q31)4 + q41)1) r(Y2Y" odd, -) 
E23 ~ ~(- f{jq2 + q3q4 -1)11)2 + 1)31)4) 1'(- 1'11'5' even, +) 

E31 = 1(- fJI2 + rt22 + q3 2 - f{4 2 -111' + 1722 + 113 2 -1)/) 1(- )'31'5, even, +) 

1"10= l (- f{1'i4 - q2q3 - '11174 -1)2
'
13) 

1"20 = ~ (- rtjq3 + 'i2q~ - 1111)3 + 1)21)4) 

F30= ~ (rtl1)4 - qZ1)3 + rt31)2 - fJ41)1) 

F 1,= ~(- qj1)3 - fJZ1)4 - (31)j- q41J2) 

F Z3 = ~(- qlq3 + Q2Q,j + 1)11)3 - 1)2174) 

F31 = 1 (qjq4 +q2rt3 - 171'14 -1)21)3) 

r(YjY~, even, +) 

r (1'31'4, even, +) 
r(-)'2)'4, odd,-) 
r(- Yo, odd, +) 
r(1'3Y4, even, -) 
r(-Yl1'4' even,-) 

[T2, E ~vl = (i/2)E"vaaFas , [T2' F "vl = (i/2)E"VOla Eaa , 

[E"v' Eaa} = i(g"aSva - gvaS"a + gvsS" " - g",aSva) ' (3.2) 
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[B",bvl=-iS"v' [B,.,Cvl=-iF"v' 

The form of the Lie algebra has, of course, no de
pendence upon the particular identifications (3.1) used 
to obtain it, and any representation of the generators, 
e,g., by matrices, may be used in connection with 
(3.2). In the following section, the representational 
identities associated with the identifications (3.1) and 
Table II will be obtained. 

4. OPERATOR IDENTITIES FOR THE BOSON 
REPRESENTATION 

The ten generators of 8p(4, R) '" 80(3,2) may be given 
a concrete bosonic representation in terms of Q1' (/2' 

11 l' and 112' via Tab Ie II and 

V,,"'i(A,,+C,,), 
\4.1) 

:s"v '" HS"v + E,,). 
The operators 6"v then generate the Majorana repre
sentation of the Lorentz group. It has been shown, in 
Ref. 9, that the following identities hold for this 
realization: 

V"F" = -~, 

(4.2) 

Now an identically similar representation of Sp(4, R) 
can be constructed in terms of Q3' Q4' 1]3' and 1]., via 
Table II and 

V" ",~(A" - C,,), 

(4.3) 

Therefore, the identities (4.2) apply as well to this set 
of operators, which commute with the first set. 

When the identities (4.2) are applied in turn to the 
operators (401) and (4.3), the following preliminary 
identities result: 

A"A" +C"C.,.=-2, 

A"C.,. + C"A'" =0, 
(4.4) 
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and 

The second of identities (4.4) taken together with the 
result, from (3.2), 

[A",C,,]=O, 

yields immediately the result 

A"C,,=O. (4.6) 

Successive commutations of (4.6) with T, and T2 yields 
then 

and 

B"C" =0, 

A"D,,=O, (4.7) 

Similarly, commutation of the first identity of (4,4) 
with T, and also T z , and comparison of the results ob
tained with those of (302) yields the identities 

(4.8) 

and 

C"D" =2iT2o 

Commutation of the first of identities (4,8) with AY, 
followed by a contraction of the result with By and a 
second use of (3.2) yields the preliminary identity 

while the same procedure in the opposite order yields 

(4.9b) 

Similarly, commutation of the second of identities 
(4.8) with CY, followed by a contraction of the result 
with D", etc., and the same procedure in the opposite 
order yields the two results 

and 

(4.9d) 

Comparison of the results (4.9), and use of the third 
of identities (4.4) then yields, finally, 

and 

A"A,,=-1+T, 2+T2
2, 

B"B,,=1-T,2-T22, 

C" C" = - 1 - T 12 - T 2 2
, 

D" D" = -1 - T,2 - T 2
2

, 

5"Y5"y=-2 -2T, 2 +2T2 2, 

(4.10) 

The complete set of useful operator identities for the 
boson realization of L Sp(8 ,R) is given in Table IlL The 
procedure for obtaining anyone of them is similar to 
that outlined above, and is left as an exercise for the 
interested reader. 

These identities are essential for the purpose of con
structing relativistic wave equations based on Sp(8, R) 
with particular physical content, after the fashion of 
Ref. 8. Subsidiary conditions, such as usually arise 

TABLE m. Q:>erator identities holding for the realization of the Lie algebra of Sp(8,R) by bosons employed. 

A"A" = -1 + (Tt2 + T22) 

B"B,,=1-(T j2+T2
2)" 

C"C",=-1-(Tj2+T2") 
D"D", = - 1- (T1

2 + T22) 

S"YS"Y= - 2 - 2Tl2 + 2T22 
E"'YE "'Y= - 4 + 2Tl2 - 2T22 
F"YF "Y= 4 - 2Tl2 + 2T22 

A"B,,=2iTI 
B"A,,=- 2iTj 
C"A,,=O 
D"A",=O 

S"'YE"y=O 
E"'YS"y= 0 
F"VS"y= 0 

S"VF"v=O 
E"vF"v=-6iT I 
F"vE ",v = 6iT I 

E "v",aS"YSc;{l = 8 Tl T2 E ILVOtaS"vE",a = 0 E "vOtaSILVFOta = 0 
E ",vOt~E"'vE",a= - 8Tl T2 E "VOtaE"vS",a= 0 E "v",aE"VFOt~= 12iT2 
E"vOIaF",vFOIa= 8TjT 2 E"YOIaF"vS",a= 0 E"vc;{lF"vEc;{l= -12iT2 

A"F"v= CvTI 

A"'C,,=O 
B"'C", = 0 
C"'B" = 0 
D"'B,,=O 

A"'S"V=BvTI -iAv 
B"S",v=AvTI -iBv 
C"S"v= - DvT2 - iCy 
D"S",v= CvT2 - iDv 

A"'E "'v = DvT2 - 2iCv 
B"E",v=CvTI 
C"'E",v= -BvTj- 2iAv 

D"E"v=AvT 2 

B"F "V= DyT2 - 2iCv 
C"F "v=AvTI + 2iBv 
D"'F"v=-B.T2 

1475 

E",vOIaAVEOIa= - 2D"TI 
E"Yc;{lBvEOIa= - 2C",T2 - 4iD", 
("'VoiaCvEOIa= - 2B",T2 
E "YOIaDvEOIa = - 2A" Tl - 4iB '" 
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A"D", = 0 
B"'D", = 0 
C"'D,,=2iT2 
D"'C", = - 2iT2 
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when constrained Hamiltonian systems are considered, 
may be formulated in terms of the Lorentz scalar 
operators T 1 and T 2 in this way. 

For example, the operator A o' from Table II, has the 
number operator form 

(4.11) 

where the operators a and a denote boson annihilation 
and creation operators, respectively, while the op
erator T2 has the form 

T2 = (i/2)(a3a1 - a1 a3 + a4 ~ - ~a4)' (4.12) 

If the subsidiary condition on the eigenstates of Ao is 
imposed that T 2 must annihilate physical states, then 
the physical states are restricted to those containing 
only even numbers of quanta, i.e., a signature factor 
effect is automatically incorporated. 

Details of applications will be the subject of another 
communication. 
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We construct an algebra of (local) dynamical variables which satisfies the triality rule for quarks and an 
exact superselection rule between leptons and quarks. This algebra is isomorphic to a noncommutative 
Jordan algebra; hence, it is power associative. Inner derivations are constructed explicitly: Their algebra 
is isomorphic to Lie SU(3); the latter can be identified with the group of color symmetry. 

1. INTRODUCTION 

Color is a peculiar symmetry in several respects. 
First, it appears that all observables are singlets under 
the color group, SU(3\, even though some dynamical 
variables (quarks) transform according to nontrivial 
representations of the color group. 1 Second, it seems 
that color is an exact local symmetry. Third, only a 
very limited number of the possible representations of 
SU(3)c seems to playa role in the description of hadrons. 
For this reason, it has been proposed that in any unified 
theory involving leptons and quarks as the fundamental 
fermionic variables, the color properties should be 
reflected in the algebraic rules which govern the mul
tiplication of the dynamical variables. 2 [In this respect, 
SU(3)c would playa role analogous to the role played 
by the symmetric group in the formulation of the Pauli 
principle. J 

To be specific, we assume, as usual, that quarks 
are triplets (3), antiquarks are antitriplets (!), and 
leptons are singlets (1) under SU(3)c' The multiplication 
rule of the corresponding dynamical variables should be 
such that "mesons" (quark-antiquark) and "baryons" 
(three quarks) are both singlets under SU(3)c' This can 
be achieved2 if the multiplication table of the dynamical 
variables obeys the triality nile, which symbolically 
can be written as follows: 

(3) x (3)- (0, (3) x (3) - (3) . (1.1) 

Notice that (1.1) merely states the absence of certain 
representation of SU(3)c from the product of two dynam
ical variables: The triality rule says nothing about the 
products of, say, quarks and leptons. Gursey and his 
collaborators found realizations of (1.1) in terms of 
split-octonion valued variables, 3 once this choice is 
made, the rest of the multiplication rules follow. 

The implementation of the triality rule by means of 
octonion-valued variables is, however, not the only 
possibility, nor is it necessarily the most desirable 
one from the phySical point of view. 4 Instead of com
mitting ourselves to any predetermined algebra, we 
argue that the algebra of the dynamical variables should 
be constructed by means of a step-by-step implementa
tion of phySical principles. The triality rule, (1 0 1) is 
among the principles we want to incorporate, since it 
appears to be dictated by particle phenomenology. 
However) additional phYSical input is needed in order 

aJResearch supported in part by the U. S. Department of Energy 
under contract No. EY-76-S-02-3285. 

to complete the algebra. In particular, we construct 
the algebra in a way which incorporates an exact 
superselection rule between hadrons and leptons. 

The paper is organized as follows. In Sec. 2 we work 
out a simple exercise: para-Fermi fields realized on a 
direct product algebra. This exercise is of no particular 
physical significance 9 however, it gives a clue to the 
form of dynamcial variables on which we want to 
implement the physical principles. The actual color 
algebra is constructed in Sec. 3, whereas its structure, 
including the algebra of inner derivations, 5 is described 
in Sec. 4. In Sec. 5 we sketch an interesting construc
tion due to Faulkner. His procedure enables one to build 
up a large number of "color algebras," among those the 
color algebra proposed in this work appears as a 
(perhaps. phYSically important) special caseo Finally, 
in Sec. 6 we endow our color algebra with a grading o 

The existence of a grading is physically plausible: 
Throughout this work we regard dynamical variables 
describing quarks and leptons as generalized Fermi 
variables. 

In this work we concentrate on the correct algebraic 
description of color. Other symmetries (flavor and 
space-time groups) are not explicitly touched upon, 
even though their presence is implicitly assumed. In 
this sense, the present work may be regarded as a first 
step towards the construction of a physically viable 
unified theory of fundamental interactions: Subsequent 
steps obviously have to include a unification of color 
and flavor degrees of freedom and the construction of 
appropriate bundles in terms of local variables obeying 
physically relevant algebraiC relations 0 

2. EXCEPTIONAL REALIZATION OF PARA-FERMI 
VARIABLES: A PEDAGOGICAL EXERCISE 

Consider a para-Fermi field, J', of order p, realized 
through the Green ansatz. 6 On suppressing space-time 
variables and possible internal symmetry indices, we 
may write 

p 

I/J=6 <//C<) (2.1) 
0::=1 ' 

where the Green components, I/J(C> J, obey the following 
well-known algebraic relations: 

1jilod1jiIBJ + (_ 1)1+Oc>,B1jiIB)ljJlod = 0, 

IjJlc»tljJlB) + (_l)l+Oa,BIjJIB)IjJCc»t = O",BE , 

where E stands for the unit operator and Hermitian con
jugates are denoted by a dagger. 
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Conventionally, the Green components are written in 
terms of ordinary Fermi fields, cpt",), via a Klein 
transformation 7 : 

J,to<) = (_ i)1-pCO<)K
Ol

+
Pc

o<)cpIOl) 

with 

Here, as usual, 

and 

{ rf,lo<), cpIS)}=O, {cj)to<>t cj)IS)}=15 E 
'Y _ ' , I O! ,(3 , 

[Kp cp(1)]=O (p>y), 

{KS,cp(1)}=O ((3""'Y), 

(2.3) 

(2.4) 

cf. e,g., Druhl et al. B The important point about this 
realization is that the Klein operators, Ko<' are func
tionals of the Fermi variables q/cx) and their Hermitian 
conjugates. 

The latter assumption may be relaxed; however, in 
this way one arrives at inequivalent realizations of the 
relations (2.2). 

Indeed, consider the following ansatz for a para
Fermi field (of order p), 

p p 

ifl =6 eo< rplo<):: L; if,!O<), (2.1') 
a:::l 0:=1 

where the rp(o<) are Fermi variables obeying (2.4). How
ever, instead of (2.5) we require 

'if ()', p. (2.6) 

It is an elementary excercise to show that the Green 
relations, (2.2) are satisfied if the eo< generate a (real) 
Clifford algebra, viz. , 

We realized para-Fermi variables on a direct product 
algebra such that the direct factors form a real Clifford 
algebra C(P,R) and an ordinary Fermi algebra, (2,4), 
respectively. 

By inspecting (2. 1'), we discover that IjJ possesses a 
"color group,9" which is isomorphic to Aut C(p ,R) 
~so(p,RL Given the fact that SO(p,R) is a real group, 
for the sake of consistency we have to impose a 
Majorana condition on the rp(o<l, viz" 

Ccj)co<) =cb(O<), 

where C stands for the charge conjugation operators. 
We notice the important fact that the "color" group is 
generated by the algebra of inner derivations of C(p, 
R). Explicitly, if ° as stands for a conventional basis 
of Lie SO(p ,R), such that 

[O",s, 01~]= 0"6 0 S1 + l5a10",~ 

-15,,10ao -l5p~O",p (2.8) 

then 0 ",s is realized by 

O",a: e1 - ~[[e"" e~], e1 ]. (2.9) 

In a sense, this exercise is a trivial one: It is 
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unlikely that Majorana para-Fermi fields are of any 
physical interest. The important lesson to be learnt, 
however, is that color groups can be realized as inner 
automorphisms on dynamical variables constructed 
on the direct product of appropriate algebras. 

3. CONSTRUCTION OF THE COLOR ALGEBRA 

Motivated by the construction of para-Fermi fields 
in terms of the ansatz (2.1'), (2.6), we now want to 
construct dynamical variables which describe the color 
properties of quarks and leptons in a unified way. To 
this end, we make an ansatz for the fundamental dyna
mical variable J, analogous to (2.1'), viz., 

(3.1) 

with 1 ~ ()' "" 3; summation over repeated Greek indices 
("color indices") is understood, The coefficients I and 
q" are to represent leptonic and quark variables, 
respectively: They are regarded as ordinary, anti
commuting, Fermi variables. Space-time and internal 
symmetry (flavor) labels are suppressed as before, 
Hence all the color properties and the triality rule in 
particular) have to be realized in the basis elements U o 
and u". We now proceed to implement some elementary 
physical requirements in order to determine the multip
lication table of these basis elements. 

(i) Quarks and antiquarks (leptons and antileptons) 
are distinct. Both leptons and antileptons transform as 
-(1) under SU(3)c' However, quarks transform as -(3), 
whereas antiquarks transform as - CD. Hence, we must 
have a dinstinct set of basis elements, U"', such that as 
basis vectors of a vector space, II" span (3) and IT", 

span (m of SU(3)e We write the conjugate (for instance, 
under TCP) of JI as 

4! =uol + ucJi"" (3,2) 

where both 110 and Uo are singlets under SU(3)c' 

(ii) Hadron-lepton supers election rule: Every 
observable, n, may be written as a direct sum with the 
help of orthogonal projectors (idempotents), viz o , 

such that 

L 2 =L, H 2 =H, 

Lt=L, Jt=H, 

LH=HL=O, 

(3.3) 

(3.4) 

and, naturally, both Land H are singlets under SU(3)c' 
Since we want to identify l with a leptonic variable (an 
observable), liD may be identified with the projector L, 
provided we postulate ITo = u o; this is obviously per
missible' since both 110 and Uo are color singlets. We 
also assume that there are just two superselection 
sectors (hadrons and leptons), so that 

(3.5) 

where E is the unit element of the color algebra. The 
last relation allows us to write L = E - H, so that we do 
not have to consider Land H separately. 

Furthermore, leptons and quarks fall into different 
superselection sectors; hence, we must have (with 
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U =1Io=L), 

Lu" =u"L =Luo; =uo;L =0. (3.6) 

(iii) Triality rule: Mesons (or currrents) must be 
observables, and hence, of the form (3.3). Keeping in 
mind (3.0, (3.2), (3.6), we thus have 

[In writing down (3.7), we kept in mind flavor and 
space-time properties to be carried by the Fermi 
coefficients q", and if,,: These must be the same as pre
dicted by a "naive" quark modeL] Similarly, baryons 
(antibaryons) must be hadronic observables. Together 
with (3.7), this can be achieved by putting 

(3.8) 

where E,,~y is the totally antisymmetric unit tensor, 

(iv) Finally, any hadronic observable and a quark 
(anUquark) must carry the same color as the quarks 
do, with the correct flavor and space-time propertieso 
This gives 

This completes the multiplication table of the basis 
spanned by u O!' UO!, and H. [Obviously, the multiplica
tion rules of L with the other basic elements can be 
read off with the help of (3.5). ] To summarize, we 
have the multiplication table: 

H 

H H 

/l", I It", o",{lH E()'.{lylfy (3.10) 

We observe that the multiplication table (3.10) is unique, 
up to linear transformations of the basis elements. 

4. STRUCTURE OF THE ALGEBRA AND 
DERIVATIONS 

The algebra defined by the multiplication table (3.10) 
is a simple nonassociative algebra; henceforth it will 
be referred to as 5. 

The table of nonvanishing associators can be worked 
out with the help of (3.10). We find {Ia,b,c]= (ah)c 
-a(bc)r: 

[Ufl ,uy,ll()'.]=-[U", uy , U{l] = 2olJru()'. -I5Qt~uy> 

[uy,u .. ,ull ] = - filM U()'., uy] = ojlyuet - 21'J,"/lun 

[u"" 1I/l' uy] = - fUr> U{l' li",] = O",flUY - O{lyUo;, 

[ila, Uy,uo;] = - [ilet , liy ,1I{l] = 0llii", - Oyo:ufl , 

[ur ,u'" ,u/l] = - lUll' Uo;, uyJ = 26o;yufJ - 0flYU'" 

[u", ,u{l,urJ = - [l~,zr{l'UcxJ = oo;flufJ - 20 lJruo;' 

We immediately verify that 5 is not an alternative 
algebra, since for a generic pair of x, Y E 5, 
[x,x,yltO. Nevertheless, 5 is flexible, i.e., 
(x ,Y ,x J= 0, as one can verify by direct computation. 
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Form a physical point of view it is of utmost impor
tance to ascertain that 5 is power associative, i. e. , the 
subalgebra generated by any fixed XE 5 is associat~e. 
This property allows us to use the variables i/J and i/J as 
dynamical variables; in particular polynomials of the 
dynamical variables are defined unambiguously. In 
order to verify power associativity, we resort to the 
well-known tooliD of passing from 5 to its symmetrized 
version, 5·. The algebra 5· is defined to be the same 
vector space as 5, but with product defined by 

XOY= Hxy +yx). 

The multiplication table of 5· can be read off from 
(3.10): 

H lIa ua 

(3.10+) 
U", lI", 0 o"aH 

II", It", 0aeH 0 

We also remark in passing that the antisymmetrized 
algebra So, with product defined by XflY'" ~(xy -yx), 
is just a Mal 'cev algebra with identity, as it can be 
readily seen from (3.10) after antisymmetrization: 

118 U{l 

0 0 H \: 
S-: i (3 0 10-) 

11 '0 E",IlyUr 0 

11:/ 0 0 E",8rily 

Returning to 5·, we immediately verify that 5· is a 
(commutative) Jordan algebra; for instance, one 
verifies the Jordan identitiesll by direct computation, 

[x 2
, y,x] =: [x 2 ,x,y] = Lv,x,x2

] =0, 'fI x,Y I?: 5·. (4.2) 

It folows then that 5 is a non-commutative Jordan 
algebra12 and, hence, it is power associative. 

Automorphisms and involutions: The following state
ments are verified by inspection of (3.10). 

(a) Discrete transformations: 

(4.3) 

is an automorphism, whereas 

1t"~-11",, H-H (4.4) 

is an involution, L e. , for x ,Y I?: 5, (xy) = yX' under (4.4), 
The existence of these discrete transformations allows 
the construction of two nontrivial reflections (for 
instance, C and T) on the variables 4' and if. 

(b) Continuous automorphisms: The linear 
transformations, 

(4.5) 

with M",{lM;8=oo;r' is an automorphism of (3.10), where 
M is a 3 x 3 complex unimodular, unitary matrix, the 
complex conjugate of a number being denoted by an 
asterisk. This is the built-in automorphism group of 
the algebra, which we identify with the Color group, 
SU(3)c' 

It can be shown that SU(3) is actually the largest group 
of continuous automorphisms of 5 which are connected 
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with the identity automorphism. 13 We postpone the 
proof of this statement to the next section, where it 
will be carried out in the framework of an elegant 
construction due to Faulkner, 14 

From a physical point of view, it is important to 
see whether the infinitesimal transformations of SU(3)c 
can be realized as innner derivations on S. (This is 
necessary in order to construct couplings between spinor 
and gauge fields in a theory where our variables ~ and 
TfJ will be regarded as local ones, cf. Ref. 15). To this 
end, we introduce a basis, C; in Lie SU(3), acting on 
II", fTc" and H in the usual way, viz., 

C:II a = - (i5!lly -115~1/,,), 

C:I7", =o;I7B -}o~()" 

G~H=O" 

(4.6) 

It is now easily seen that the action of the C~ is realized 
in terms of a linear combination of associators, 

o;.x ~ ~(lx, lly ,uB1 + [uy , Us ,x} 

- 3[us ,x ,lIy J), 't/ XE: S. (4.7) 

One readily verifies that the operation (4.7) is indeed a 
derivation and that the Jacobi identities are satisfied 
as they should be. 

5. FAULKNER'S CONSTRUCTION 

Faulkner has constructed a class of noncom mutative 
Jordan algebras; in this context,S appears as a special 
case belonging to that class. 14 Due to its intrinsic inter
est. we reproduce here the construction; in particular, 
this allows one to prove that the algebra of inner deriva
tions of 5 is indeed isomorphic to the Lie algebra of 
SU(3). (This proof is also due to Faulkner; the proof 
given in Ref. 13 is essentially equivalent to the one 
reproduced here. ) 

First, a large class of noncommutative Jordan 
algebras may be constructed in the following way 0 We 
consider a vector space, V, with coefficients taken 
from an algebraic field, F. (For practical purposes, F 
may be the field of real or complex numbers.) We equip 
V with a nondegenerate symmetric scalar product, 
/, such thatj(x,y)=j(y,x) andj(x,y)=O 't/x"'- V implies 
v = O. Also , we define an alternating form, g(u, v ,IV). 
~n the outer product V /\ V (, V. With the help of these, 
we may define an antisymmetric product on V, say 
II x v (u, V E: V) such that j(1£ xu, w) = g(u, v, IV L 

{Let us remark at this point that such a construction 
is not empty. As an example, consider a simple Lie 
algebra with a basis a i' normalized in such a way that 
the Killing form is k (a p a j) = Ow Furthermore, let us 
take the Lie bracket to be of the form [ap 0j}=Cjjkok, 

where the structure constants C ilk are totally antisym
metric. We can now identify j- k, OJ x aj - [oja j J and 
obviously, g(a j , a j , a

k
) = k([a p aj 1, akL} We consider now 

a scalar extension of V, by adjoining a unit element, 
II, to it; as a vector space, we thus have A = Fh + V. 
We promote A to an algebra by defining the product 
between elements of the form ("ilz +v) he F, v E: V), as 
follows, 

1480 

(ah +v )(j3h + tt) = (aj3 + j(v ,u)h + (au + j3v + v xu). 
(5.1) 
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By using the same tools as in the previous section, it is 
readily established that A is a noncommutative Jordan 
algebra with the product defined by (5.1). Indeed, the 
symmetrized algebra, A + is easily shown to be a 
commutative Jordan algebra, [One has to verify the 
Jordan identities, (4.2), by direct computation~ J 
Furthermore, by computing associators, the flexible 
law, [a, b, a J = 0 can be verified. 

Next, one inquires about derivations of A 0 The 
basic point is to show that the derivations preserve the 
forms j and g. 

The proof proceeds as follows, Let J) be a derivation 
of A: obviously, D(h)=O, NOW, for v ~', 1'

2 =f(v,I')II, 
by (5.1). Hence, D(v 2 )=vD(v)=D(v)v=0 and by taking 
scalar products, we havej(v,D(1'))=0. In a similar way 
we find 

j(D(u),v)+!(v,D(u))=O. (52) 

Thus D preserves scalar products, By an entirely 
similar reasoning, one verifies 

D(v xu) =D(v) XII + /' xD(u). 

From this, it follows that 

g(D(u) , v, w) + g(u ,D(v), w) + g(u, v ,D(w )}= 0, (5 0 3) 

Hence, derivations preserve / and g as statedo 

In order to recover S as a special case, consider 
V = U 3 'f' U3 where V 3 and U3 are isomorphic copies of a 
three-dimensional vector space. Hence, for eac~ 
v E: V, we may write v =11 1 +172 , with 111 E V, 112 "'- U o 

Furthermore, for each 11 co U, there exists an image in 
fj denoted by it, and vice versa. We now take 

/(1l , iT) = /(v ,1/ ) = It • v h , 

f(u , 1t ) = f(u , U) = 0, 
(5.4) 

where u • v stands for the ordinary (Cartesian) scalar 
product. As an alternating form, we take 

g(1l ,v, 11.') = det(u, v , /(')Iz, 

g(li, v ,w) = det(u, v, t!')h, 

g(ll , v, w) = g(1l , V , w) = O. 

(5.5) 

Hence, the skew-symmetric product with v = v1 + v2 , 

W=lI'l +w2 (V,WF V) is 

(5.6) 

where, on the rhs of (5.6) we have the ordinary cross 
product between Cartesian 3-vectors. 

We remark further that our ansatz for V amounts to 
a complexification of a real, three-dimensional vector 
space; in order to see that, one may take, e.g., the 
vectors II +/1 and U -/I from V. 

Under the product (5.1), the multiplication table now 
becomes 

h v 

It II v l' (507) 

U II llXv (ll' v)h 

rr It (II' v)1z /I x v 
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which is obviously equivalent to (3.10). The derivation 
algebra preserves (5.4) and (5.5), hence it is isomor-
phic to Lie SU(3). Q,E.D. 

Obviously, 5 fits into Faulkner's construction because 
the hadronic proj ector, H, acts as the unit element on 
the sector built up of quarks. 

6. GRADING OF THE COLOR ALGEBRA 

We claim that 5 can be given the structure of a 
graded algebra. 16 In order to verify this, we choose the 
basis used before, spanned by u"" it"" H. The grading 
group turns out to be Z3' It is convenient to realize 
this group explicitly by taking the third roots of unity in 
the complex plane, viz., 

(6,1) 

In what follows, this ecplicit relaization is always 
implied when necessary. (In particular, it makes sense 
to add the elements of Z3 as complex numbers. ) We 
have the multiplication table: 

go go gl g2 

gl gl g2 go 

g2 g2 go gl 

(6.2) 

Correspondingly, we grade the vector space, 5 = h (f; 14 

EBit as follows: 

grade(h) =go, grade(u) =gu grade(U) =g2' (6.3) 

This map,S - Z3' establishes an isomorphism between 
the multiplication tables (3.10) [or (5.7)] and (6.2). 
Hence, the algebra 5 is graded by Z3 as asserted. 

With the help of this grading, one can rewrite the 
multiplication table (3.10) in complete analogy with 
the multiplication table of the familiar Z2 graded 
algebras. Indeed, let u(g) stand for an element of a 
vector space (E V) of grade gi' We now have 

t[U(gi)U (gJ) + (- 1)a<li 'Ij )u(gj )u(g;l] = u(gigj) ' 

U(gi )ll(gj) - (_l)a(li l j )u(g)U(gi) = 0, 

where 

a(gp gj) = - ~Re(gi + gj + gigj)' 

This completes the grading process. 
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A scheme for the coupling of physical systems is proposed within an axiomatic approach to quantum 
mechanics. 

INTRODUCTION 

In the logic approach to classical and quantum 
mechanics, with every physical system there is asso
ciated an orthomodular lattice (logic1•2). The distri
butivity or the nondistributivity of the logic depends on 
the classical or quantum character of the physical sys
tem. With the special assumptions leading to Piron's 
theorem, a logic for a compound quantum system is 
provided by taking the tensor product logic, namely the 
standard logic of the tensor product of the Hilbert 
spaces of the interacting systems. Dealing with classi
cal systems, the logic of a compound classical system 
can be taken to be the Cartesian product logic, namely, 
the power set of the Cartesian product of the phase 
spaces of the interacting systems. 

Then the question whether it is possible to give a uni
fied definition of product of logics to cover both cases 
is of some interest. Since such a definition should be 
given at the level of orthomodular lattices, it should 
contain, in principle, also the case of the interaction 
of classical and quantum systems. This physical situa
tion is relevant for its connection with the problem of 
quantum measurement in conventional quantum 
mechanics, 3 

In this note the definitions of pseudoproduct and of 
product of logics are proposed. We give necessary and 
sufficient conditions in order to obtain distributive 
pseudoproduct logics by coupling distributive logics. 
For distributive pseudoproduct logics the pseudoproduct 
is represented by the Cartesian product, We find that 
the product of irreducible logics is irreducible (and 
conversely) and that the product logic of standard logics 
is represented by the tensor product logic. Finally we 
study an alternative condition for the pseudoproduct of 
classical and purely quantum logics. This condition, 
which has a direct physical interpretation makes the 
pseudoproduct a product and is compatible with the in
terpretation of the coupling of classical and purely quan
tum systems as quantum systems endowed with con
tinuous superselection rules. In the three mentioned 
cases the product satisfies the appropriate requests of 
existence and uniqueness. 

DEFINITIONS AND PRELIMINARY RESULTS 

In what follows, by a logic we mean a complete, 
orthomodular atomistic lattice with the covering proper
ty and of length", 4, 4 The least and greatest elements of 
a logiC L will be denoted with ff and I j its atoms with 
A (L). When x commutes4 with y, we write xCy. If A is 
a nonempty subset of L, the complete orthomodular 
sublattice4• 5 A' = ix E L : xCy 'fI YEA} of L will be called 

the commutant of A. The center C(L) of a logic L is 
such that C(L)=L', 4 

We assume that a logic L corresponds to a physical 
system L;. It represents the set of classes of equivalent 
yes-no experiments on L; ordered a la Piron, 1 If L is 
distributive [C(L)=L], then L is a classical logic. If 
L is irreducible [C(L)={0, II.}], L is a purely quantum 
logiC. If C(L) is nontrivial, we say that L admits super
selection rules. 1.2 The three mentioned cases corre
spond, respectively, to the physical situation in which 
L; is a classical or a purely quantum or a quantum 
physical system, 

Definition: A pseudoproduct of the logics L, L is a 
pair (O,L), where L is a logic and 0 is a map 0: Lxi 
- L such that [we often write O(x,x)=xox]: 

PI, ff"'XEL=>(xox~xoy<;=;:>x~y) 'fI x,YEi, 

~"'xEI=>(xox~yox<;=>x-sy) 'fI x,YELj 

P2. lLoi=ILLj ffox=x o:0=ffL 'fIxEL, 'fI xEi j 

P3. n(L x i) =- L () I generates L as a complete ortho-
modular lattice 

P4, xol/\!I.ox=xox'fIxEL, 'fI XELj 

P5. (xo!l.)L=xLolj (1 oX)L=!1. oXL 'fI XE L, 'fI XE i; 

P6. A(L) OA(L) cA(L). 

A product of L and I is a pseudoproduct (0, L) such 
that: 

P7. e(x)oe(x)=e(xox) 'fIXEA(L), 'fIxEA(i), e(x) 
being the central cover4 of x. The elements of L 0 I will 
be called product elements. (To avoid heavy notations, 
we do not label, as it has just been done, the lattice 
operations with reference to the logics in which they 
work. ) 

Remark 1: According to Definition 1, the map x 
- x 0 x (x - x 0 x) is an isomorphism from L (i) onto the 
sublattice L Ox (x 0 L) of L when x",:0 (x", ff). The map 
11 (x) =x 0 I)(iL(x) =11. 0 x) is an ortho-isomorphism [rom 
L (I) onto the orthocomplemented sublattice L 0 i1 
(!I. oI) of L. 

If L is the logic corresponding to the physical system 
1:;, we associate with the compound physical system L; 

+ L a product (0, L) of Land L. In the next section it 
will be seen that this is consistent when anyone of L;, 

£ is chosen to be a classical or a purely quantum 
system. 

The physical interpretation of the elements of L is 
the following. A product element x ox corresponds to 
the yes-no experiments (product tests) on L; + r; ob-
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tained by taking "yes" when both an experiment of x 
performed on 6 and an experiment of x performed on f 
give the answer "yes"; "no" otherwise. The remaining 
elements of L are such that none of them contains 
product tests. 

The axioms PI, P2, and P4, P5 express the com
patibility between the given interpretation of the product 
elements and the physical interpretation of the order 
relations and of the operations existing in each logic. 
The condition P3 is an irreducibility condition. The re
quest P6 has been done on the analogy of the tensor pro
duct of Hilbert spaces. It does not necessary follow 
from the proposed interpretation of the elements of L, 
The axiom P7 is a technical condition. 

Lemma 1: Let (0, L) be a pseudoproduct of the logics 
L, L. Then: 

(ii) Xox* ~L ~ (x oX "'y oy <=0> X "'y and x "'51); 

(iii) (xoX)l=(XloXl)V(XloX)V(xoXl), xEL, xEi, 

Proof: (i) From PI we have I\,X", 01l8X8 "'1I",.8(X", OX8), 
On the other hand, 1I",.8(X", ox8) '" (lI",x", ° 011 (1 01l8X8) 
=1I",x",01l8X8 by using PI, Remark 1, P4. (ii) We 
show ~L * x ox'" y 051 ~ x'" y and x'" y since the converse 
follows easily from Pl. By the assumption, (i), and P1 
we have XoX=(Xlly)o(XllY)"'xo(xllY). Hence X "'xlly 
and then x '" y. Analogously, x '" y. (iii) We have (x 0 X)l 
= (x ° l')Lv (1 oX)l= (Xl ° (x V Xl» v ((xv Xl) oxl) = (Xl ox) 
V(XloXl)V (xoXl)V (XloX l ) by using P4, P5, and Remark 
1. 

The following lemma establishes some immediate 
properties of the commutant that will be useful in the 
next section. 

Lemma 2: If A, B are subsets of a logic L with A n B 
a nonempty set, then we have: 

(i) A c B=> B'cA'; 

(ii) A "::JA; A'" =A'; 

(iii) (AnB)':=J(A'L,B')". 

THREE APPLICATIONS 

We first study the interaction of classical systems. 

PropOSition 1: Let (o, L) be a pseudoproduct of the 
logics Land L. Then the following conditions are 
equivalent: 

(i) L is a Boolean algebra 

(ii) L,i are Boolean algebras andA(L)OA(L)=A(L). 

Proof: (i) ~ (ii). By the assumptions and Remark 1, 
L,i are Boolean algebras. If now xEA(L), xiA(L) 
CA(I), {x,,}CA(L), {x8}cA(I), v",x,,=l, V8X8=1, then 
x =x All ° i =x II (v",V8(x" oX8)) =V"'V8(X II (x", ox8» =~L by 
developing according to the isomorphism law of Remark 
1 and by distributivity. 

(ii) ~ (i). By Huntingtone's theorem6 it is enough to 
prove thatA=(AIIB)V(AIIBl) 'r/A,BEL. LetA=V",x", 

ox"' B=V8Y80Y8 with the x" °X,,'s and the Y8 0Y8'S pro
duct atoms. It is not difficult to show that the distri
butivity of L and I implies that either x" ox" '" B or XC( 
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ox",,,,B\ Hence (AIIB)V(AIIBl)~(X"OX"IIB)V(x"ox" 
IIBl)=x" ox" 'r/ (Y, and then (AIIB)v(AIIBl)~A. The 
converse inequality holds in general. 

Remark 2: Let (0, L) be pseudoproduct of Land L. By 
Proposition 1, if L is distributive so are Land i. The 
pair (0, L) is then a product since P7 holds trivially. 
Moreover, the pair ({p., j):"}, L) (11,;; being the maps of 
Remark 1) is a Boolean product of L and I in the sense 
of Ref. 7, Indeed, by P4, L 0 i and II. ol are indepen
dent subalgebras of L, With our assumptions on the 
lattices, L is ortho-isomorphic ("=') to P(A(L», the 
power set of its atoms. Analogously L '" P(A(L», I 
'" P(A (I)). By Proposition 1, Lemma 1 (ii): L '" P(A (L) 
OA(i»", P(A(L)xA(I», So, in the distributive case, 
the product function is represented by the Cartesian 
product function. 

Before approaching the purely quantum case and the 
mixed case we state some results that hold in general. 
They are obtained at the level of the pseudoproducts 
without making any use of P6. 

Proposition 2: Let (0, L) be a ps eudoproduct of the 
logics L and I. Then the following hold: 

(i) (L oi)" =L; 

(ii) L~in (LoI)'=C(L)OC(I); 

(iii) (C(L) CC(I»" =C(L). 

Proof: (i) It follows from P3, Lemma 2(ii), and some 
properties of the commutant. 

(ii) Let ~L * X oX E L 0 L I' (L oI)'. Then, in particular, 
x ° xCy 0 i 'r/ Y E L, that is, x 0 x = ((x 0 x) II (y ° 1) v ((x 0 x) 
II (y oi)l)=((Xlly)V (Xllyl»ox, by taking into account P5, 
Lemma l(i), and Remark 1. Hence we have x=(Xlly) 
v (x lIyl) 'r/ Y E L. Analogously x E C(I). On the other 
hand, if ~L *xox=((xlly)V(X(lyl»o((XlIy)V (XlIyl» by 
expanding according to the isomorphism law of Remark 
1, and by Lemma 1 

x oX = ((x lIy) 0 (x /IY» v ((x /I),l) 0 (x lIy» 

v ((x lIy) ° (x lIyl» v ((x (Iyl) 0 (x ;\yl» 

,c; ((x ° x) /1 (y 0 y» v (x ° X /1 (y 0 Y )l) 'r/ yo Y (C L C L. 

Since the converse inequality holds in general, we obtain 
xoxELCin (LoI)'. 

(iii) By taking the commutant in (ii) and by using (i) 
and Lemma 2, we have (C(L)oC(L»'=L. The proof is 
completed by taking the commutant once again. 

Proposition 3: Let (0, L) be a product of Land L. 
Then L is irreducible if and only if both Land L are 
irreducible, 

Proof: By Proposition 2(iii), Lemma 2(ii), P2, and 
Lemtp.a l(ii), if C(L) = WL' II. L}, then C(L) = W, I}, C(i) 
= (0, lI.}o We show the converse by showing that we have 
A (C(L» =A(C(L» oA(C(L» for the atoms of the centers. 
IndeedA(C(L»={e(x):xEA(L)} holds (see Ref. 4, Lem
ma 10.11), e(x) being the central cover of x. Analogous 
relations hold for C(L) and C(L). By P6, P7, A(C(L» 
::JA(C(L» OA(C(L». If A (-" A(C(L), A iA(C(L» 
CA(C(i» we have the absurd A =A 1111. 0 I =A II e(V "'x'" 
oV8X8)=AII(V".8e(x",)oe(x8»=,I'lL' where {x",}cA(L), 
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{xa}cA(L), 1L ==v"x", I: ==Vaxa. This can be easily seen 
by the fact that the central cover commutes with the 
lattice join (Ref. 4, Lemma 5.11) by P7 and by exploit
ing the distributivity of C(L). 

_ ~ema!k 3: (a) LetM, M, 2 be logics and h:M-L, 
h : M - L, g: L - 2 be ortho-isomor:phisms, Then it is 
e~sy !o check th'::.t ~he map 0': M XM - 2 defined by 
o (x,x) =={(h(x) 011 (x)) is such that (0',2) is a product 
of M andM. 

(bJ Let (O,L(H» be a product of L(,f» and L(~) 
[.ti,.ti, H are Hilbert spaces over the same field of 
numbers and L (.ti) is the standard logic associated 
with.ti J. Then H::::.ti@ ii . 

The need for the study of the coupling of classical 
and quantum systems and its connection with the prob
lem of measurement interaction has been recalled and 
stressed in Ref. 3. There the problem has been posed 
and solved by reinterpreting a classical system as a 
quantum system with superselection rules. The counter
part of that problem in the context of the logic approach 
to classical and quantum mechanics can now be ad
dressed by specializing the scheme of the Definition 1. 

Proposition 4: Let (0, L) be a pseudoproduct of the 
logics Land i with C(L)=L, C(L)={0, n. Suppose that 
the following condition holds: 

P8. A EA([), x EA(L), and A'" x 0 i =2> A =X oX for some 
xEL. 

Then we have: 

(i) A(L) 0'[ =A(C(L); 

(ii) LL0L,x oif]=xoL, (x~A(L)), where LL0[>X oil is 
the segment4 from ff L to X 0 IL. 

Proof: (i) LetxEA(L) and suppose A ,::xoi, A 
EA(C(L). Since L is atomistic, A =v"A" with {AJ 
cA(L). There follows A" '::xoi. By P8, A"=xox,, and 
hence A ==x 0 (V "x,,). By Proposition 2(ii), A =x 01. 
HenceA(L)OicA(C(L). The equality can be shown to 
hold by mimicking the first part of the proof of Propo
sition 1 with regard to the atoms A(C(L). 

(ii) We have LL0L ,xoi]:Jx OL (x EA(L». With our 
assumptions, the sublattice x oi of L is a sublogic of 
the irreducible logic L[,0L, X 0 ill. To see this, we have 
only to check that all works well for the relative ortho
complementation. We have indeed (x 0 X)l A (x 0 if) =x oxl 

by ~emma 1 (iii) and by the distributivity that holds for 
x 0 1L being in C(L). To complete the proof, we show that 
every atom A of L[0L , x 0 if] is such that A E A(L) 0 if. 
Indeed, for such an atom, we have also A EA(L) (Ref. 
4, Lemma 8.18). SinceA-sxoi, by P8, PI, A=xox 
for some X EA(i). 

Remark 4: A first consequence of Proposition 4 is 
that the pseudoproduct there studied is also a product: 
FromA(L)Oi=A(C([» we have indeed e(xox)==xol 
==e(x)oe(x), xEA(L), xEA(l). Another consequence is 

L ==EB(xoL :xEA(L», 

that is, L can be decomposed into the (possibly con
tinuous) direct sum of mutually orthogonal irreducible 
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logics (sectors) each of which is relatively ortho-iso
morphic to L. This is a consequence of standard re
sults on lattice decomposition theory (Ref. 4, Lemma 
10.12) and the fact that x, Y EA(L), x*y (and hence 
x,:: y\ L being distributive) imply x 0 x -s yl 0 X < yl 0 a 
-s (y Oi)l 'tI X,Z E L by PI anJ Lemma l(iii). According
ly, each a E L can be uniquely decomposed into the 
orthogonal sum a =EB" a,,_where the CI' component is de
termined by a()/. =aAx()/. OIL ({x,.}"'A(L». Proceeding as 
in the first part of the proof of Proposition 4, we have 
a" = x()/. Ox,,(a) with X()/. (a) E i. With some calculations, 
the i3 component of al is found to be (a l

)8 = (V" (x" 
ox",(a)))l/\X8o[=x8ox~(a). Analogously, if ia,,} is any 
family of elements of L we have (V"a"),,, = x'" oX",(V"a,,) 
=vk(x", °X,,(a,,» and (Akak)", =!\"(x,, ox",(a,,». If now (U, L) 
and (0, Zl are pseudoproducts of Land L and if the as
sumptions of PropOSition 4 hold, then Land l are 
ortho-isomorphic by the map a ==V ",(x", ox",(a»-7i 
=V",(x", -;;x,,(a». This is a consequence of the uniqueness 
of the orthogonal decomposition and of the previous 
considerations. 

The decomposition of L reduces also the problem of 
representing the product (C, L) of Proposition 4 to that 
of representing irredUCible logics. This too is a known 
fact, at least when the x 0 i's are associated with inner 
product spaces over the complex numbers (Ref. 4, Sec. 
34). 

The physical interpretation of P8 is the following. Let 
us perform a minimal test on the classical system :s 
and the test of the existence of the purely quantum sys
tem 2':. Then a minimal test on the compound system 
L: + f majorized by the product of the two is itself a 
product test. This assumption has the consequence that 
the interaction of a classical system with a purely 
quantum system can be described in terms of a quantum 
system endowed with continuous superselection rules. 
The corresponding superselection sectors are labelled 
by the atoms of the classical logic, each sector pro
viding an ortho-isomorphic image of the purely quantum 
logic. 

CONCLUDING REMARKS 

In this paper we have tried to give an intrinsic charac
terization of the interaction of physical systems within 
the logic approach to quantum mechanics. The charac
terization is based on Definition 1 which requires the 
atomicity condition for the logics. This condition plays 
a fundamental role in the deduction of the results of the 
previous section, but it restricts the class of the 
physical systems to which the definition applies. So one 
might ask whether, by relaxing the atomicity condition, 
one is still able to show the existence and the unique
ness of the product. Another open problem is the study 
of the Definition 1 in the cases that do not reduce to 
those treated in the previous section. Finally we ob
serve that Definition 1 can be generalized to describe 
the coupling of more than two physical systems, 
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